
A Sequent Calculus for Nominal Logic

Murdoch Gabbay
LIX École Polytechnique

gabbay@lix.polytechnique.fr

James Cheney
Cornell University

jcheney@cs.cornell.edu

Abstract

Nominal logic is a theory of names and binding based
on the primitive concepts of freshness and swapping, with a
self-dual N- (or “new”)-quantifier, originally presented as
a Hilbert-style axiom system extending first-order logic. We
present a sequent calculus for nominal logic called Fresh
Logic, or FL, admitting cut-elimination. We use FL to
provide a proof-theoretic foundation for nominal logic pro-
gramming and show how to interpretFOλ∇, another logic
with a self-dual quantifier, within FL.

1 Introduction

Names are ubiquitous in logic, theoretical computer sci-
ence, and practical programming. Names appear as variable
symbols in programs and logical formulae, channel names
in π-calculus processes, nonces in security protocols, and in
many other situations. The ability to reason about names is
therefore important to many areas of computer science.

Though integers, strings, or other concrete data are often
used as representations of such names, usually the represen-
tation does not matter; we take the characteristic properties
of names to be:

1. Renaming (or Equivariance). Properties concerning
names are invariant up to permutative renaming (either
globally, or for bound names, locally).

2. Freshness.Fresh names can always be generated.

For example, to distribute a substitution under aλ-
abstraction(λx.fx){f 7→x}, it is necessary first to generate
a fresh variable namey, and renamex toy in the body of the
abstraction. Similarly, to extrude the scope of aπ-calculus
restriction inzz | ν〈z〉zz it is necessary to generate a fresh
channel namez′ and renamez in the body of the restric-
tion. When Microsoft Windows loads a DLL, it rebases it to
avoid an address space conflict. The situation is worse when
we have an unknownX which may be instantiatedafter we
have finished our calculation: how is it possible to choose

fresh names, or rename existing names, in an unknownX
which will be instantiated after the fact of our calculations?

We give a proof-theoretic account of these phenom-
ena based on a First-Order logic Fresh Logic (FL). It in-
cludes primitiveswappings(a b) on termst for renaming,
a Nquantifier (‘New’ quantifier) that quantifies over suffi-
ciently fresh names, and rules expressing the facts that fresh
names can always be chosen and that all formulae are invari-
ant under permutative renamings.

Related work includes Nominal Logic [10] and FM-
HOL [7], Hilbert-style axiom systems both concentrating
on expressiveness, and a natural-deduction presentation of
Fresh Logic FLND, concentrating on semantics. Nominal
Unification [12] and Nominal Rewriting [3] use the same
techniques of swapping and freshness in their respective do-
mains, to good effect.

The Fresh Logic of this paper is presented as a Gentzen-
style intuitionistic sequent calculus with cut-elimination.
As such it provides a direct reading of logical connectives
(including N) as proof-search techniques, suitable both for
human reasoning and automated deduction. We discuss
other innovative design features in the course of the paper.
The Nquantifier possesses interesting proof-theoretic prop-
erties, notably self-duality: it has both a∀ and∃ character,
and¬ Nx. P ⇐⇒ Nx.¬P . This duality is reflected di-
rectly in the symmetric structure of theN-rules of FL.

In addition to presenting our calculus and proving cut-
elimination, we also present two applications: we give a
uniform proof-theoretic semantics to a logic programming
language with N-quantified goals and program clauses, and
we relate FL to a similar calculusFOλ∇ [9] which also has
a self-dual quantifier. A semantics for Fresh Logic is not
presented in this paper, but previous work [5] describes a
Kripke-style semantics based on FM sets [4, 6] and gives
details of proof-normalization for a natural-deduction ver-
sion of Fresh Logic.

2 Fresh Logic

Fix a set ofsortsτ, τ ′, . . . ∈ Sorts and distinguish asort
of atomsA ∈ Sorts. We assume function sortsτ → τ ′.

1

Fix countably infinite setsV = {x, y, z, . . .} of vari-
ablesand{c, d, . . .} = C of constants. Constants and vari-
ables are inherently sorted and we may indicate this asc : τ ,
x :τ ′. We assume a constantswapτ : A→A→τ→τ exists for
each sortτ . Variable names liken, m, n′, etc. are typically
used for variables of sortA.

Terms are simply-typedλ-terms constructed according
to the grammar:

s, t, . . . ::= x | c | λx.t | t t′. (1)

Well-formedness is defined in the usual way; terms are al-
ways assumed to be well-formed at appropriate sorts and
identified up toβη-equivalence (≡βη or just≡). We intro-
duce the notionV (t) of ‘free variables oft’, defined in the
usual way. We introduce asubstitution action t{x7→s} de-
fined in the standard (capture-avoiding) way. We introduce
the shorthandts for a list of terms ands(ts) for s applied to
the list of argumentsts.

Terms of sortA are often calledatoms and written (as
above) asa, b, a′, etc. A term of the formswapτ a a′ t
(from now on abbreviated(a a′) · t) is called aswapping
of a anda′ applied tot. Square brackets are used when
necessary to avoid ambiguity between ordinary parentheses
and swappings. We consider the addition of constantsabsτ

for FM abstraction〈a〉t [12, 4, 3] in§6.1.
We assumepredicate constant symbolsp, q, r . . . ∈ P,

each with an arityτ1 · · · τn (i.e., a list of sorts of the argu-
ments of the predicate). For eachτ ∈ Sorts we assume dis-
tinguished constants= : ττ equality and# : Aτ freshness.
Propositionsor formulae are generated by the grammar

P ::= p(ts) | P ∧ P | P ∨ P | P ⊃ P (2)

| > | ⊥ | ∀x. P | ∃x. P | Nn. P.

P ⇐⇒ Q is shorthand forP ⊃ Q ∧ Q ⊃ P and¬P is
shorthand forP ⊃ ⊥.

Like terms, propositions have notions of free variables
V (P) and substitutionP{x7→s} defined as usual. We also
adopt the notation(a b) ·P abbreviatingP{x1 7→(a b) ·
x1} · · · {xn 7→(a b) · xn}, whereV (P) = {x1, . . . , xn}.
That is,(a b) ·P is the result of applying(a b) to each free
variable ofP . For example,

(a b) ·[∀x.q[(c d) ·x, z]]
≡ ∀x.q[([(a b) · c] [(a b) · d]) ·x, (a b) · z]

Formulae are considered equal up to consistent renaming of
bound identifiers.

