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Abstract. Query-update independence analysis is the problem of determining
whether an update affects the results of a query. Query-update independence is
useful for avoiding recomputation of materialized views and for checking for in-
terference among concurrent queries and updates. This paper develops static anal-
ysis techniques for query-update independence problems involving core XQuery
queries and updates with a snapshot semantics (based on the W3C XQuery Up-
date Facility proposal). Our approach takes advantage of schema information, in
contrast to previous work on this problem. We formalize our approach, sketch a
proof of correctness, and report on the performance and accuracy of our imple-
mentation.

1 Introduction

In recent years query and transformation languages for XML data have been studied
extensively. The World Wide Web Consortium (W3C) has developed XQuery, a stan-
dard XML query language with a detailed formal semantics and type system [7, 12].
Most real-world data changes over time, and so it is also important to be able to update
XML documents and XML-based data. However, query languages such as XQuery (and
transformation languages such as XSLT) are awkward for writing transformations that
update part of the data “in-place” while leaving most of the document alone.

There have been a number of proposals and prototype implementations for XML
update languages (see for example [1,9, 15, 24]). While no clear winner has emerged so
far, the W3C has introduced the XQuery Update Facility [8], combining features from
several proposals. This is now supported by many XML database implementations and
appears well on its way to becoming standard. However, reasoning about updates is
challenging; many basic problems, such as the typechecking and static analysis prob-
lems for XQuery Update (and for XML updates more generally) remain ill-understood.

One fundamental static analysis problem is that of deciding query-update indepen-
dence, or whether an update conflicts with a query [20]. Independence analysis has
numerous applications, such as detecting when an integrity constraint needs to be re-
validated or a view re-computed after an update occurs. Query-update independence
is also related to problems such as access control and concurrency control for XML
queries and updates. For example, an access control policy might specify that the re-
sult of a particular view must not be altered. Query-update independence implies that a
given update satisfies this policy. We will not pursue these further applications in this

paper.



Obviously, we can determine at runtime whether an update impacts a query: we
simply run the update, then re-run the query, and finally compare the results. However,
in practice this dynamic independence testing is expensive, especially as the number of
constraints or views grows, and it does not save us any work if our ultimate goal is to
avoid recomputation. We thus want to compare an approach based on static analysis of
independence against an approach based on re-evaluation.

Unfortunately, as we shall show, static query-update independence testing is unde-
cidable in general (interreducible to query equivalence) and Raghavachari and Shmueli [20]
showed that it is NP-hard even for XPath-based queries and updates. Therefore, in this
paper we study static analyses that conservatively approximate the true results. Conser-
vative independence analysis either determines independence or says “unknown”.

We distinguish two application scenarios. In the first, we know the typical updates
and queries well in advance of their evaluation. In this case, it would suffice to have an
offline analysis that detects independence; such an analysis might be fairly expensive
— for example, taking minutes or hours. If we are only concerned with what happens
for a fixed (or rarely changing) set of queries and updates, then we can afford to per-
form sophisticated and time-consuming analyses, perhaps even ones that provide exact
answers (when this is decidable). Previous work on static analysis and optimization of
XML updates has focused on such offline scenarios.

In the second, online scenario, we are given (perhaps a large number of) queries
expressing constraints or views, but we do not know the updates in advance. In this
case, for the analysis to be useful, it must take (much) less time than full re-evaluation;
if the analysis takes a long time but ultimately decides that the a query will need to be
re-evaluated anyway, then this could impose an unacceptable delay. In this paper, we
develop an analysis that is both accurate enough and fast enough to be useful for even
for view maintenance settings involving relatively small documents (e.g. around 1MB
in size). Of course, this can also be used for offline analysis.

Previously, Ghelli et al. [15] studied update commutativity. Our work differs from
theirs in two important respects. First, our language is based on the emerging XQuery
Update standard, whereas theirs is based on an different update language with somewhat
more complicated semantics. Furthermore, the update commutativity problem resem-
bles, but is not the same as, the query-update independence problem we study. Second,
our approach is based on leveraging schema information and Ghelli et al.’s work is
based on analysis of paths read or written by the query and update, making no assump-
tions on the input. Thus, our approach can take advantage of knowledge of the structure
of the input.

Of these differences, the second is the more significant, since it does not appear
hard to adapt Ghelli et al.’s path-based analysis to handle a different update semantics;
in fact, XQuery Update 1.0 is in many ways easier to analyze than their language. As
we will show, neither path- nor schema-based analysis is strictly more precise than the
other. It seems worthwhile to combine the schema-based and path-based approaches,
but in this paper we focus only on the novel schema-based approach.

We illustrate the difference between path and schema-based analysis via the follow-
ing examples. The examples refer to a common schema S defined as follows:

S —> document [Ax*,B]



A —> al[(B?,C)~*]
B -> b[]
C —> c[D]
D —-> d[]

The schema above is a representation of an XML Schema (in fact, a DTD) in which
there are types S, A, B, C, and D, while the production rules specify the tags and child
content of each type. For example, the first rule says that a node of type S is associated
with tag document, and the types of its children must match the regular expression A x
B. Below we will assume a context in which variable $doc points to a node of type S in
the schema above.

Example 1. Consider the XPath query Q¢ that returns all children of the variable which
are labeled b:

Sdoc/b

and the update U, that deletes all d nodes with parent ¢, grandparent a, and great-
grandparent the variable:

delete $doc/a/c/d

Clearly, Uy cannot “impact” Qg, so we do not need to re-compute o when Uy is
applied. This is true for any input document, and both path-based analysis and schema-
based analysis can determine this.

Example 2. Consider the same query (Q as in the previous example, and the update Uy
that deletes all d nodes lying below the variable:

delete $doc//d

In this case, path-based analysis cannot ensure that ()¢ and U7 are independent, since
the query and update are not independent on an arbitrary document. But note that the
nodes returned by the query must have type B, while the nodes deleted by U; must be
of type D, and no B nodes lie beneath D nodes. Thus we can see that )y and U; are
independent on all documents matching the schema.

Example 3. Consider the XQuery query ()s:

for $x in $doc/a/b
return <c>$x</c>

and the update Uy that deletes all b immediately below the variable:
delete $doc/b

In this case, path-based analysis will easily determine that ()5 and U, are independent:
it will determine that the update will delete nodes having path document /b, while the
query is concerned with paths of the form document/a/b. But our schema-based anal-
ysis will not detect independence (at least, not with respect to this schema). The reason
is that our approach uses the same type name B to refer to both the nodes read by Q5
and those deleted by Us, and does not employ any path or context information.



Example 4. As a final example, we consider a query and update whose independence
neither path-based nor schema-based analysis can verify. Consider ()3 that returns all
of the nodes matching $doc/a /b except those under the first a:

for $x in S$doc/a[position() <> first()]1/b
return <c>$x</c>

and the update Us that deletes the b nodes under the first a:

for $x in S$doc/a[position()=first()]/b
return delete nodes $x

Clearly, Q3 and Us are independent. However, a path-based analysis like that of Ghelli
et al. [15] cannot detect this because it does not take position information into account.
Since Q3 reads from some nodes matching $doc/a /b path and Us impacts some nodes
matching $doc/a/b, we must conservatively conclude that they may interfere. Simi-
larly, our schema-based analysis cannot prove that these queries are independent either,
since it will statically observe that ()3 may access nodes of type B whereas Us may
impact nodes of type B.

This last example illustrates the inevitable trade-off between the complexity and com-
pleteness of a static analysis. We know we cannot have both, so it is of interest to find
efficient techniques that are incomplete but nevertheless practically useful.

In this paper, we study schema-based independence analysis for XQuery Updates:

— We give a sound analysis that will detect when an XQuery query and XQuery Up-
date Facility update are independent. Our analysis employs a powerful abstraction
of XML schemas, with the expressiveness of arbitrary tree automata, and handles
all XPath axes.

— We provide experimental evidence of the efficacy of our analysis, both in terms of
performance and accuracy.

For ease of exposition, we consider independence analysis for a limited “core”
XQuery language that nevertheless suffices for most of the XMark and XPathMark
benchmark queries. We also leave out XQuery Update’s “transform” query expression
and “replace value of” update operation [8].

Outline. The rest of this paper is structured as follows: Section 2 reviews core query,
update, and schema languages we will use. Section 3 presents the main components of
our analysis. Section 4 discusses our implementation and gives experimental results.
Section 5 discusses related and future work and Section 6 concludes.

2 Background

Stores and Variable Environments. Following [10] we employ a simplified data model
and query language where we do not consider node attributes. An instance o of the data
model (or simply, a store) is an ordered labeled forest, whose nodes 1,1’,m (also re-
ferred to as a locations) are either element nodes or text nodes. An element node has a
label, while a text node has an associated string. In addition to its label or string, each
node has an identifier, which is assumed to be unique within a store.



A (dynamic) variable environment is a mapping -y taking a finite set of variables to
sequences of locations within a store. We often write location sequences as L, L', L".

