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Abstract fresh names, or rename existing names, in an unkn&wn
which will be instantiated after the fact of our calculations?
Nominal logic is a theory of names and binding based We give a proof-theoretic account of these phenom-

on the primitive concepts of freshness and swapping, with aena based on a First-Order logic Fresh Logic (FL). It in-

self-dualll- (or “new”)-quantifier, originally presented as  cludes primitiveswappings(a b) on termst for renaming,

a Hilbert-style axiom system extending first-order logic. We a1 quantifier (‘New’ quantifier) that quantifies over suffi-

present a sequent calculus for nominal logic called Fresh ciently fresh names, and rules expressing the facts that fresh

Logic, or FL, admitting cut-elimination. We use FL to names can always be chosen and that all formulae are invari-

provide a proof-theoretic foundation for nominal logic pro- ant under permutative renamings.

gramming and show how to interprB1O\Y, another logic Related work includes Nominal Logic [10] and FM-

with a self-dual quantifier, within FL. HOL [7], Hilbert-style axiom systems both concentrating
on expressiveness, and a natural-deduction presentation of
Fresh Logic Flyp, concentrating on semantics. Nominal

1 Introduction Unification [12] and Nominal Rewriting [3] use the same
techniques of swapping and freshness in their respective do-

- . . : . mains, to good effect.
Names are ubiquitous in logic, theoretical computer sci- . . .
. ; . The Fresh Logic of this paper is presented as a Gentzen-
ence, and practical programming. Names appear as variable

. . Style intuitionistic sequent calculus with cut-elimination.
symbols in programs and logical formulae, channel names . : : : ) .
. . : ~As such it provides a direct reading of logical connectives
in w-calculus processes, nonces in security protocols, and in

many other situations. The ability to reason about names is(mcludmg V) as proof-search techniques, sitable both for

. . human reasoning and automated deduction. We discuss
therefore important to many areas of computer science. : : . i
other innovative design features in the course of the paper.

Though integers, strings, or other concrete data are OﬂenTheVl quantifier possesses interesting proof-theoretic prop-

usgd as representatlor?s of such names, usua.lly.the repre.seg-rties, notably self-duality: it has bothvaand3 character,
tation does not matter; we take the characteristic properties d his duality is refl 4 di
of names to be- and—-WNz. P <= Wxz.~P. This duality is reflected di-

rectly in the symmetric structure of tiierules of FL.

1. Renaming (or Equivariance). Properties concerning ~In addition to presenting our calculus and proving cut-
names are invariant up to permutative renaming (either €limination, we also present two applications: we give a
globally, or for bound names, locally). uniform proof-theoretic semantics to a logic programming

language with/1-quantified goals and program clauses, and
2. FreshnessFresh names can always be generated.  we relate FL to a similar calculusO\Y [9] which also has
a self-dual quantifier. A semantics for Fresh Logic is not
presented in this paper, but previous work [5] describes a
Kripke-style semantics based on FM sets [4, 6] and gives
details of proof-normalization for a natural-deduction ver-
sion of Fresh Logic.

For example, to distribute a substitution underia
abstractionAz. fz){ f—=z}, itis necessary first to generate
a fresh variable namg and rename toy in the body of the
abstraction. Similarly, to extrude the scope of-galculus
restriction inzz | v(z)zz it is necessary to generate a fresh
channel name’ and rename: in the body of the restric- .
tion. When Microsoft Windows loads a DLL, it rebasesitto 2 Fresh Logic
avoid an address space conflict. The situation is worse when
we have an unknowX which may be instantiateafter we Fix a setofsorts7, 7/, ... € Sorts and distinguish aort
have finished our calculation: how is it possible to choose of atomsA € Sorts. We assume function sorts— 7.