A (logical) context is a multiset of propositions, usually
writtenΓ. Write V (Γ) for the obvious extension ofV (·) to
many formulae. We may also writeΓ{x7→s} and(a b) ·Γ.

2.1 Judgments and Derivation Rules

A judgment is a pair〈Γ, P 〉 of a context and predicate
written Γ ` P . Elements ofΓ are called hypotheses and
P the conclusion. Thevalid or derivable judgments are
inductively defined by the rules of Figure 1, Figure 2, and
Figure 3.

In (newA) V (Γ, C) denotes all variables free inΓ or C,
that is

⋃ {
V (P)

∣∣ P in Γ or P ≡ C
}

. a # ts denotes a
list of assumptionsa # t1, . . . , a # tn.

In (∀R) and(∃L), we assume (as usual) that the bound
variablex is not already present in the conclusion. In(∀L)
and(∃R) we assumet andx are of the same sort.

Note that the(AL) rule may be used to add an instance
of any of the swapping axioms listed inA toΓ (read bottom-
up). We write() to abbreviate an inference following
from some collection of(AL), (#A), (π#), and equality
laws. For example,

Γ, a # (a b) · c(x, y) ` C
()

Γ, b # x, b # y ` C

2.2 The nonlogical rules

The rules (#A), (caseA), (newA), (π#), (πL), and
the swapping axioms are referred to asnonlogical rules,
because they deal with atomic formulae rather than logical
connectives. In this section we give some intuition for the
meanings and purposes of these rules.

(#A): No atom is fresh for itself.
(caseA): For atoms, freshness coincides with inequality

and is decidable (even though FL is intuitionistic).
(newA): Read bottom-up this rule says we can always

generate a new atoma fresh for any termsts. This embodies
theFreshness principlementioned in the introduction.

(π#): If atomsa, b are fresh fort then swapping them in
t has no effect.

(πL): This is Equivariance for predicates, also men-
tioned in the introduction. Validity ofP is independent
of the particular values of atoms mentioned inP ; only
equalities or inequalities among atoms matter. For exam-
ple if a # b ⊃ p(a, b) holds for someatomsa, b, then
a′ # b′ ⊃ p(a′, b′) holds foranya′, b′. This can be proved
using(πL) to swapa for a′ andb for b′.

(AL) and swapping axioms:These axioms describe the
behavior of swapping. The first three axioms imply swap-
pinga with itself has no effect; swapping is its own inverse;
and swapping acts as expected on atoms, respectively. The
remaining three axioms imply that swapping is is homo-
morphic with respect toλ-term structure. Note that in our
system, axiom (E1) of [10] becomes derivable:

(a a′) ·[(b b′) · t] = ([(a a′) · b] [(a a′) · b′]) ·[(a a′) · t] (3)

2

Γ ` P Γ ` Q
(∧R)

Γ ` P ∧Q

Γ, P, Q ` C
(∧LI)

Γ, P ∧Q ` C

Γ ` P
(∨R1)

Γ ` P ∨Q

Γ ` Q
(∨R2)

Γ ` P ∨Q

Γ, P ` C Γ, Q ` C
(∨L)

Γ, P ∨Q ` C

Γ, P ` Q
(⊃R)

Γ ` P ⊃ Q

Γ ` P Γ, Q ` C
(⊃L)

Γ, P ⊃ Q ` C

(Ax)
Γ, P ` P

(⊥L)
Γ,⊥ ` C

(>R)
Γ ` >

Γ ` P
(∀R)

Γ ` ∀x. P

Γ, P{x7→t} ` C
(∀L)

Γ,∀x. P ` C

Γ ` P{x7→t}
(∃R)

Γ ` ∃x. P

Γ, P ` C
(∃L)

Γ,∃x. P ` C

Γ ` P Γ, P ` Q
(Cut)

Γ ` Q

Γ, P, P ` C
(Ctrct)

Γ, P ` C

Γ, t = t ` C
(=r)

Γ ` C

Γ, t′ = t, P{x7→t′} ` C
(=s)

Γ, t′ = t, P{x7→t} ` C

Figure 1. First-order Logic with Equality

Γ, a#ts ` P{n 7→a}
(NR) (P ≡ P ′[n, ts])

Γ, a#ts ` Nn. P

Γ, a#ts, P{n 7→a} ` C
(NL) (P ≡ P ′[n, ts])

Γ, a#ts, Nn. P ` C

Γ, n#ts ` C
(newA) (n 6∈ V (Γ, C))

Γ ` C
Γ, a#b ` C Γ, a = b ` C

(caseA)
Γ ` C

(#A)
Γ, a#a ` C

Γ, (a a′) · t = t ` P
(π#)

Γ, a#t, a′#t ` P

Γ, P ` C
(πL)

Γ, (a b) ·P ` C

Figure 2. Additional Rules for Fresh Logic

Γ, A ` C
(AL) (A ∈ A)

Γ ` C

A =


(a a) · t = t, (a a′) ·(a a′) · t = t
(a a′) · a = a′, (a a′) · c = c,
(a a′) ·[t u] = [(a a′) · t] [(a a′) ·u],
(a a′) ·λx.t = λx.(a a′) ·[t{x7→(a a′) ·x}]


Figure 3. Swapping axioms

The axiom involvingλ is particularly interesting: to see
why the added substitution is needed, consider applying a
swapping to theβ-equivalent terms(λx.x) t andt.

2.3 The N-quantifier rules

The rules(NR) and(NL) are symmetric; we consider
just (NR). As discussed starting from Prop. 4.10 in [4], the

N-quantifier satisfies the “some/any” equivalences

Na.P ⇔ ∃a.a # xs ∧ P ⇔ ∀a.a # xs ⊃ P (4)

wherexs = V (Na.P) is a list of all free variables ofP
except fora. So at first sight a sequent rule such as

Γ, a # xs ` P{n 7→a}
Γ, a # xs ` Nn. P

. (5)

(whereV (Na.P) = xs) might seem appropriate. A deduc-
tion rule should be closed under substitution; this is nec-
essary to prove the substitution property which is needed
in cut-elimination for∀ and∃. But (5) is not closed un-
der substitution, for substituting a non-variable term such
asc(y, z) for one of thexs results in a non-instance.

To make the deduction rules forNclosed under substitu-
tion, we useslices. Caires and Cardelli have a similar notion
of ‘free term’ [1].