Schemas. In this paper we employ an abstraction of XML Schema that generalizes
DTDs, corresponding in expressiveness to specifications in Relax NG [18]. Our schema
formalism consists of an alphabet Y of element tags, a collection T of type names (or
types), a function mapping type names to elements, and a set of rules that associate
to each type name a regular expression over type names. There is also a special type
text which can appear in regular expressions, but has no associated rule. A schema
may also optionally have a subcollection of types that are designated as root types. In
[19] these are called specialized DTDs. They can also be considered a normal form for
regular expression types. We will use capital letters for types and lower-case letters for
tags, while using regular expression type syntax, which combines the type name with
the regular expression. In the example from the introduction, our type names include A,
B, C, etc. while our tags will include a, b, and c. Therule2 -> a[ (B?,C) x] states
that type name A is associated with tag a, and with the regular expression (B,C)* . A
DTD is a special case of our formalism where type names are the same as tags.

A valid typing for S on a store ¢ is an assignment A of nodes to types such that a)
every text node gets mapped to the special type text, while every root node is mapped
to a root type, and b) if a node is assigned type Tby Aand T —> a[e] is arule of the
schema, then the label of the node must equal a, and there must be a sequence of types
matching the regular expression e such that the i*” child of 1 is assigned by ) to the
it" type in the sequence. The notion of a node 1 in a document satisfying or matching a
type T in a schema S (written o |=¢ 1 : T) is that there is a typing \ that assigns 1 to T.

In this paper we will use a simplification of the standard XQuery type system that
ignores node order within sequences returned by queries. A stfatic environment is a
mapping from variables to sets of types in a schema S. A variable environment ~y for
store o is consistent with a static environment I for schema S (written ¢ |=¢g v : T) if
for every variable x € dom(7), all nodes in y(«) match some type in I'(z).

Later on, we will need to know when two types may or must not “alias”. We say that
T and T/ may alias (with respect to S) provided that for some o and 1 € dom(o), we
have 0 =¢ 1 : Tand o |=¢ 1 : T". There is a tractable exact algorithm for determining
non-aliasing of types T and T': convert the schema to a non-deterministic tree automaton
A [23] in which types T and T’ will each correspond to states. In case there are root
types, these correspond to the final states; otherwise all states are final. In the product
A? perform reachability analysis to see if the product state (T, T’) can be inhabited by
a run that reaches a final state. A similar analysis is done in [21]. For the purposes of
this paper we assume that we are given a procedure S F T T’ such that if T and T” may
alias we have SF TN T'.



Queries. We will use a simple core language for XQuery expressions:

n=2|()|aq |alg|s]x/step
| letz:=qin q | if q then q; else g9
| forx € qreturnq’
step = azx = ¢ | text()
ax ::= self | child | descendant
| desc —or — self | follsib | precsib

| parent | ancestor | anc — or — self

The (), alq] and q,q and s expressions build XML values — in this paper we write
alq] instead of the more verbose XML notation (a)q{/a). The constant string expres-
sion s builds the fixed text node given by the string s. Variables and let-bindings are
standard; conditionals branch depending on whether their first argument is nonempty.
The expression x/text() retrieves any text node lying below xz, while xz/az::¢ per-
forms an XPath step starting from x, where az is one of the standard XPath axes and
¢ is an XPath node test. In this paper we consider only a representative selection of the
axes; it is straightforward to extend our results to other axes. The iteration expression
for © € q return q' evaluates g, and for each node [ in the result evaluates q" with a
bound to /, concatenating the results in order. Other axes, such as following, can be
built up from these using composition.

We model the operational semantics of queries using a judgement o,y = q = ¢, L.
Note that the store o may grow as a result of allocation, for example in evaluating
expressions of the form a[q]. The rules defining this (standard) semantics are given in
Figure 1. The figure refers to a few auxiliary concepts:

o = vy(x)/az:¢ 2 L is the relation that holds of L iff L represents a traversal
of the nodes reachable from element nodes in () via the axis az which satisfy
the node test ¢, given in the appropriate order; for this paper, we take this to be the
lexicographic order based on the ordering of the sequence v(z) and the document
order.

- o Ev(x) =P L returns all text nodes that lie underneath a node in ~(x), given
again in the lexicographic ordering as above.

— if o is a store, L is a list of distinct trees, and [ a location such that [ and all the nodes
in L have identifiers not in o, then o[l := a[L]] refers to a new store that contains
an additional subtree rooted at [, whose children are the trees in L, with the sibling
ordering given by the ordering of L.

- 00,Lo =¥ o, L is the relation that holds iff L is a list containing isomorphic copies
of the subtrees of the nodes in o (with identifiers distinct from those in o), and o
is the forest extending oo with L

- 0,7 = q 2 ¢/,1 is a judgement defined by means of copy, that evaluates ¢ to
get o/, L and then copies L to get L’

- 09,7,% € L E* g2 = 03,1’ is a judgement that evaluates g2 binding variable 2 to

every node in L; it is used in defining the semantics of for



0,7 Ex=o0,7() ovE(0)=0(
oY E Q=021 02,7 F ¢ 0l 0,7 Fq = 02,1 | ¢dom(oz)
o7 g = onli-Ls 0.7 Fal = ool = alL]] 1
I ¢ dom(o)
0,7 E s = os[l :=s],l
oyEq=0l-L oanyEq=o05l1  oyEq=02() 02n7Eq@=0sLs
0,7 | if g then ¢ else g2 = 03,L1 0,7 | if g then g1 else g2 = 03, L2
0,7 Eq = 02, L 02,7z :=L] E ¢ = 03,1’
0,7 Fletz =q1ings = 03,1
o,y Eq = 02,L 09,7, €ELE* g2 = 03, L
0,7 | for z € q1 return g3 = o3,L’
o }='y(m) text;;tepL
o,v E z/text() = o,L

o = y(@)/az:p F L 0,7 Fg=00,Lo_go,Lo 7 o', L
o,v Ex/ax i ¢ = o,L ovkEqE oL
o,7[x =1 Eq=02L1 o,7,x €LE"q= o03,L
o,v,x€()E"q=0,() o,v,x €1l-LE"q= 03,L1 - Lo

Fig. 1. Query evaluation rules

A selection query is one that does not use the element node construction operation
alg] or string formation s. This restriction implies that selection queries always return
nodes already present in the input and do not construct new nodes.

Atomic updates. We consider atomic updates of the form:

¢ ::=1ins(L,d,!) | del(l) | repl(l,L) | ren(l, a)
du=— =[]\
Here, the direction d indicates whether to insert before («—), after (—), or into the child
list in first (), last (\) or arbitrary position (]). Moreover, we consider sequences of
atomic updates w with the empty sequence written € and concatenation written w;w’.
In Figure 2 we define the semantics of atomic updates as a relation o |= ¢ ~ o”.
Updating expressions. We now define the syntax of updating expressions, based
roughly on those of the W3C XQuery Update proposal.
un=()|uu |letz:=qinu
| if qthenuj elseuy |forx € qreturnu
| insert qdqq | replace qpwithq
| rename qp as a | delete qp

The XQuery Update proposal re-uses existing query syntax for updates. The () expres-
sion is a “no-op” update, u,u’ is sequential composition, and let-bindings, condition-



o'y =alLy - 1 Ly] o(l) = alL]
o E ins(L,«,l) ~» o[l' :=a[L1 -L-1-Ls]] o [ ins(L, /1) ~ o[l :=a[L-L']]
o'y =alLy -1 Ly] o(l) = alL]
o | ins(L,—,1) ~ o' :=alL1 - 1-L-L2]] o [ ins(L,\,l) ~ o[l := a[L’ - L]]
o(l) = a[L - Lo] o(l) = alL]
o = ins(L, |,1) ~ o[l :==a[Ly - L-Lg]] o = ren(l,b) ~ o[l := b[L]]
o(l'y =alLs -1 L] o'y =alLy -1+ Lo]

o = repl(l,L) ~ o[l' ;= a[L1 - L-Lo]] o | del(l) ~ o[l := a[Ly - Lo]]
cEw~o o Ew~o” {jk}={12}
cE€ewao o= wi,ws ~ o

Fig. 2. Atomic updates and update application

als, and for-loops are also included. There are four atomic update expressions: insertion
insert qd qp, which says to insert a copy of q in position d relative to the value of qg;
deletion delete qg, which says to delete the value of qp; renaming rename qq as a,
which says to rename the value of gy to a and replacement replace qg with g, which
says to replace the value of qy with a copy of q. In each case, the target expression qq
is expected to evaluate to a single node; if not, evaluation fails.

Updates have a multi-phase semantics. First, the updating expression is evaluated,
resulting in a pending update list w. We model this phase using an update evaluation
judgement o, = u = o', w. The rules for these judgements are presented in Figure
3. The rules make use of the copying judgement defined in Figure 1, as well as an
auxiliary judgement o,~y,z € L E=* u = 0,,w for iteratively evaluating update u for
every binding of x in list L. The auxiliary judgement is also defined in Figure 3.

Note that again the store may grow as a result of allocation, but the values of existing
locations in o do not change in this phase. Next, w is validated to ensure, for example,
that all update targets are mutable nodes in ¢ and no node is the target of multiple
rename or replace instructions. We do not model this validation phase explicitly here.
Instead our semantics refers to an abstract predicate check(w) that checks that w is a
valid update sequence. For simplicity, we assume that check enforces that text nodes
are not the targets of inserts, and that the elements being inserted are rooted at element
nodes. Finally, the pending updates are applied to the store.