Definition 1. Aslice ofP overn is a tuple(P, n, ys, P ′, ts)
of P , a variable symboln, and:

1. Variable symbolsy1, . . . , yk which we writeys, not ap-
pearing inP

2. A propositionP ′ with V (P ′) = {n, y1, . . . , yk}.

3. Termst1, . . . , tk which we writets, such thatn 6∈⋃k
1 V (ti) andP ′{y1 7→t1} . . . {yk 7→tk} ≡ P .

There is a natural notion of minimal slice, the (unique up
to renaming theys) slice such thatP ′ is as small and the
ts are as large as possible. We omit the formal definition.
For example, the minimal slice ofp(f(x, n),m) over n
is (p(f(x, n),m), n, (y1, y2), p(f(y1, n), y2), (x, m)), and
the minimal slice of the same term with respect tom is
(p(f(x, n),m),m, (y1), p(y1,m), f(x, n)).

We write P ≡ P ′[n, ts] as shorthand for “the minimal
slice of P over n is (P, n, ys, P ′, ts) for someys”. The
following are useful technical results:

Lemma 1. If P ≡ P ′[n, ts] then for any terms,
P{n 7→s} ≡ P ′{n 7→s}{ys7→ts}. Also, for anyn and s
such thatn 6∈ V (s), P{x7→s} ≡ P ′[n, ts{x7→s}].

Thus a substitution forn in P does not affect thets, and
minimality of slices overn is not affected by substitutions
that do not introduce free occurrences ofn.

3

3 Example deductions

(D1) connects Nand# within Fresh Logic. In the in-
stance of(NL), P ≡ (n # y1)[n, x]. (D2) derives an
equivalent of(π#) within Fresh Logic. In(D3) V (A) and
V (B) are the variables ofA and B and a # V (A,B)
is a list of freshness assumptionsa # x for eachx ∈
V (A) ∪ V (B).

The reverse entailmentNn. (P ∧Q) ` Nn. P ∧ Nn. Q is
similarly derivable. We can also derive similar equivalences
for the other connectives such as⊃ and∨.

(D4) is one direction of a well-known commutativity
property` (Nn.∀x. n # x ⊃ P) ⇐⇒ ∀x. Nn. P .

(D5) and (D6) are another well-known relation be-
tween#, N, and equality, specificallỳ a # x ⇐⇒

Nb. (b a) · x = x (see [4, Prop. 4.10]).

4 Metatheoretic Properties

Some basic metatheoretic properties include:
Substitution:If Γ ` C is derivable then so isΓ{x7→t} `
C{x7→t}, assumingx andt are sort-compatible.
Weakening:If Γ ` C is derivable then so isΓ, P ` C.
Moreover, these transformations are all height-preserving.
Uses of(Ax) can be restricted to atomicP : If Γ ` P is
derivable then it is derivable using only instances of(Ax)
where the principal formula is atomic. This follows by in-
duction onP . WhenP ≡ Na.Q the rule(newA) is re-
quired to obtain a fresh atom for(NL) and(NR).
A right-hand form(πR) of (πL) is admissible:If Γ ` P is
derivable, then there is also a derivation ofΓ ` (a b) ·P .
The proof is a straightforward induction on derivations.
Uses of(πL) can be restricted to atomicP : If Γ ` C
is derivable, then it has a derivation using only atomic in-
stances of(πL).
This is proved by a stronger induction on the size ofP that
an occurrence of(πR) or (πL) with a non-atomic principal
formula can be converted to a derivation using only atomic
(πL) and(πR) rules. This stronger invariant is needed for
cases such as(⊃L) and(⊃R) whereπ-rules are needed on
both sides of̀ . Finally, the atomic(πR) rule can be de-
rived from(Ax), (πL), and the other nonlogical rules.
General(NL)/(NR)slice rules:Generalized versions of the
rules(NL) and(NR) which permit arbitrary slices instead
of minimal ones are admissible.
The proof requires showing that the nonlogical rules can be
used to infern # ts for P ′[n, ts] minimal fromn # ts′ for
any slice(P, n, ys, P ′′, ts) of P .
Soundness/Completeness:A Nominal Logic formulaP is a
theorem if and only if̀ P is derivable in FL.
This just requires checking that all the axioms of Nominal
Logic are derivable and all the rules of FL are valid proof
principles in Nominal Logic.

(D1)

(Ax)
n # x ` a # x

(NR)
n # x ` Nn. n # x

(newA).
` Nn. n # x

(D2)

(=r), (Ax)
n, m # x ` x = x

(πL)
n, m # x ` (n m) · x = x

(NR)
n, m # x ` Nm. (n m) · x = x

(NR)
n, m # x ` Nn. Nm. (n m) · x = x

(newA), (newA).
` Nn. Nm. (n m) · x = x

(D3)

(Ax)
A ` A

(Ax)
B ` B

(∧R)
n # V (A, B), A, B ` A ∧B

(NL)
n # V (A, B), A, Nn. B ` A ∧B

(NL)
n # V (A, B), Nn. A, Nn. B ` A ∧B

(∧L)
n # V (A, B), Nn. A, Nn. B ` A ∧B

(NR)
n # V (A, B), Nn. A, Nn. B ` Nn. (A ∧B)

(newA)
Nn. A, Nn. B ` Nn. (A ∧B)

(∧L).
Nn. A ∧ Nn. B ` Nn. (A ∧B)

(D4)

(Ax)
n # x ` n # x

(Ax)
P ` P

(⊃L)
n # x ⊃ P, n # x, vs ` P

(NL), (∀L)
Nn.∀x. n # x ⊃ P, n # x, vs ` P

(newA), (NR)
Nn.∀x. n # x ⊃ P ` Nn. P

(∀R)
Nn.∀x. n # x ⊃ P ` ∀x. Nn. P

(D5)

(Ax)
(b a) · x = x ` (b a) · x = x

(π#)
a # x, b # x ` (b a) · x = x

(NR), (newA)
a # x ` Nb. (b a) · x = x

(D6)

(Ax)
a # x ` a # x

()
(n a) · a # (n a) · (n a) · x ` a # x

(πL)
n # (n a) · x ` a # x

(=s)
n # x, (n a) · x = x ` a # x

(NL)
n # x, a, Nn. (n a) · x = x ` a # x

(newA)
Nn. (n a) · x = x ` a # x

Figure 4. Example deductions

4

The most important property is, of course, cut-
elimination.

Theorem 1 (Cut-elimination). If Γ ` C has a derivation
in FL, then it has a cut-free derivation.

This is proved as usual by first proving that(Cut) is
admissible and then using admissibility finitely many times
to remove all(Cut) instances from a derivation.

Lemma 2 (Admissibility of Cut). If Γ ` A andΓ, A ` C
have cut-free derivations, then so doesΓ ` C.

Proof. Proof is by induction onA, derivationΠ of Γ ` P ,
and derivationΠ′ of Γ, P ` C. In each case we either
reduce the size ofA or A stays the same butΠ or Π′ is
smaller. There are many cases, which can be classified into

1. base cases: Π or Π′ is (Ax), (⊥L), or (>R)

2. left-commutative cases: A is not principal inΠ.

3. right-commutative cases: A is not principal inΠ′.

4. principal cases: A is principal in bothΠ andΠ′.

We may assume that all instances of(Ax) and (πL) are
atomic inΠ,Π′. Many of the cases involve only standard
first-order logic rules, and their proofs are as usual. The ad-
ditional left- and right-commutative cases for the new rules
of FL are also straightforward. IfA is principal in both
derivations, then there are potentially many new cases to
consider. One obvious such case is whenΠ starts with
(NR) andΠ′ with (NL). Except for(NL) and(NR), all
the additional rules act only on atomic formulae on the left.
There are no rules with atomic formulae principal on the
right, so the only new combination of rules that leads to a
principal cut is(NR) and(NL).

Suppose the derivationsΠ, Π′ are respectively of the
forms

Γ,Γ′ ` C,A{n 7→a}
Γ,Γ′ ` C, Nn.A

(NR)
Γ,Γ′, A{n 7→b} ` C

Γ,Γ′, Nn.A ` C
(NL)

whereΓ′ ≡ a # ts, b # ts, andA ≡ A′[n, ts]. If a andb
are the same term then this case is immediate. Otherwise,
by appealing to the induction hypothesis twice we can con-
clude

Γ,Γ′ ` A{n 7→a}
Γ′, A{n 7→a} ` A{n 7→b}
Γ,Γ′, A{n 7→b} ` C

Γ,Γ′ ` C
IH, IH

.

The middle judgment follows by

A{n 7→b} ` A{n 7→b}
(Ax)

(a b) · ts = ts, (a b) ·A{n 7→a} ` A{n 7→b}
()

a # ts, b # ts, (a b) ·A{n 7→a} ` A{n 7→b}
(π#)

a # ts, b # ts, A{n 7→a} ` A{n 7→b}
(πI)

where the() step follows because if(a b) · ts = ts then

(a b) ·A{n 7→a} = A′(a, ts) = A′(b, (a b) · ts)
= A′(b, ts) = A{n 7→b} (6)

using swapping axioms and Lemma 1.

5 Variations

5.1 Global vs. Local

(newA) is nondeterministic sincets is arbitrary. Nomi-
nal Logic has the similar axiom(F4), which is∀xs.∃a.a #
xs. Though convenient for humans this may be undesir-
able for search space in automated deduction. Note that a
logically equivalentglobal variant of(newA)′ insistsa be
“maximally fresh”; ts must include all variable symbols in
the sequent.

Γ, n # ts ` C

Γ ` C
(newA)′

wheren 6∈ V (Γ, C). Certainly every instance of(newA)′

is an instance of(newA); the converse follows using weak-
ening.

5.2 Substitutive vs. Parametric

(∀L), (∃R) aresubstitutive in that the principal formula
in the lower sequent is instantiated with a specific term in
the upper sequent.(∀R), (∃R) areparametric in that the
principal formula in the upper sequent contains an eigen-
variable (a syntactically new parameter). In this terminol-
ogy (NL) and(NR) as given are both substitutive.

Parametric versions are possible as self-duality (4) sug-
gests:

Γ, n # ts, P ` C
(NL)′ (n /∈ V (Γ, C))

Γ, Nn.P ` C

Γ, n # ts ` P
(NR)′ (n /∈ V (Γ))

Γ ` Nn.P

whereP ≡ P ′[n, ts].
Call FL′ the logic FL minus(NL), (NR) and plus

(NL)′, (NR)′. Clearly (NL)′, (NR)′ are derivable in FL
using(newA) and(NL), (NR). The converse uses(πR):

Γ, a # ts ` P{n 7→a}
Γ, a # ts,m # ts ` (a m) ·P{n 7→a}

(πR),W

Γ, a # ts,m # ts ` P{n 7→m} (π#)n
, ()

Γ, a # ts ` Nn.P
(NR)′

.

Similarly for (NL). Thus FL and FL′ have the same conse-
quence relation.

5

5.3 Sequents vs. Natural Deduction

Two versions of Fresh Logic exist: the one in this paper
which we temporarily call FLSeq, and another is a Natural
Deduction system [5], call itFLND, which we mentioned
previously. FLSeq is better for proof-search and suggests
notions of logic programming which we consider below.
Conversely,FLND is (arguably) easier to give a semantics
to and we do that in [5]. We do not discuss semantics in this
paper but we see no barrier to applying the same Kripke-
style model in FM sets [4, 5] as we used forFLND.

5.4 Atoms as Constants vs. Variables

Another basic design decision is whether to treatatoms
as constants (AAC)or atoms as variables (AAV). Nom-
inal Unification [12], FLND, and recent work on Nomi-
nal Rewriting [3] make the former choice. Nominal Logic
[10], FM-HOL [7], and this paper make the latter choice.
Atoms-as-constants makes it much easier to test for term
equality and unifiability, since equality and syntactic equal-
ity coincide for atoms. For example, the nominal unification
problem(a b) ·x ≈? x has multiple incomparable nominal
unifiers ifa, b are variables, but only one ifa andb are atom-
constants.

Any Fresh Logic AAC proof certainly be converted to
an AAV proof, by mapping atom constantsa, b injectively
to new variablesa, b and augmenting the hypotheses of all
judgments with freshness assertions of the forma # b. For
example, an AAC judgment likep(a, b) ` q(c, x), where
a, b, andc are distinct atoms andx is a variable, would be
translated to an AAV sequenta # b, a # c, b # c, p(a, b) `
q(c, x).

AAV is strictly more expressive than the AAC used in
the works cited above:(x y) · c(t1, t2) is not an AAC term,
because in AAC swappings are always attached directly to
free variables. However if a derivable sequent in the Fresh
Logic here is expressible as a sequent in the Fresh Logic in
[5], then it is derivable. The derivation uses a case-analysis
rule (ConstA) [5, Fig.3] which we apply over all possible
equalities and inequalities between variables of sort atoms
in the sequent.