One natural-seeming semantics for update application is simply to apply the updates
in w in (left-to-right) order. However, this naive semantics is not what the W3C proposal
actually specifies. In the W3C proposal [8], updates are reordered; inserts and renames
are performed first, followed by replacements, and finally by deletions. For the purposes
of this paper, it is safe for us to assume that atomic updates can be performed in any
order. A static analysis that is sound with respect to this semantics will also be sound
with respect to any more restrictive semantics, including the W3C proposal.



01,7 Eu1l = o2,w1 02,77 F u2 = 03, w2
ovkE()=o00e 01,7 | u1,u2 = 03,wi; w2
o, YEq=02,1-L o2,yEu = 03,01 o1,YEq=02,() 02,7 Eus= o3,we2
01,7 = if ¢ then u; else uz = 03, w1 01,7 = if ¢ then u; else uz = o3, w2
o, YEq=L,00 on,y[z:=llFu=o05w o1, yEq=Los 02,7,zELE" u= 05w

o1,y Eletz =qginu = os,w 01,7 |E for xz € g returnu = o3,w

oLy E @ =X 0,1 02,7 = q2 = 03,12 01,7 |E q= 02,1
01,7 | insert ¢q1 d g2 = 03, ins(L1,d,l2) 01,7 | delete g = 02, del(l)

0177':q1:>0-27l1 5217':q26gy53,]-2 01,’y|=q:>02,l
01,7 |E replace g1 with g2 = o03,repl(li,L2) 01,7 |= rename q as a = o2, ren(l,a)

o, ¥z =1l Fu= ow1 02,7,z€LE"u= 03w
o,v,t € () FE*u= o€ 01,7, ¢ €1L-LE" u= 03,wi;ws

Fig. 3. Rules for evaluating update expressions to pending update lists

o,yEu=o0,w chek(w) o Fw~ o

oy Eu~a”’

Fig. 4. End-to-end semantics for update expressions

We use the notation o, |= u ~ ¢’, for the judgement that holds iff update expres-
sion u generates a pending update list on store ¢ in context « such that the resulting
pending update list is valid, and when applied (in an arbitrary order) yields store o”.

This judgement is given in Figure 4.

The sequential composition of an update u and a query q is written u; g, and o,y =
u;q = 03, L as an abbreviation for 3o,.0,7 = u ~ 09 A 02,7 E q = 03, L.

2.1 Equivalence and Independence

A query q is independent of an update u if, intuitively, the result of applying q after u
is “the same” as the result of performing q. But what does it mean for the results to be
the same? Clearly, the nodes resulting from performing q after u should be allowed to
differ from those resulting from performing q on the original store in inessential ways:
for example, they can disagree on node identifiers. We capture the precise notion of
equivalence in the following definitions.

Definition 1 (Value equivalence). Given stores o, 05 and sequences L. C dom(c),L’ C
dom(oy), we say o,L and 04,1 are value equivalent (o,L =y oy,L') provided L =
1y,...,1, and L' = 1Y,...,1) and for each i € {1,...,n}, the subtree with root 1;
in o is isomorphic to the subtree with root 1} in 0.



Value equivalence captures the idea that two programs return the same XML doc-
ument given the same input, even using different node identifiers. For example, if ¢ is
a query that generates a XML tree that is sent to an external application, then we only
care about this value, not the identities of the nodes generated by g.

Definition 2 (Query-update independence). Given store o and environment y, we say
that query q and update u are independent on (o,~) if:

whenever 0,7y |= q ~ Ly, 01 holds, there exist o4,Lo satisfying o1,L1 =y 02,Lo
and 0,7 = (u;q) ~ La, 09 holds, and vice versa.

Given a query q, and a update u, we say that they are independent if the above holds
for every o and 7.

Example 5. We consider some examples, written using a variant of the XML Update
Facility syntax. The query:

for $x in $y/ foo return a[$z]
is independent of update
for $x in $y/bar return delete $x

because nothing the update does has an observable effect on the result of the query.
Any changes made by the update are only to parts of the document the query does not
access, so the result of the query will not change.

A more involved example: query

for $x in $y/ foo return a[$z]
is independent of update
for $x in $y/foo return insert bar[42] after $x

because again the inserted nodes are not visible to the query.
On the other hand, query

for $z in $y/foo return a[$x]
is not independent of update
for $z in $y//bar return insert foo[42] after $z

because for some inputs the insertion will lead to additional nodes being visible in the
result of the query.

An update is independent of a query relative to a schema if, roughly, the results
of evaluating u; q and q are value-equivalent for all stores satisfying the schema. To
make this precise, we use a schema and static environments to constrain the stores we
consider:



Definition 3 (Independence relative to a schema). A query q, and update u, are in-
dependent relative to S,T if Definition 2 holds for every o and every environment -y
consistent with T.

Example 6. Recall query
for $z in $y/foo return a[$x]
and update
for $z in $y//bar return insert foo[42] after $z

Although this query—update pair is not independent in general, a schema might tell us
that there are actually no immediate children of $y with element label bar, and this
query-update pair is independent with respect to such a schema.

The query-update independence problem is undecidable for any realistic query and
update language. For example, for full XQuery queries and XML Update facility up-
dates, the problem is undecidable even when the query or update is fixed: this follows
easily from a reduction to the satisfiability problem for first order logic over data trees.

For restricted cases independence is decidable, but at an enormous cost:

Theorem 1. For boolean XQuery queries and updates as given by the grammar in Sec-
tion 2, the Query-Update independence problem is decidable, as well as the schema-
based Query-Update independence problem. However, even for a fixed update and
schema the problem is non-elementary.

By a boolean query here, we mean a query q’ of the form if q then true else false,
where true and false are strings.

Proof. In [4] it is shown that boolean queries in a large fragment of XQuery (referred to
as “Atomic XQuery”) are given by first-order interpretations — first-order queries in the
signature of the access relations and label equality that define the output structure within
the input. Furthermore, the interpretation can be effectively constructed (in EXPTIME)
from the query. Atomic XQuery subsumes the query language of this paper with two
minor deviations in syntax:

— Atomic XQuery lacks “else” branches of “if”” statements, but it can simulate them
using an if-then statement and negation

— Atomic XQuery restricts “let” statements so that variables are bound to queries
returning a single node. However, our more general “let” statements can be elimi-
nated within Atomic XQuery via inlining

Hence our language is no more expressive than Atomic XQuery.

The proof in [4] can be modified to show that the addition of deterministic variant
of snapshot updates (e.g. eliminate the non-deterministic variant insert into, and use
the w3c ordering policy on the remaining updates) to Atomic XQuery still yields first-
order interpretations: the modification to Theorem 1 of [4] for the case of deterministic



updates is straightforward. Since first-order interpretations are closed under composi-
tion (Theorem 5.1 of [5]), and via an effective transformation, this shows that we can
effectively convert a composition of an update and a query to a first-order interpretation.

In the special case of a boolean query, a first-order interpretation is just a first-order
sentence. When the label alphabet is fixed, such a sentence can be rewritten into the
signature with binary predicates for axis relations and unary predicates for the label
alphabet. Thus we can effectively convert both a boolean query q and the composition
of query q with update u into first-order sentences over the axis relations and the label
alphabet. It is well-known [25] that such sentences can be translated into tree automata,
and that equivalence of tree automata can be effectively decided.

The above assumes a mildly different deterministic semantics for updates than the
one used in this paper. However, the independence problem for boolean queries and up-
dates under our semantics can be reduced to the corresponding question for determin-
istic updates. Independence of boolean query q and update u requires that a) q returns
true iff the composition u; q returns true and b) u; q is deterministic. We discuss how
to decide a), while b) is decided using a similar argument. Starting with an update u
in our language, first construct a deterministic update v that performs the update u ac-
cording to a deterministic ordering policy (changing insert |’s to insert s, and
applying the w3c’s ordering policy) but uses copies of the input element tags for every
top-level inserted node. That is, if u inserts a tree ¢ with root labeled a underneath a
node [, v will insert ¢’ underneath [ as a first child, where ¢’ is identical to ¢ except the
root is labeled a’. Such a v can be constructed effectively from u. Second, construct a
query q’ such that:

q returns true on some result of u on input o, ~y iff v; g’ returns true on o,y

Given that we have constructed v and q’, a) is checked by seeing whether v;q’
is equivalent to g, which can be checked via the technique described two paragraphs
above. The rewriting q’ is obtained from q by replacing sibling axis steps x/ax :: a
by a query equivalent to (J,cy(z/self :: b/ax :: a) U (z/self :: b'/parent :
*/child :: a) U (z/parent :: x/child :: a’) (where U has the usual semantics and
we use compositions as an abbreviation). That is, if the original query q returns all a
nodes that lie in a particular sibling direction from the context node, then q’ returns all
a nodes that are in that direction, plus all the a-siblings of the context when the context
is a top-level inserted node, plus all the a’-siblings of the context. g’ thus takes into
account that when either the context node or the returned node are top-level inserted
nodes, the sibling ordering is arbitrary.