Thus many interesting variations on the rules of FL are
possible, in most cases without changing the essence of the
logic. The design decisions made in this paper seem use-
ful for manual reasoning in FL; other applications may find
advantage in the alternatives.

6 Uniform Proofs in FL

The following grammars define a core logic program-
ming language, consisting offirst-order nominal Horn

clausegoals and program clauses:

G ::= > | p(ts) | G ∧G | ∃x.G | Na.G (7)

D ::= > | p(ts) | D ∧D | G ⊃ D (8)

| ∀x.D | Na.D

The N-free fragment is the Horn clause logic program-
ming language. An important property of such a lan-
guage is completeness ofuniform proof search [8]. This
is goal-directed proof search which decomposes the goal
with right-rules until it is atomic, then uses just left-rules.
A language of goals and program clauses is anabstract
logic programming languagewhen uniform proof search
is complete; ifD ` G then auniform derivation exists.

This may fail in the presence of disjunctive program
clauses:A ∨ B ` A ∨ B has a trivial proof using(Ax)
but no uniform proof. If we decompose the goalA ∨ B to
A (or symmetricallyB), thenA ∨ B ` A is unprovable.
And indeed,∨ and for similar reasons∃ are not allowed in
D above.

Miller et al. showed uniform provability complete for
first- and higher-order variants of Horn clause languages as
well as for hereditary Harrop formulae , which include
additional goal forms including implication and universal
quantification. We now develop nominal logic program-
ming languages which generalize first-order Horn clauses
and hereditary Harrop formulae and for which an appropri-
ate notion of uniform proof is complete. This provides a
solid proof-theoretic foundation for anominal logic pro-
gramming languagessuch asαProlog [2].

Definition 2. A uniform proof in FL is a sequent proof such
that for all subderivationsΠ concluding a non-atomic goal
G, the final inference rule is either anR-rule or (newA). A
language of goals and program clauses is anabstract logic
programming languageif for any setΓ of program clauses
and goalG, the judgmentΓ ` G has a proof if and only if
it has a uniform proof.

Note that(newA) may be applied at any point. This is
technically necessary because it cannot be permuted up past
(∃R): the witnesst may mention the fresh variable gener-
ated by(newA). The(πL) rule also increases proof-search
complexity since (modulo the other swapping laws) any two
atoms may be swapped. These are important considerations
for implementations. Some lessons may be drawn from pre-
vious work in FM machine deduction [7].

Call D,∇ ` G an fnhc judgment, where∇ is a set of
atomic formulae. Anfnhc derivation is one all of whose
judgments arefnhc. The atomic formula context∇ is nec-
essary because atomic equality and freshness formulae are
not considered program clauses, but many rules (such as
(newA), (NL), (NR)) manipulate atomic formulae inΓ.

Theorem 2. fnhc is an abstract logic programming lan-
guage.

6

Proof. We must show that ifΓ ` C is derivable in FL then
there is a uniform proof. It suffices to check that (1) When-
ever afnhc sequentΓ ` C has a proof, it has a proof in-
volving only fnhc sequents, and (2) For proofs offnhc se-
quents, all of the left-rules can be permuted above the right-
rules and(newA). Given these facts, we can transform any
proof of afnhc sequent into afnhc derivation and permute
L-rules up pastR-rules for a uniform proof.

The first part is a straightforward induction based on an
existing model by Miller et al. [8]; note that this is where
∇ is needed. For the second part, many of the cases (and
their proofs) carry over from the proof for first-order Horn
clauses. It is easy to verify that(NL) and the nonlogical
left-rules commute up past right rules and(newA). This
makes sense becauseNbehaves like∀ on the left and like
∃ on the right, and∀ and∃ are well-behaved on the left and
right respectively.

We now consider the language offirst-order nominal
hereditary Harrop goalsG and program clausesD:

G ::= > | p(ts) | G ∧G | ∃x.G | Na.G (9)

| ∀x.G | G ∨G | D ⊃ G

D ::= > | p(ts) | D ∧D | G ⊃ D (10)

| ∀x.D | Na.D

Call this languagefnhh. Definefnhh sequents and deriva-
tions similarly to the case forfnhc.

As with Horn clauses, Miller et al. proved that uniform
proofs are complete with respect to intuitionistic provability
for both first- and higher-order hereditary Harrop programs.
We will show that uniform proofs are complete forfnhh
programs as well.

Theorem 3. The languagefnhh is an abstract logic pro-
gramming language.

Proof. As for fnhc, before, this theorem follows from two
observations. First, if afnhh sequent has any proof, then it
has one in which every sequent isfnhh. This is straightfor-
ward to prove by induction. Second, any left-rule that can
arise in such a proof commutes with every right-rule.

The only cases that were not already checked forfnhc in-
volve commuting(NL) and nonlogical rules upwards past
(∀R), (∨Ri), and(⊃R). These cases are all straightfor-
ward, since Nbehaves like∀ on the left and nonlogical rules
are generally well-behaved.

Adding atomic freshness and equality goals tofnhc or
fnhh is no problem for uniform proof search since it does
not comment on how atomic goals are to be derived. We
have already noted that the search space forD,∇ ` t = u
or t # u may be large, but this is a separate issue. In addi-
tion, adding program clauses denoting orthogonal (possibly
conditional) rewriting rules as in functional logic program-
ming seems unlikely to pose problems.

6.1 Examples

Abstractions (as developed in [4, 11]) may be incorpo-
rated into FL by adding an abstraction sort constructor〈A〉τ
and constantsabsτ : A→τ→〈A〉τ for eachτ . We write〈a〉t
for absτ a t. The following additional laws are needed for
abstractions (cf. axioms (A1) and (A2) of [10]):

Γ, 〈a〉t = 〈b〉u ` C

Γ, a#u, t = (a b) ·u ` C
(=abs)

Γ, 〈a〉x = y ` C

Γ, a # y ` C
(absL) (y:〈A〉τ, x 6∈ V (Γ, a, y, C))

Let Lam be a sort with constructorsv : A→Lam, a :
Lam→Lam→Lam, andl : 〈A〉Lam→Lam (not to be confused
with λ!). Then for closed terms, equality coincides withα-
equivalence in the usual sense: for example,l(〈m〉v(m)) =
l(〈n〉v(n)).