The above shows decidability of independence when the alphabet is fixed. When
the alphabet is not fixed, we claim that two boolean queries q and q’ are equivalent iff
they are equivalent over documents whose tags come from an alphabet whose size is at
most one more than the number of tags mentioned in q or q’. Given a counterexample
store o to equivalence, we simply collapse all tags not mentioned in q or q’ to a single
tag — the truth values of q and g’ are unaffected by this. Applying this to the case where
q’ is the composition of q and an update, we get decidability of independence when the
alphabet is not fixed.

To see the hardness, note that Theorem 8 of [4] shows that one can translate first
order queries into Atomic XQuery in polynomial time. For fixed alphabet, our language



can simulate Atomic XQuery — negation can be simulated using the if-then-else con-
struct of our language. Since the satisfiability problem for first order logic over labeled
trees is non-elementary [26], this implies that the following “satisfiability problem” for
our query language is non-elementary: given a boolean query q in our language, is there
some store o and dynamic environment v on which q does not evaluate to true. We
now show that query update independence can be reduced to this satisfiability problem.

The independence problem can be reduced to satisfiability by mapping every query
q to the pair consisting of query

"= if $doc/child::a then q else true

and update

Uy = insert a[] into $doc

where «a is an element tag not mentioned in q. Then Uy is independent of q’ iff q
evaluates to true on every o, .

The hardness and undecidability results imply that even to do offline analysis we
will need to proceed with approximate algorithms. Our algorithms will be sound in that
whenever they declare that a query and update are independent, then this must be true.
However, they may be incomplete, or fail to detect independence.

Remark: As demonstrated in the arguments above, the (schema-free) query/update
independence problem can be reduced to the equivalence problem for transducers defin-
able by first-order interpretations using a fixed label alphabet and the ordered tree pred-
icates. To our knowledge this problem is still open, even over strings. Engelfriet and
Maneth [13] have shown that the equivalence problem is decidable for “MSO transduc-
tions” — these are transformations definable in a more powerful logic, but with formulas
that are syntactically restricted to produce a constant number of output nodes per input
node.

3 Static Analysis

3.1 Static analysis based on schemas

The intuition behind our independence analysis is similar to that of [15]: we want to
show that for any input document and variable environment, the nodes “updated” by
an update expression are disjoint from those “returned” or “read” by a query. There is
already a standard notion of static typing that can be used to approximate the nodes
returned by a query, and we first review a simplified static type system for XQuery.
We will then define the runtime notions of read and updated nodes, and show how to
statically approximate these as well.

In our analysis, we abstract input documents by schemas, sets of nodes by sets of
type names, and variable environments by static environments.

Static type analysis. For queries we define a typechecking judgement that calcu-
lates the possible return types for nodes returned by the query when run in static envi-
ronment I'. In our analysis of queries we do not analyze the results of node construction;



(TIString)

S;Tks:0
S;THaz:T(x) (T1Var)

S;ThHaqi:A1 S;Thaq2:A
S;F|—q1,q2:A1 U Ag

(TIConcat)

S;THaqi:A1 S;THaq2: A
S;TF if q thenq; else gz : A; U A,

(TICond)

S;THai: A S;T,z: A Fqo:hs

TILet
S;THletxz:=q;inqa: Az ( et)
SEr(z)/az:d =LA
@)/ aw::¢ (TIAxis)
S;Tkxz/az:¢p: A
Sk I(x)/desc — or — selfix = A (TTText)
ext
S;TF z/text() : A
S;ThHqi:A S;T,xz:AFqo: A (TTFor)
or
S;T+ for x € q; returnqs : A’
(TIE1tCon)

S;T+alq]: 0

Fig. 5. Input type inference rules

we restrict our attention to the possible nodes returned in the input document, where
each node satisfies some type in the input schema. A more refined analysis would cre-
ate a new “external” type to represent the presence of constructed nodes in the output
(analogous to the approach taken in [15] in the context of path-based analysis). Cur-
rently we do not make this distinction, and have a judgement S;T + q : A, where A is
a set of type names in S. The rules are simplifications of the standard XQuery typing
rules, and are found in Figure 5. These rules can be read as a (nondeterministic, partial)
function that takes a schema S, static environment I', and query expression q and returns
a set of types A.

The key rules with respect to previous work are those for node construction and
XPath axis steps, respectively. These rules make use of an auxiliary judgement S +

Alaz:¢ P A’ to model static typechecking for XPath steps. For the purposes of this
paper, we just assume that this judgement over-approximates the set of types of nodes
that can be reached by applying the axis step ax::¢ to a node satisfying a type name in
A.



Remark 1. This analysis is (intentionally) simplistic: unlike XQuery’s static type sys-
tem (or more sophisticated type systems such as that of Colazzo et al. [10]), we discard
the regular expression structure of the data, since all we need for independence analysis
is a set of type names. On the other hand, our analysis does handle all XPath steps,
whereas XQuery gives the results of ancestor or sibling axis steps the most general
possible type, and Colazzo et al. do not handle these axes.

For selection queries, the correctness of this judgement is easy to state and prove.
In the presence of node-construction, the correctness criterion is a bit subtle:

Theorem 2. [Type soundness] Suppose 0 |=¢ v : T and S;y F q: A Ifo,v = q =
09, L then for every 1 in L such that 1 € dom(o), there exists a type T € A such that

oFg1:T.

To prove this compositionally we need to prove a slightly stronger result, where we
allow the input environment to have additional nodes in a new component.

Theorem 3. Suppose:

— 0 C 09, Where all nodes in o4 are disconnected from those in o.

— v is an environment on o, and for every variable in dom(7y) if y(z) € dom(o) then
~v(x) satisfies a type in T(x).

S;yFq:A

- 0,yEq=o03,L

then for every 1 in L such that 1 € dom(o), there exists a type T € A such that
oFEg1:T.

In the special case of o = 05, this implies the Type Soundness Theorem. The proof
of Theorem 3 is by induction on the structure of q. We explain the most interesting
cases below.

— Rules (TIAxis) and (TIText). These rules are proven similarly, and we show only
the case for (TIAxis. In this argument, the assumption that nodes in o, are discon-
nected from o will play a key role.

Let q = z/az::¢. Fix 0, 04, as in the hypothesis of the theorem. Let L’ be the set
of nodes in y(z), and L = L' N dom(o); by hypothesis every node in L satisfies

a type in T'(z). Let M be such that o = L/az :: ¢ 2 M and M’ be such that

oy = L'Jaz :: ¢ P \/’. Then since nodes in o, are disconnected from those in
o, we have M = M' N dom(o).

Let T = I'(z), and U be such that S - T/az :: ¢ P U, we know that every
element of M satisfies a type in U. Hence every element of M’ N dom(c) satisfies
atypein U. Since S; v + q : M, we are done.

— Rules (TICond) and (TIConcat). These are done similarly, so we show only the
case for (TICond).
Let 9 = if qp then q; else qq. Fix 0,05, as in the hypothesis of the theorem.
Let Ny be the nodes in the list returned by q; on g3, y. and No the nodes in the list



returned by qgo. Let A; and A5 be the corresponding sets of types returned induc-
tively from the analysis. By induction, we know all nodes in Ny N dom(o) satisfy a
type in A; and all nodes in Ny N dom(o) satisfy a type in Ay. Hence we know that
every node returned by q in dom(o) satisfies a type in A; U Ay as required.

— Rules (TIE1tCon) and (TIString) are done similarly. We only give the argument
for (TIE1tCON). Let 9 = a[q]. Fixing, o, o5, as in the hypothesis, we notice that
the output of q contains no nodes in dom(o). Note that if 05,7 = q = 03,L we
have L N dom(o) = 0, hence the conclusion holds vacuously.

— Rules (TILet) and (TIFor). These two rules are where our stronger invariant is im-
portant. Given our set-based abstraction, the rules are similar and their correctness
is proven similarly. We show only the case of (TILet).

Let q = let = := q; in qs. Fix 0, 05, 7y as in the hypothesis, and suppose:

® 05,7 ): q1 = 0'37L

e 03, (7,2 :L) = q2 = 04,1

e S;ThHqp:A

o S;(Tyx:A)Fqy: A
By induction we know that all nodes in L lying in dom (o) satisfy a type in A. Let Ly
be the restriction of L to nodes lying in dom(o). Note that the environment v, x : L
has the property that for every variable v in its domain if y(v) is in dom(o) then
~(v) satisfies a type in the environment 7, « : A . Hence by induction, every node
in L’ satisfies a type in A’. This completes the proof in this case, since S;q F A :
and A’ satisfies the required property.

Update impact analysis. We next turn to the problem of statically approximating
the behavior of the update. In previous work [3] we developed a complicated analysis
that approximates the set of possible pending update lists generated by an update. How-
ever, here we will simplify matters by approximating only a set of nodes “impacted” by
an update.

Definition 4 (Impacted nodes). Given a store o, we say a node in o is impacted by an
atomic update sequence w on o if it is a target of a rename or insert into command,
or the parent of a target of a delete, replace, insert before or insert after
command. Similarly, given a store o and variable environment v, a node is impacted by
an update expression u if it is impacted by the atomic update sequence generated by u.