Capture-avoiding substitutionσ : Lam→A→Lam→Lam
can be defined usingfnhc clauses in what is now a
standard FM way [4]. A higher-order versionσ :
(A→Lam)→Lam→Lam may be defined as follows:

σ(f, v(n)) = f n σ(f, a(x, y)) = a(σ(f, x), σ(f, y))
m # f ⊃ σ(f, l(〈m〉x)) = l(〈m〉σ(f, x)).

σ is total despite the precondition on the third clause: by
(newA), (absL), for any abstractiony it is always possible
to find anm,x such thatm # f andy = 〈m〉x.

Note that this suggests an essentially algebraic approach
to substitution. For anyτ with an injectionν → τ , it is pos-
sible to directly axiomatise capture-avoiding substitution
as an algebraic system of equalities for a ternary operator
σ : τ→A→τ→τ , using#/ Nto avoid capture. These give
‘boiler-plate’ substitution actions similar to those offered
by higher-order encodings.β/η-conversion, typechecking,
and evaluation relations can also be encoded usingfnhc
clauses. For example,n#x ⊃ x →η l(n, a(x, v(n))) de-
finesη-conversion.

Let Pi, Act be sorts forπ-calculus process/action terms
with channel names encoded usingA and abstraction. Tran-
sition rules can be encoded usingfnhc clauses, for example:

(P1
x(y)→ P ′

1 ∧ P2
xy→ P ′

2 ∧ y#P1) ⊃ P1 | P2
τ→ ν〈y〉(P ′

1 | P ′
2)

(P
xy→ P ′ ∧ z#P ∧ z#x ∧ z#P ′) ⊃ ν〈y〉P x(z)→ (y z) · P ′

Bisimulation∼= can be encoded using anfnhh clause:(
∀P ′, x, y.

(
P

xy→ P ′ ⊃ ∃Q′. Q
xy→ Q′ ∧ P ′ ∼= Q′)

∧∀P ′, x. Ny.
(
P

x(y)→ P ′ ⊃ ∃Q′. Q
x(y)→ Q′ ∧ P ′ ∼= Q′)

∧∀P ′, x. Ny.
(
P

xy→ P ′ ⊃ ∃Q′. Q
xy→ Q′

∧∀z. P ′[z/y] ∼= Q′[z/y]
)

∧∀P ′.
(
P

τ→ P ′ ⊃ ∃Q′. Q
τ→ Q′ ∧ P ′ ∼= Q′)) ⊃ P ∼= Q

7

Also, we can reason effectively using this definition using
additional proof rules for stratified definitions such as those
of FOλ∆∇ [9]; as discussed at the end of the next section
adding such rules to FL appears to be straightforward, but
is beyond the scope of this paper.

7 Encoding Generic Judgments

Miller and Tiu’s sequent calculusFOλ∇ (a sublanguage
of FOλ∆∇ [9]) is first-order logic over simply-typedλ-
terms with an additional quantifier∇. Like N, ∇ has sym-
metric left- and right-introduction rules and is self-dual.

FOλ∇ sequents have the formΣ : Γ ` A, where
A ≡ σ . P is a formulaP in a local contextσ, andΓ is
a multiset of hypotheses with local contexts.Σ is a global
context containing eigenvariables introduced by(∀R) and
(∃L). The more interesting rules ofFOλ∇ are shown in
Figure 5; the remaining rules are essentially ordinary se-
quent rules except for the presence of local contexts. The
local contextsσ are used for the parameters introduced by
the (∇L) and(∇R) rules. Local and global environments
bind the names they mention, and formulae- and judgments-
in-context are considered equal up toα-renaming. Thus
x, y . p(x, y) ≡ y, x . p(y, x).

Dependence of global parameters on local parameters is
encoded usingraising. Thus, if the local context of the
principal formula isσ, then the parametric rules(∀R) and
(∃R) introduce a parameterh of typeτσ → τ to represent
a parameter of typeτ , whereτσ is the sequence of types
of parameters inσ, and the applicationhσ (shorthand for
h σ1 · · ·σn) is substituted for the quantified variable.

In the substitutive rules(∀L), (∃R), the substituted term
t must be well-formed in the contextΣ, σ whereσ is the
local context of the principal formula. Together, these rules
ensure that a formula’s validity is independent of the values
of any∇-quantified variables.

(Σ, h); Γ ` σ . A[hσ/x]

Σ : Γ ` σ . ∀x.A
(∀R) (h /∈ Σ)

Σ, σ ` t : τ Σ : Γ, σ . A[t/x] ` C

Σ : Γ, σ . ∀x:τ.A ` C
(∀L)

Σ, σ ` t : τ Σ : Γ ` σ . A[t/x]

Σ : Γ ` σ . ∃x:τ.A
(∃R)

(Σ, h); Γ, σ . A[hσ/x] ` C

Σ : Γ, σ . ∃x.A ` C
(∃L) (h /∈ Σ)

Σ : Γ ` (σ, y) . A[y/x]

Σ : Γ ` σ .∇x.A
(∇R) (y /∈ σ)

Σ : Γ, (σ, y) . A[y/x] ` C

Σ : Γ, σ .∇x.A ` C
(∇L) (y /∈ σ)

Figure 5. Interesting rules of FOλ∇

Miller and Tiu showed how to useFOλ∆∇, an extension
of FOλ∇ with rules for definitions, as a metalanguage to
encode object languages and properties of interest, includ-
ing a late transition system and simulation/bisimulation for
theπ-calculus and a simple Horn clause logic programming
language interpreter.
∇ and Nsatisfy several common properties, for exam-

ple both are self dual and commute with all propositional
connectives, and

QxQy.Bxy ≡ QyQx.Bxy (11)

Qx.Bxx 6⊂6⊃ QxQx.Bxy (12)

for Q ∈ { N,∇}.
However, Nand∇ are not identical:

∀x.Bx ⊃ Nx. Bx, Nx.Bx ⊃ ∃x.Bx, B ⊃ Nx.B
(13)

(wherex 6∈ V (B)), none of these are valid for∇.
We now give a translation ofFOλ∇ into FL. This trans-

lation combines two essential ideas:

1. ∇x:τ -quantified local parameters can be modeled with
N-quantifiedatomssuitablyinjectedinto τ .

2. ∀,∃-quantified global parameters can be modeled with
∀,∃-quantifiedequivariantparameters suitablyraised
out of the local contextσ.

We introduce a constructornτ :A→ τ for eachFOλ∇ sortτ
that provides the injection required for part (1). For part (2),
we introduce a predicateevτ (x) (read “x is equivariant”) for
eachFOλ∇ sortτ which is defined as∀a:A.a # x. Equiv-
ariance is equivalent to invariance under arbitrary swapping.

The translation ofFOλ∇ into FL, written[[-]] , is given as
follows:

[[t]] σ = t

[[P ⊗Q]] σ = [[P]] σ ⊗ [[Q]] σ (⊗ ∈ {∧,∨,⊃})
[[∀x:τ .P]] σ = ∀h:τσ→τ .ev(h) ⊃ [[P]] σ{x7→hσ}
[[∃x:τ .P]] σ = ∃h:τσ→τ .ev(h) ∧ [[P]] σ{x7→hσ}
[[∇x:τ .P]] σ = Nx:A. [[P]] (σ,x){x7→nτx}

[[σ . P]] = Nσ:A. [[P]] σ{σ 7→nσ}

In the cases for∀ and∃, τσ → τ is shorthand forτ1 →
· · · → τn → τ , where the types of the local parame-
ters of σ are τ1, . . . , τn. The translation of a multisetΓ
is the multiset containing translations of all the elements
A ∈ Γ. In addition, we translate term-variable environ-
mentsΣ = x1 : t, . . . , xn : τn to to additional hypothe-
ses[[Σ]] = ev(x1), . . . , ev(xn). This set of assumptions
helps maintain the invariant that any∃/∀-quantifiedFOλ∇

variable corresponds to an equivariant∃/∀-quantified FL
variable. The translation of a judgmentΣ : Γ ` C is
[[Σ]] , [[Γ]] ` [[C]] .

8

We first state without proof that well-formedFOλ∇ en-
tities (contexts, propositions, terms) are transformed to cor-
responding well-formed FL entities. We writèLwf to dis-
tinguish the well-formedness judgments of systemL from
the consequence judgment`L.

Lemma 3 (Well-formedness preservation).If `FOλ∇

wf Σ
then`FL

wf Σ in FL and`FL
wf [[Σ]] .

If Σ, σ `FOλ∇

wf t : τ thenΣ `FL
wf [[t]] σ : τ .

If Σ `FOλ∇

wf σ . A thenΣ `FL
wf [[σ . A]] .

If Σ `FOλ∇

wf Γ thenΣ `FL
wf [[Γ]]

Two additional important facts are the invertibility of
the N-rules and the fact that well-formedFOλ∇ terms are
translated to equivariant terms modulo[[Σ]] . We use the no-
tationsP [σ, ts] for the appropriate generalization of mini-
mal slices to multiple atom-variables; the notationσ # xs
indicates that all the variables amongσ are fresh for each
other and eachx ∈ xs.

Lemma 4 (N-inversion). Assume the variables ofσ are
distinct fromxs = V (Γ, C, Nn.P).
If Γ ` Nσ.P thenΓ, σ # xs ` P .
If Γ, Nσ.P ` C thenΓ, σ # xs, P ` C.

Proof. Straightforward induction.

Lemma 5 (Equivariance). If Σ, σ `FOλ∇

wf t : τ then

[[Σ]] `FL ev(λσ.t).

Proof. By induction on the definition of term well-
formedness. For the base caset = x, x must appear in
Σ, soev(t) = ev(x) is a hypothesis in[[Σ]] . The remain-
ing cases follow from these easily verified properties of
ev: ev(c) for any constantc; ev(t) ∧ ev(u) ⊃ ev(t u)
for any t, u such thatΣ ` t : τ ′ → τ , Σ ` u : τ ′;
and (∀x.ev(x) ⊃ ev(t)) ⊃ ev(λx.t) for any t such that
Σ, x : τ ′ ` t : τ .

Theorem 4 (Soundness).If Σ : Γ `FOλ∇ A then
[[Σ]] , [[Γ]] `FL [[A]]

Proof. The proof is by induction on the structure of a
FOλ∇-derivation. All of the cases for propositional con-
nectives and initial sequents are straightforward induction
steps. The interesting cases are those for the quantifiers.
We illustrate the representative cases of(∇R), (∀R), and
(∃R); the other three cases are symmetric.

For (∇R), we have

Σ : Γ ` (σ, y) . A{x7→y}
Σ : Γ ` σ .∇x.A

(∇R)

By induction we have[[Σ]] , [[Γ]] ` [[(σ, y) . A{x7→y}]] .
Since [[(σ, y) . A{x7→y}]] = Nσ Ny.[[A]] (σ,y){x7→ny} =

Nσ Nx.[[A]] (σ,x){x7→nx} = [[σ .∇x.A]] , this derivation suf-
fices.

For (∀R), we have

(Σ, h); Γ ` σ . A{x7→hσ}
Σ : Γ ` σ . ∀x.A

(∀R)

By induction we have a derivation of[[(Σ, h)]] , [[Γ]] `
[[σ . A{x7→hσ}]] , or, unwinding definitions,
[[Σ]] , ev(h), [[Γ]] ` Nσ.[[A{x7→hσ}]] . Then by the right-
inversion lemma for N, we may derive

[[Σ]] , ev(h), [[Γ]] , σ # Σ ` [[A]] {x7→hσ}
[[Σ]] , [[Γ]] , σ # Σ ` ev(h) ⊃ [[A]] {x7→hσ}

(⊃R)

[[Σ]] , [[Γ]] , σ # Σ ` ∀h.ev(h) ⊃ [[A]] {x7→hσ}
(∀R)

.

Then applying(NR) finitely many times we obtain a deriva-
tion of [[Σ]] , [[Γ]] ` Nσ.∀h.ev(h) ⊃ [[A]] {x7→hσ}, as re-
quired for the definition of[[σ . ∀x.A]] .

For (∃R), we have

Σ, σ ` t : τ Σ : Γ ` σ . A{x7→t}
Σ : Γ ` σ . ∃x.A

(∃R)

Since Σ, σ ` t : τ , by Lemma 5, we have[[Σ]] `
ev(λσ.t). Moreoverλσ.t is well-formed at typeτσ → τ
sinceΣ, σ ` t : τ . By induction, we have[[Σ]] , [[Γ]] `

Nσ.([[A]] {x7→t}). Note that sinceh is new, [[A]] {x7→t} =
[[A]] {x7→hσ}{h 7→λσ.t}. Using right N-inversion, then de-
riving

[[Σ]] ` ev(λσ.t) [[Σ]] , [[Γ]] , σ # Σ ` [[A]] {x7→t}
[[Σ]] , [[Γ]] , σ # Σ ` ev(h) ∧ [[A]] {x7→t}

(∧R)

[[Σ]] , [[Γ]] , σ # Σ ` ∃h.ev(h) ∧ [[A]] {x7→hσ}
(∃R)

and using(NR) finitely many times and applying the defi-
nition of [[σ . ∃x.A]] , we see that we can derive the desired
sequent.