Intuitively, the impacted nodes of an update are the nodes whose label or child
sequence is changed by the update.

The impacted types for an update u schema S and static environment T is a set of
type names A of S, provided that, in any o, y consistent with S, I', each impacted element
node of u on o, satisfies a type in A, and each impacted text node has a parent that
satisfies a type in A.

We use a judgement:

S;T F uimpacts A

to infer the impacted types. The judgement is given in Figure 6. Note that the impact
analysis judgement makes use of the query type inference judgement in the rules for
for, let, and atomic updates.

The soundness of this judgement is stated as follows:



Theorem 4. [Impact soundness] Suppose o |=g v : T and S;T & u impacts A. If 5,y |=
u = 09, w then for every node 1 € dom(o) that is impacted by w, there exists a type
TeAsuchthato =g 1:T.

The proof follows easily from the definition of impact set, plus the soundness of type
inference. We discuss a few cases.

— let and for are handled similarly (in rules (ILet) and (IFor)), given our set-based
abstraction. The types of nodes in the input store that can be returned by the query
are determined, using a call to the type-inference judgement in Figure 5. The static
context is then expanded by assigning this set of types to the newly-bound variable
T.

— Because insert into commands impact the target of the insert, we statically ap-
proximate the impact set by the types of these targets (in rule (IInsInto)). The
types are likewise calculated by a call to the type-inference judgement. The same
comment applies to rename (in rule (IRename)).

— insert before and insert after commands impact the parent of the target.
The types of such parents are approximated by first estimating the target types
using type-inference, and then tracing their parents in the schema using the step-
judgement (in rule (IInsSib)). The same approach is used for replace and delete
commands (in rules (IReplace) and (IDel)).

Access Set Analysis. To determine whether an update interacts with a query, we
need an abstraction of the nodes the query “accesses” (or those on which the query “de-
pends”). This is similar to the concepts of the “accessed nodes” [15] or the “projection”
of a query [16]. As pointed out in both these works, the notion of accessed nodes is
subtle; we will begin by looking at the corresponding runtime notion. Intuitively, if the
nodes accessed and returned are disjoint from those modified by an update, this should
imply that the query and update are independent.

Definition 5 (A-similarity). For a set of node identifiers A we say two stores o and o,
are A-similar (written o ~ 5 04) provided that for every identifier i in A, we have

1. there are nodes 1 in o and 1’ in o4 with identifier i, and these nodes have the same
label.

2. if 1 and 1’ are as above, then for every child m of 1, there is a child ' of 1’ with the
same identifier as m, where m and m’ have the same ordering within their siblings.

For a set of element nodes A in o, we say 0 ~4 03 iff 0 ~y(a) 02 where I(A) is
the set of identifiers of A.

Thus if two stores are A-similar then the children and labeling of locations in A are
indistinguishable. From now on, we will generally identify a node with its identifier,
and if 0 ~ 4 o, we will say that the nodes in A and their children are “still in 05", when
technically we mean that there are nodes with the same identifiers in o5.

Our notion of A being a set of “accessed nodes” for a query q will be in terms
of A-similarity preserving q. In the case of a selection query, we require that the set of
accessed nodes be such that: if two stores agree on them, then the query returns the same
list of locations. In the case of general queries, we require that the list being returned is
“the same up to renaming constructed or copied nodes”.



S;T I () impacts @ (1Emp)

S;T F uy impacts A1 S;T F up impacts Ao

IS
S;T F uy, uz impacts A1 U Az (18eq)

S;T'Fq:A S;T,x: Al uimpacts A’
S;T + let z := q in u impacts A’

(ILet)

S;T - u; impacts Ay S;T I up impacts Ao

, , (ICond)
S;T + if q then u; else uy impacts A; U Ay

S;Tkq:A S;T,x:AF q impacts A’
S;TF for x € q return q’ impacts A’

(IFor)

def{l,/,\} SiTHq:A
S;T | insert qd q’ impacts A

(IInsInto)

de{—,—} S;THq :A Sk A/parent :* = A’
S;T I insert q d q' impacts A’

(IInsSib)

S;TkHq:A
S;T I rename q as a impacts A

(IRename)

S:THq:A St A/parent :: = A’
S;T I replace q with q’ impacts A’

(IReplace)

S;THq:A St A/parent :: % = A’
S;T I delete q impacts A’

(IDel)

Fig. 6. Update impact rules

Definition 6 (Dynamic Access Cover). Let q be a query, o, an input store, and vy an
environment. Suppose o1,y = q = L,os withL =11 ... 1.

If qis a selection query, we say that N is a dynamic access cover for q on g,y provide
that for any o containing all locations in v with o ~y o, we have o',y = q = L, o},
for some .

For q a general query, we say N is a dynamic access cover if for any o' as above,
we have o,y |E q = L', 0%, where L' = 1/ ...1), and there is a bijection [ from the
range of L to the range of L' such that:

- /
- Vi <k .1, = f(1,),
— f preserves node identifiers on o1,
— for every node n, the isomorphism type of n within its connected component is the
same as the isomorphism type of f(n) within its component.



Notice that if N is a dynamic access cover for a selection query q on o1, y, and we
update o1 to get store o2 without touching N, then we know only that the locations
in o7 returned by q are unchanged. However, the labels of these locations, as well as
locations in the subtrees underneath these nodes may still change. Thus for an update to
be independent of a query, we will need to know a bit more than the fact that it does not
update anything in an access cover. For example if 9 = $doc/child::a, then an access
cover for q on o1 would include the nodes pointed to by $doc and their children. An
update to to o that changes a grandchild of $doc may not be independent of g, even
though such an update does not impact the access cover for g.

Of course, we also want a static notion of access cover that approximates the dy-
namic one.

Definition 7 (Static Access Cover). Given schema S, selection query q and static en-
vironment T, a Static Access Cover is a set of type names A from S such that whenever
0,7 is consistent with S, T and D is all the elements nodes in o that can be assigned to
a type in A in o, then D is a Dynamic Access Cover for q on o, .

The judgement S;T Fsac q : A allows us to compute, given a schema S, static
environment ', and query q, a set of type names A in S that is a Static Access Cover.
The rules are shown in Figure 7. Formally, the desired correctness property is:

Theorem 5 (Access Soundness). If' S; v Fsac q : A then A is a static access cover for
qino.

For the case where q is a selection query, Access Soundness can be proven by induc-
tion. We discuss how to do this, and then explain the difficulties involved in considering
general queries. In the case of selection queries, let and for are easy to handle by
induction. The most interesting cases are list below:

— Rule (Var) The empty set of types is a static cover for a variable access, because
the empty set of nodes is a dynamic cover. This is because if a variable x points
to location [ in a store o, and we “update o™ — change it to some ¢’ that still has
location [ in it — the locations returned by the query x are the same. Renamings may
change the label of [, deletes may detach ! from its parent, but the query will still
return [, which is all we require for an access cover.

— Rule (Text) The corresponding runtime claim is that given a store o and environ-
ment where variable x points to a location [, if N is the set of all element descendants
of [, then N forms a dynamic access cover for z/text(). If we modify o to get a store
09 N-similar to o, then the set of element descendants of [ and their children will
be the same (by the definition of N-similarity). Hence the collection of text nodes
returned will be the same.

— Rules (Self1) - (Self2) The runtime claim for the label test version is that given
o and variable x pointing to a location [ then [ itself forms a dynamic access cover
for x/self::a. If o, is {I}-similar to o, then the label of [ in o5 is the same, hence
the label test will return the same in o4 as in o. The wildcard version self::x is the
same as the variable case in Rule (Var), and hence also accesses nothing.



— (V
S;FFSAcx:Q ( ar)

S;Thsac (): 0 (Enpty)

S;TFsacqi: A1 S;T Fsac qz: A2
S;T Fsac qi1,q2 : A1 UAs

(Concat)

S;Thksacq:A S;Thsacqi:Ar S;Thsacqz: A
S;T Fsac if qthenq; elseqo: AUA; UAs

(IfThen)

S;Thsacqi: A1 S;THqi:A2 S;T,z:AxFsacqe: As
S;T Fsac let z:=q; inqz : Ay U A3

(Let)

Sk I(x)/descendant:: = A
S;T Fsac x/text() : T(z) UA

(Text)

Selfl
S;T Fsac ¢/self:a : I'(z) (Se1t1)

Self2
S;T Fsac x/selfix: () ( )

az sibl axis SFT(x)/az:x = A S+ T(z)/parentix = A’

Sib1l
S;T Fsac x/aza: AUA ( )

az sibl. axis S T'(z)/parent::x Py
S;T Fsac x/ax:* : A

(8ib2)

az parent or ancestor axis S F ['(z)/az:x = A
S;T bFsac x/az::¢p: A

(Up)

step

SFTI(z)/child:x = A
S;T Fsac #/child::a : T(z) UA

(Child1)

Child2
S;T Fsac «/child:x : T(x) (Child2)

step

S+ I'(z)/descendant::x = A
S;T Fsac ©/descendant::¢p : T(z) U A

(Desc)

S;T Fsac x/descendant:ip : A S;T Fsac x/self:gp : A’
S;T Fsac x/desc — or — self:g: AUA’

(DOS)

S;T Fsac */ancestor::p: A S;T Fsac x/selfgh: A’
S;T Fsac x/anc — or — self:g: AU A

(A0S)

S;Thsacqi: A1 S;THaqi:A2 S;T,z:AxbFsac qo: As
S;T Fsac for x € q1 returnqs : A1 U A3

(For)

S;T Fsac q: As S;THq: A
step

St Ay/desc — or — self :: % = A
S;T Fsac a[qj A UA3

(E1tCon)

—  (StrC
S;rl—sAcS:@ ( * On)

Fig.7. Access Cover Algorithm



— Rules (Sib1) - (Sib2) Consider the label-test version az::a in Rule (Sib1). The
runtime claim is that given ¢ and variable x pointing to a location [ then if N con-
tains the parent of [ unioned with the set of nodes resulting from applying this
sibling axis step to [/, then N is a dynamic access cover. If o5 is N-similar to o, then
since the parent of [ is in N, the collection of siblings of | will be the same in o5 as
in o, and have the same sibling order. Furthermore, the labels of the siblings in the
direction given by az will be unchanged. Hence the label test will return the same
in o5 asin o.