This completes the proof.

Completeness does not hold. However, this is for no
deep reason: for example, becauseFOλ∇ does not al-
low weakening on local signatures, the judgmentσ . A `
(σ, x).A is not derivable and neither is̀σ.A ⊃ ∇x.A for
x 6∈ V (A), whereas its translatioǹ Nσ.[[A]] ⊃ Nσ. Nx.[[A]]
is derivable in FL. On the other hand, the translation is
at least consistent (that is,[[Σ : Γ ` σ .⊥]] = [[Σ]] , [[Γ]] `

Nσ.⊥ is underivable, since it has no cut-free proof).
Miller and Tiu designedFOλ∇ as one of a number of

related logics. They are concerned with effectively express-
ing their case studies and not with relative proof-theoretic
strength or semantics; there may be obvious translations
between variants ofFOλ∇, which may fail to be com-
plete. Despite its incompleteness, therefore, the translation

9

of FOλ∇ into FL sheds light on the meaning of∇ and the
relation between∇ and N.

Note thatFOλ∇ is not necessarily useful by itself. Ei-
ther definition rules (FOλ∆∇) or equality rules (FOλ=∇)
permitting case analysis are necessary for a useful meta-
logic. We have translations to similar extensions of FL
and they pose little difficulty. The important insight is that
FOλ∆∇ andFOλ=∇ useλ-abstractions to ensure that the
distinct locally-scoped parameters ofσ cannot be unified,
and FL-based extensions use freshness constraints forbid-
ding distinct any globally-scoped atoms from being unified.

8 Conclusions

This paper has presented Fresh Logic as a modular ex-
tension of a conventional first-order sequent calculus with
equality. It seems to have a good proof-theory, which we
have discussed here, and a good semantics, which we dis-
cuss elsewhere [5] for a related logic. Fresh Logic is part
of a growing body of work including Nominal Unification
and Rewriting [12, 3], all of which use the same techniques
to incorporate names and binding into existing first-order
frameworks. As such FL is a useful part of an ‘FM toolkit’
for handling names and binding.

We have used FL to develop a proof-theoretic foundation
for nominal logic programming with N-quantified goals and
program clauses and freshness and equality goals. We have
shown that the concept of uniform proofs can be extended
to this setting and that uniform proof search is complete for
appropriate generalizations of Horn clause and hereditary
Harrop formulae. We have given some examples of encod-
ing languages and properties thereof using nominal logic
programming. Much remains to be done in developing the
semantics and implementation techniques needed for nom-
inal logic programming.

Fresh Logic (and related FM work) andFOλ∇ agree in
having self-dual quantifiers Nand∇ to explicitly choose
fresh names, as in for exampleπ-calculus bisimulation in
§6.1. This choice cannot be modeled using∀ or ∃ quan-
tification, because we often need to switch from consid-
ering all fresh names to some fresh name and back. Our
encoding ofFOλ∇ in FL highlights the following contri-
butions of this work: 1. We have for the first time related
∇ to N; their relationship had previously been a mystery.
2. FOλ∇ required substantial changes to the structure of
first-order judgments and rules; FL is a modular extension
of traditional first-order sequent calculus. 3. The translation
gives an interesting semantics to∇ and suggests how others
might be found. This is possible future work. The transla-
tion also suggests developing a logic similar in spirit and
expressiveness toFOλ∇, but using freshness# in place of
local signaturesσ . -. This may be of interest to users and
designers of logical frameworks who would like to imple-

ment Miller-Tiu-like logics with a minimum of changes.
Additional directions for future work include exploring

algebraic theories possible in FL, such as that of capture-
avoiding substitution; applying the Curry-Howard corre-
spondence to obtain a dependent type theory with names;
and adding definitions (along the lines ofFOλ∆∇) and
structural induction principles to obtain a first-order FL-
based metalogic for reasoning about abstract syntax with
binding. Higher-order syntax encodings either lack straight-
forward structural induction principles or require addi-
tional well-formedness constraints to exclude exotic terms,
whereas these problems do not arise for encodings via fresh-
ness, N, abstraction, and swapping, since they are essen-
tially first-order [4, 6]; thus, we believe a metalogic based
on FL would be very powerful and useful.

References

[1] Luı́s Caires and Luca Cardelli. A spatial logic for concur-
rency (part II). In CONCUR’2002 Proceedings, number
2421 in Lecture Notes in Computer Science, 2002.

[2] J. Cheney and C. Urban. System description: Alpha-
Prolog, a fresh approach to logic programming modulo
alpha-equivalence. InProc. UNIF’03, pages 15–19. Univer-
sidad Politecnica de Valencia, 2003. DSIC-II/12/03.

[3] Maribel Ferńandez, Murdoch Gabbay, and Ian Mackie.
Nominal rewriting. Submitted, January 2004.

[4] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding.Formal Aspects of Computing,
13:341–363, 2001.

[5] Murdoch Gabbay. Fresh logic. Submitted, July 2003.

[6] Murdoch J. Gabbay.A Theory of Inductive Definitions with
alpha-Equivalence. PhD thesis, Cambridge, UK, 2000.

[7] Murdoch J. Gabbay. Automating fraenkel-mostowski syn-
tax. InTPHOLs, 15th International Conference on Theorem
Proving in Higher Order Logics, August 2002.

[8] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre
Scedrov. Uniform proofs as a foundation for logic program-
ming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[9] Dale Miller and Alwen Tiu. A proof theory for generic judg-
ments: An extended abstract. InProceedings of LICS 2003,
pages 118–127. IEEE, June 2003.

[10] A. M. Pitts. Nominal logic, a first order theory of names and
binding. Information and Computation, 186:165–193, 2003.

[11] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. InEighth ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP 2003), Uppsala, Sweden, pages 263–274. ACM
Press, August 2003.

[12] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unifica-
tion. In M. Baaz, editor,Computer Science Logic and 8th
Kurt Gödel Colloquium (CSL’03 & KGC), Vienna, Austria.
Proccedings, volume 2803 ofLecture Notes in Computer
Science, pages 513–527. Springer-Verlag, Berlin, 2003.

10