For the wildcard version in Rule (Sib2), note that we no longer require that the
labels of the siblings remain the same. Hence in the argument above, we do not
need N to contain the siblings.

— Rules (Child1) - (Child2) Consider the label-test version child::a in Rule (Child1).

The runtime claim is that given o and variable x pointing to a location [ then a set
N containing [ and all its children, is a dynamic access cover. If o, is N-similar to
o, then since [ itself is in N, the set of children of [ is the same in o, as in o, since
N-similarity requires preservation of children. Since the children of [ are in N, the
labels of the children are all preserved, and hence the set of children passing the
label test is unaffected as well.

For the wildcard version, child::* in Rule (Child2), note that we no longer require
that the labels of children remain the same, and hence we do not need N to contain
the children.

In the discussion above, we have ignored the presence of node construction. Node
construction is a subtle issue for the schema-based approach, since the new documents
that result do not satisfy the input schema. A fine-grained analysis would analyze the
structure of the constructed nodes (e.g. inferring a new schema), and then track naviga-
tion within them. In our approach, we do not do such tracking, but rather assume that
the constructed document is immediately navigated in its entirety. The rule (E1tCon)
states that the nodes accessed by a[qg] are those accessed by ¢ plus all the non-strict
descendants of nodes in the input document returned by ¢. That is, when we copy a
node into the new document, the result may now be impacted by any changes below the
node.

To prove Access Soundness for arbitrary queries in our language, we need a more
general invariant to handle the inductive cases of 1et and for, analogous to the strength-
ening we made in Theorem 3 for the Type Soundness Theorem:

Theorem 6. Suppose that S;T Fsac q : A and:

- 01 C oy are stores

— Nis a set of nodes in 01, and each node in N has a type in A

— dom(og) — dom(o) contains only nodes disconnected from o

— 7 is an environment on oo such that for every variable x € dom(vy), y(z) satisfies
atype inT(x)

— 0 is a store containing the range of -y which is NU (dom(o1) — dom(o1))-similar
to o2

- 02,7yEq=1L,0;.



Then, ol,v = q = L', 0% for some L' such that L and L' are almost-equivalent,
where this means that there is a bijection f from the range of L to the range of L'
satisfying the conclusion of Definition 6.

Note that in the special case where oy = 071, this implies Access Soundness.

The proof of Theorem 6 is by induction on the structure of q. The cases for Rules
(Var), (Text), and all the rules for axes follow exactly the selection query case: the
presence of the additional nodes in o5 does not impact the argument, since these nodes
are the same in both o3 and o%. The hypotheses that nodes of dom(o2) — dom(o1) are
disconnected from nodes of o is needed to ensure that applying axis steps to nodes in
o2 does not yield new nodes in o;. Since o4 is (dom(o3) — dom(oq))-similar to o2,
applying axis steps to nodes in %, cannot return nodes in o either.

For Rule (E1tCon), we let g = a[qi]. Fix 01, 02, as in the theorem.

Let L; be such that 02,7 = q1 = 03,L1. Then each node in L; Ndom (o) satisfies
atypein A,. Let N3 be the set of nodes in o that are descendants of nodes satisfying As.
Consider any o, which is Ny UN3 U (dom(o2) — dom(o))-similar to o2. By induction
and Ny -similarity, we can conclude that o}, |= q1 = o}, L] for some o} and L} such
that L] is almost equivalent to L;. From N3-similarity we know that for each node in the
range of L) that is in o, its subtree is isomorphic to the subtree of the corresponding
node in L}. Hence the sequence of subtrees underneath L is the same as that of Lo,
up to isomorphism. From this we can conclude that the singleton list resulting from
evaluating g on o2,y and on o, v are the same up to isomorphism. Since on both stores
this singleton list contains only nodes outside of dom (o), we have the conclusion we
want. The case for Rule (String) is similar.

The most interesting cases are for the Rules (Let) and (For), which are proven
similarly. We consider only (Let), setting g = let = := q; in qs. We let A; be such
that S; T Fsac q1 : A1, and

— v an environment on o9 such that for every variable x € dom(y), () satisfies a
type in T'(x)

— V; the set of nodes in o7 satisfying a type in A;

— P the returned node list from q; on o3, 7y, with o3 the resulting store

— Ty aset of types such that S; T gy : T

— AgsuchthatS; (T,z : T7) Fsac g2 : A2 and N the set of nodes in o satisfying a
type in A,

— o}, astore that is Ny U Ny U (dom(o2) — dom(o1))-similar to o9

— o4 and Py such that o3, (7,2 : P1) E q2 = P2,04

Since 0% is NyU(dom(o2) —dom(o1))-similar to oo, we have by induction, o4, v =
q1 = Pj, o} for some P| almost-equivalent to P;. We also know that ¢ is dom(o3) —
dom(o) similar to o9, and all the nodes in ¢ are disconnected from those in ¢%, and
likewise for o3 and o5. Thus by applying an isomorphism we can assume that P; = P;
and 09 — 01 = 0}, — 0. We can then treat (y, z : P;) as an environment for o5.

Now suppose o4, (7,2 : P1) = a2 = Pj,0). By Theorem 3, every node in P;
lying in dom (o) satisfies a type in T}. Since o4 is Na U (dom(o2) — dom(oy))-similar
to 02, 0% is No U (dom(o2) — dom(o))-similar to oo as well. So by induction we have



that Pj is almost equivalent to P, as required. This completes the proof of Theorem 6
for Rule (Let).

Independence Testing. Finally, we assemble the components of this section to give
an independence test. The algorithm is summarized in Algorithm 3.1. As per the pre-
ceding discussion, it is not sound to simply test that the static access cover of the query
is disjoint from the impact set of the update — this is necessary, but not sufficient. We
must also ensure that the update cannot modify any of the tree structure under the nodes
returned by the query. Thus, for update u and query q to be independent, it suffices that
u does not update any type accessed by q or any type below something returned by q.
We formalize this as stating the following independence test:

Theorem 7. For a schema S and static environment T, suppose that

Ay is a Static Access Cover for selection query q and T,
Ag is such that S;T F q : As

Ag is such that S b Ay /desc — or — self::x Lep Ag

A, be the impacted types for update u and T.

Then if no type in either Ay or A3 aliases a type in A4, then u and q are independent.

The theorem proves the soundness of Algorithm 3.1.

Algorithm 3.1 Sound Test for Independence

(Independence Test)

Input: A schema S, static environment T, query q, and update u

Output: yes if q and u are found to be independent on S, T false otherwise

Calculate Ay such that S;T Fsac q : Ay using Figure 7
Calculate Ay such that S;T = q : Ao using Figure 5
Calculate A3 such that S A'/desc — or — self:i:x St:e>p A3
Calculate Ay such that S;T - u impacts Ay using Figure 6
If 3T € A. U A3. 3T € A4. S+ TN T’ then return false
Else return true

To prove Theorem 7, consider the situation of the theorem, and suppose we have
store o and environment y with o |=¢ 7 : T.

Let w, o’ be such that 0,7 = u = ¢’,w and o5 be such that 0,7 = u ~ 09.

From Impact Soundness, we know that the elements impacted by w all satisfy a type
in A4. Hence by the assumption on aliasing, these elements do not satisfy any type in
Aq or As.

Thus if N; is the set of nodes satisfying A; we know from the definition of impact
set that o5 is N -similar to o. Since Access Soundness implies that A; is a Static Access
cover for q on S, T, we conclude that: if o,y = q = L, and 09,7 = q = L/, then L is
almost equivalent to L’ (that is, L and L’ satisfy the conclusion of Definition 6). Let f be

the bijection that witnesses this. By Type Soundness and the soundness of St:e>p, we know



that if N3 is the set of elements in dom (o) lying below an element of L, then every node
in N3 satisfies a type in As. Impact Soundness and our aliasing assumption implies that
the nodes impacted in the pending update list w do not satisfy any type in A3. Thus o,
is N3-similar to o. From this we see that the mapping f preserves isomorphism types of
the subtrees over all nodes in L, as required to show independence. This completes the
proof of Theorem 7.

4 Experimental Evaluation

4.1 Implementation

We implemented our independence analysis in OCaml. The prototype currently handles
only a core fragment of XQuery similar to that discussed in this paper, but including the
following and preceding axes, which are compositions of axes listed in the fragment
here: the modification of the algorithms to handle them are straightforward. The XMark
and XPathMark queries we used can all be translated to this fragment.

Our experiments only involved DTDs, for which alias analysis is trivial: two type
names can alias if and only if they are equal (since each type has a unique element
tag and no types can be empty in a DTD). Therefore we used the obvious constant-
time alias test instead of the more general quadratic test that would be needed for XML
Schemas or general tree automata.

Our implementation employs a schema data structure that pre-computes the sets of
possible children, parents, following siblings, and preceding siblings of each type name.
These sets are easy to compute once at the beginning of computation. We do not pre-
compute the other axes because these are more expensive and less frequently needed.
Instead, we compute them on-the-fly only as needed.

4.2 Benchmarks and Experimental Setup

Our measurements were performed on an Intel Pentium D (3.0 Ghz) running Ubuntu
Linux 8.10. We used the XMark random data generator to generate test documents of
sizes 1.1MB, 2.3MB, 5.7MB and 11MB. We used a standard installation of Galax 1.1
to measure query and update processing times. Galax 1.1 supports the W3C XQuery
Update Facility 1.0 via a command-line option, and we used this option to run the
updates.

We constructed a view maintenance benchmark using all of the XMark [22] queries
and some of the XPathMark [17] queries (A1-8 and B1-8). All of these queries operate
on the XMark data, for which there is a standard schema available (auction.dtd). The
queries exercise all of the features of our XQuery core language, including all XPath
axes, the text() node test, and element node construction, as illustrated by Table 1.
We also included a trivial query Qo = () that has no effect and a trivial update Uy =
$auction that returns the input document unmodified. We observed that Galax always
fully parses its input by default and so these trivial queries and updates can be used to
determine (and adjust for) the fixed common costs of loading data and (for updates)
saving the results.



Table 1. Features used by queries and updates. The updates are based on the XPathMark queries
A1-A8 and B1-B8 and so their rows are combined.

Query# |child [text() [node|descendant |parent|ancestor |sibling
Qo0
(U)A1
(U)A2
(U)A3
(U)A4
(U)AS
(U)A6
(U)A7
(U)AS8
(U)B1
(U)B2
(U)B3
(U)B4
(U)B5
(U)B6
(U)B7
(U)B8
Ql
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Ql1
Ql12
Q13
Q14
Q15
Ql6
Q17
Q18
Q19
Q20
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We regard all of these queries as possible materialized views on the data, and we
also used the XPathMark queries as the basis of updates. For each XPathMark query p
named A,;, B;, we define updates U A; or U B; respectively to be the deletion updates of
the form delete p. We only considered deletion in the experiments because our update
analysis ignores (almost) all information about the type of update performed.

Moreover, since deletion always decreases the amount of data, the time to perform
a deletion is generally a lower bound on the time needed to perform other kinds of up-
dates, and similarly the time needed to re-evaluate a query after a deletion is a lower
bound on the time needed to re-evaluate after other kinds of updates. Thus, if our anal-
ysis is effective when used with deletion-only updates, then it will likely be competitive
with updates performing other operations or performing a mixture of operations.



Table 2. Query-update independence results. “D” indicates dynamic independence on the 1.1MB
document; “S” indicates static analysis was able to verify independence. Note that the static
analysis algorithm is sound but incomplete (at least on this document).

UO|UAT|UA2|UA3|UA4|UAS5|UA6|UA7|UAS|UB1|UB2|UB3|UB4|UB5|UB6|UB7|UB8
QO |DS| DS |DS |DS |DS DS DS [DS|DS|DS|DS|DS|DS|DS|DS|DS|DS
Al |DS D | D |DS|DS|DS|[DS| D |DS|DS|DS|[DS|DS|DS
A2 |DS D|D|D|D|D]|D D|D|D|D|D|D
A3 |DS D|D|D|D|D]|D D|D|D|D|D|D
A4 |DS DS |DS|DS|DS| D |DS|DS|DS|DS|DS|DS
A5 |DS D|(D|D|D D|D|D|D|D|D
A6 |DS| DS | DS | DS | DS | DS D [DS|DS|DS| D | D | D |DS
A7 |DS| DS | DS | DS | DS | DS D [DS|DS|DS| D | D | D |DS
A8 |DS| DS | DS | DS | DS | DS D |DS|DS|DS| D | D | D |DS
Bl [DS| D [IDS|DS|DS|DS| D | D | D DS | DS | DS D | DS
B2 [DS| D D|D|D|D|D]|D D|D|D|D|D|D
B3 [DS|DS|DS|DS| D | D |DS|DS | DS |DS |DS DS|DS|DS| D
B4 [DS|DS|DS|DS| D | D |DS|DS | DS |DS |DS DS|DS|DS| D
B5DS| D | D | D |D|D|D|D]|D D | D | D D | D
B6|DS| D | D | D | D |D|D]|D|D D | DS | DS D | DS
B7[DSfD|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D
B8 [DS|DS [DS|[DS| D | D [DS|DS | DS |DS|DS DS | DS | DS
Q1 |DS| DS | DS | DS | DS | DS D DS|DS|DS| D | D | D |DS
Q2|DS|DS|DS|DS| D | D |DS|DS|DS|DS|DS DS|DS|DS| D
Q3|DS|DS |DS|DS| D | D |DS|DS|DS|DS|DS DS|DS|DS| D
Q4|DS|DS|DS|DS| D | D [DS|DS|DS|DS|DS| D | D |DS|DS|DS| D
Q5|DS|DS|DS|DS| D | D [DS|DS|DS|DS|DS|DS|DS|DS|DS|DS|DS
QDS D | D|D|D|D|D|D|D|D|D|D|D|D|D|D|D
QDS D | D|D|D|D|D|D|D|D|D|D|D|D|D|D|D
QDS D | D | D |D|D D|D|D|D|D|D|D|D
QY|DS| D [DS|DS| D | D D [DS|DS|DS| D | D | D |DS
QIO|DS|DS |DS |DS |DS|DS| D | D | D | D [DS|DS|DS| D | D | D |DS
QIIDS|DS |DS|DS| D | D D|DS|D|D|D|D|D|D
QI2IDS|DS|DS|DS| D | D | D | D |D|D|DS|D|D|D|D|D|D
QI3IDS|DS|DS|DS| D | D | D |D|D|D|DS|D|D|D|D|D]|D
Q4DS| D | D | D |DS|DS|D | D | D | D DS | DS D | DS
QI5SIDS| D | D | D | D | D |D|D| D D | D | D D | D
Q16|DS| D D | D DS|DS|DS|DS| D |DS|DS|DS|DS|DS |DS
Q17|DS| DS | DS | DS | DS | DS D |DS|DS|DS| D | D | D |DS
QI8IDS|DS |DS|DS| D | D |DS|DS|DS|DS|DS| D | D |DS|DS|DS| D
QOIDS|D | D | D |D|D|D|D|D D | DS | DS D | DS
Q20|DS| DS | DS | DS | DS | DS | D D|(DS|D|D|D|D|D|D

4.3 Experimental Results

Validity and Precision. For each update and query pair (U, ()), we checked whether
U and @ are (dynamically) independent with respect to the fixed (1.1MB) document.
We also checked independence statically for each such pair. Table 2 shows the results.
In the figure, S indicates that static independence check succeeded, and and D indicates
that the query and update were dynamically independent on the 1.1MB document.

Update evaluation time. We measured the time needed to evaluate each of the up-
dates on XMark documents of varying sizes. For each update, we measured the time
needed by Galax to load the document, perform the update, and store the updated doc-
ument. We also measured the time Galax needed just to load and store the document
without making any changes. The difference between these two times is reported as the
update processing time in Figure 8.



1000 |

100 !

.01

001
1.1MB 2.3MB 5.7MB 11MB

Fig. 8. Times needed for benchmark updates

View maintenance. For each update, we measured the cost of maintaining the views
using independence analysis to avoid recomputing views that are independent of the up-
date. We measured the time needed to perform independence checks (#"%) and the time
needed to recompute views that could not be certified independent of the update (¢™).
Table 3 shows these measurements, along with the total independence-based mainte-
nance time, tiﬁld.

The “Saved” and “Save%” columns of Table 3(a) and (b) show the total time saved
(in seconds) and the percentage improvement over the naive approach, for the 1.1MB
and 2.3MB documents respectively. Both figures are negative in some cases, indicating
that checking independence took (slightly) more time than was saved through avoiding
recomputation.

4.4 Evaluation

The qualitative results in Table 2 show that there are significant opportunities for avoid-
ing recomputation through independence analysis. Since our test is sound, there are
(as expected) no query-update pairs in Table 2 for which static analysis predicts in-
dependence but the query and update conflict dynamically. Concerning completeness
however, not all possible dynamically independent pairs are detected — indeed, some
pairs may be dynamically independent on the 1.1MB document but might conflict on a
different valid document. Our analysis was successful in identifying nontrivial indepen-
dence pairs in the presence of each of the features in Table 1. Certain kinds of queries
seem to be inherently hard for our independence analysis to deal with; for example,
queries B5 and B6 involve sibling, ancestor and descendant axes and we were not able
to prove any updates independent of these queries. This is unfortunate because these
queries are also among the most expensive.

Our experimental results show that query-update independence analysis is both pre-
cise and fast enough to be effective for view maintenance on the relatively small 1.1MB



and 2.3MB documents. First, we observe that static analysis for a single query—update
pair typically took under 12 milliseconds; almost all updates take longer. This implies
that query-update independence analysis could be performed in parallel with update ap-
plication without harming latency, as long as enough cores are available to process the
independence checks in parallel with the update.

Even in a sequential setting, however, our experiments show that independence anal-
ysis is generally beneficial. In some cases, the total time needed by independence-based
maintenance was slightly longer than the naive approach. However, the added expense
of independence analysis is negligible even in comparison to the time needed to re-
compute queries on the small, 1.1MB document. Indeed, since the static checking time
is fixed, the asymptotic worst-case overhead is zero as the size of the database increases
(for queries that take more than constant time).

Conversely, our experiments also show that the potential benefits of static inde-
pendence checking are substantial (up to 22% for the 1.1MB document), and actually
increase (to a maximum of 25% for the 2.3MB document) as the data size increases.
In particular, note that almost all of the time savings percentages in Table 3 are slightly
higher for the 2.3MB document than for the 1.1MB document. This is again because
the costs of query re-evaluation grow in proportion to the size of the data, whereas the
cost of static analysis is dependent only on the query and update.

Galax is not the performance leader among XQuery engines; we chose it for its sup-
port of the standard. However, for larger documents (e.g. tens or hundreds of megabytes)
the overhead of our analysis is negligible compared with the querying times of the faster
engines. For example, only two of the 20 XMark queries can be answered in less than
20 milliseconds for a 110MB document by any of the engines measured in the current
Qizx? benchmarks, .

5 Related and future work

To our knowledge, Raghavachari and Shmueli [20] were the first to study query-update
independence problems. They studied conflicts between read, insert and delete opera-
tions based on downward XPath expressions, described special cases that are solvable in
polynomial time, and proved NP-hardness results for several XPath fragments; however
they do not present an implementation or experimental validation. In contrast, we give
a sound, but incomplete technique that works for general XQuery queries and updates
involving all XPath axes.

There is a growing literature on typechecking for XML queries. Our set-based type
system is a simplification of the standard XQuery type system; Colazzo et al. [10] have
studied more sophisticated regular expression type systems for XML queries and Ch-
eney [9] extended this approach to a simple XML update language. More recently,
Benedikt and Cheney [3] have developed typechecking techniques for W3C XQuery
Update Facility 1.0 updates. Besides being intrinsically useful, update type analysis
may lead to more accurate techniques for query-update or update-update independence
problems.

3Shttp://www.xmlmind.com/qgizx/speed.html



Static analysis problems besides typechecking have also been studied for XML or
object query/update languages. Bierman [6] developed an effect analysis that tracks
object-identifier generation side-effects in OQL queries. Benedikt et al. [1, 2] presented
static analyses for optimizing updates in UpdateX, a precursor to XQuery Update. Mar-
ian and Siméon [16] deal with the problem of projecting an XML document on a query;
this involves statically finding the paths that may be accessed by the query. Colazzo et.
al [10] investigated schema-based projection of queries. Our access set analysis is sim-
ilar to projection analysis. However, for our independence analysis we need to consider
changes that may insert, delete, replace or rename nodes, whereas projection analysis
only considers deletions.

The closest work to ours is that of Ghelli, Rose and Siméon [15]. They study the
commutativity problem for a much different update language, where side-effects can
be applied immediately in the course of evaluation. The algorithms of [15] take an
approach similar to that of [16]: they find the paths associated with nodes accessed
by the queries in the input, along with those paths modified by the update — a sufficient
condition for commutativity is that these sets do not overlap. In contrast, while our work
adapts some of the ideas of [15] to the independence analysis setting, it is based on
schema information rather than path information. Combining schema-based and path-
based techniques is an interesting direction for future work.

Incremental view maintenance of XQuery expressions is considered in [14, 11].
Queries are converted into an algebra, and as queries are evaluated some metadata is
recorded. Subsequent update expressions are propagated using the metadata to avoid
unnecessary recomputation. These works deal with a simpler update language, with no
control structures; they also do not account for the presence of schemas. Our work com-
plements, but does not replace efficient incremental view maintenance. It may be inter-
esting to compare static independence analysis with efficient incremental view mainte-
nance techniques or to develop combined static and dynamic techniques.

6 Conclusions

Query-update independence analysis is useful for avoiding view maintenance or re-
computation costs. In this paper we have given the (to our knowledge) first schema-
based query-update independence analysis. We have also implemented and experimen-
tally validated our approach, and shown that it offers significant performance improve-
ments for an online view maintenance scenario based on typical XMark and XPathMark
queries and updates using Galax. Even for a relatively small 1.1MB XMark document,
we found that the cost of independence analysis is negligible and can lead to significant
(20% — 25%) savings from avoiding query recomputation. The costs of query and up-
date evaluation typically grow in proportion to the size of the data, whereas the costs of
static analysis do not, so query-update independence analysis is inherently scalable.
We have identified a number of possible directions for future work. While our analy-
sis already provides significant benefits, there is much room for improvement of features
such as descendant, ancestor and sibling axes. Accuracy might be improved further by
tracking more detailed static approximations of the behavior of the queries and updates.
We also believe it would be worthwhile to combine our approach with complementary



path-based analyses or incremental view maintenance techniques. Finally, it would be
of interest to test our approach using more realistic benchmarks involving schemas,
queries and updates gathered from real-world settings.
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Table 3. A comparison of naive and independence analysis-based view maintenance for (a) the

1.IMB document and (b) the 2.3MB document. ¢™"° is the naive recomputation time. ¢ is
recomputation time using static independence checks. £™ is time to perform independence anal-
ysis. t1¢ is ¢ 4 ¢ The next two columns show the amount of time saved (in seconds and
as a percentage of the naive time). Each row summarizes execution times for maintaining all 37

queries. All times are in seconds.

Upd#|¢mve] ¢nd T4ind T4nd Tgaved|Save%
U0 (9.04|0.00(0.36(0.36| 8.68 | 96%
UA1(8.90|7.32|10.39(7.71| 1.19 | 13%
UA2(8.95(6.57|0.42|6.99| 1.96 | 22%
UA3(8.93]6.53]0.40(6.93| 2.00 | 22%
UA4(8.91(8.52|0.39(8.91| 0.00 | 0%
UA5 [8.948.65(0.39(9.04| -0.10 | -1%
UAG6 (8.91(8.35]0.39(8.74| 0.17 | 2%
UA7|8.88(8.50/0.39(8.89|-0.01 | 0%
UAS |8.95|8.60/0.39/8.99/-0.04 | 0%
UBI (8.90(8.59|0.38(8.97|-0.07 | -1%
UB2 |8.86|6.55/0.42|16.97| 1.89 | 21%
UB3|7.89(6.06/0.39(6.45| 1.44 | 18%
UB4(7.89(6.11]0.38(6.49| 1.40 | 18%
UB5(8.92|8.49|0.39(8.88| 0.04 | 0%
UB6(8.92(8.32|0.38(8.70| 0.22 | 2%
UB7(8.96(8.39|0.41(8.80| 0.16 | 2%
UB8|8.98(7.23(0.39|7.62| 1.36 | 15%
Upd#] grave [ ¢ind T4ind 740 19 aved]Save %
U0 [27.77(0.00 |0.35] 0.35 |27.42| 99%
UA1 |27.66|23.09|0.38(23.47| 4.19 | 15%
UA2 (28.21{20.69(0.42|21.11| 7.10 | 25%
UA3|27.77|21.05]0.40|21.45| 6.32 | 23%
UA4 |27.87|27.53|0.38(27.91|-0.04 | 0%
UAS5 (27.79(27.47|0.39(27.86| -0.07 | 0%
UAG6 (27.71|27.39(0.39|27.78|-0.07 | 0%
UA7 (27.49|27.18|0.38|27.56| -0.07 | 0%
UAS8 (27.94(27.31|0.39(27.70| 0.24 | 1%
UB1|27.61|27.30|0.38|27.68|-0.07 | 0%
UB2 (27.25]20.59]0.41{21.00| 6.25 | 23%
UB3 (25.05(19.95|0.38(20.33| 4.72 | 19%
UB4(25.06(19.88|0.38(20.26| 4.80 | 19%
UB5|27.59|27.06/0.39(27.45| 0.14 | 1%
UB6 (27.65(26.91(0.38(27.29| 0.36 | 1%
UB7(27.96|27.48|0.41|27.89| 0.07 | 0%
UB8|27.87|22.50|0.38(22.88| 4.99 | 18%

(@ (b)