Fix countably infinite set§/ = {z,y,z,...} of vari-
ablesand{c, d, ...} = C of constants Constants and vari-
ables are inherently sorted and we may indicate this: as
z:7'. We assume a constagiap, : A—A—7—T exists for
each sortr. Variable names like,, m, n’, etc. are typically
used for variables of sot

Terms are simply-typed\-terms constructed according
to the grammar:

Syty...u=x|c| Awt|tt. @

Well-formedness is defined in the usual way; terms are al-

2.1 Judgments and Derivation Rules

A judgment is a pair(I', P) of a context and predicate
written " - P. Elements ofl" are called hypotheses and
P the conclusion. Thealid or derivable judgments are
inductively defined by the rules of Figure 1, Figure 2, and
Figure 3.

In (newA) V(I', C') denotes all variables free Inor C,
thatis{J{V(P) | PinTorP=C}. a # ts denotes a
list of assumptiong # t1,...,a # t,.

In (VR) and(3L), we assume (as usual) that the bound
variablez is not already present in the conclusion.(YL)

ways assumed to be well-formed at appropriate sorts and@nd(FR) we assume andz are of the same sort.

identified up togn-equivalence=#g, or just=). We intro-
duce the notioV (¢) of ‘free variables ot’, defined in the
usual way. We introducesubstitution action ¢{z+—s} de-

Note that thg AL) rule may be used to add an instance
of any of the swapping axioms listed.ihto I" (read bottom-
up). We write (~) to abbreviate an inference following

fined in the standard (capture-avoiding) way. We introduce from some collection of AL), (#A), (7#), and equality

the shorthands for a list of terms and(ts) for s applied to
the list of argumentss.

Terms of sortA are often callecatoms and written (as
above) asu, b,d’, etc. A term of the formswap, a o’ ¢
(from now on abbreviateda o') - t) is called aswapping
of a anda’ applied tot. Square brackets are used when

necessary to avoid ambiguity between ordinary parentheses

and swappings. We consider the addition of constains
for FM abstractiona)t [12, 4, 3] in§6.1.

We assumeredicate constant symbol, ¢,r... € P,
each with an arityr - - - 7, (i.e., a list of sorts of the argu-
ments of the predicate). For eacle Sorts we assume dis-
tinguished constants : 7 equality and+# : At freshness
Propositionsor formulae are generated by the grammar

P

p(ts)| PN\P|PVP|PD>P
| T|L|Vz.P|3z.P|Wn. P

)

P < Q@Qisshorthand fol® > Q AQ D P and—-P is
shorthand forP O L.

Like terms, propositions have notions of free variables
V(P) and substitutiorP{x—s} defined as usual. We also
adopt the notation(a b)- P abbreviatingP{z1—(a b) -
1} {axn—(a b) - z,}, whereV(P) = {z1,...,z,}.
That is,(a b) - P is the result of applyinga b) to each free
variable of P. For example,

(ad)-Vz.q[(cd) -z, 2]]
Vz.g([(a b)-c] [(ab)-d])-z,(ab)- 2]

laws. For example,
Tya# (ab)-c(z,y) - C
Lo#x,b#ykHC

~

2.2 The nonlogical rules

The rules (#A), (caseA), (newA), (n#), (L), and
the swapping axioms are referred toramlogical rules
because they deal with atomic formulae rather than logical
connectives. In this section we give some intuition for the
meanings and purposes of these rules.

(#A): No atom is fresh for itself.

(caseA): For atoms, freshness coincides with inequality
and is decidable (even though FL is intuitionistic).

(newA): Read bottom-up this rule says we can always
generate a new atoatfresh for any termss. This embodies
the Freshness principlementioned in the introduction.

(w#): If atomsa, b are fresh for then swapping them in
t has no effect.

(wL): This is Equivariance for predicates, also men-
tioned in the introduction. Validity ofP is independent
of the particular values of atoms mentioned i) only
equalities or inequalities among atoms matter. For exam-
ple if a # b D p(a,b) holds for someatomsa, b, then
a # bV D pla,b) holds foranya’,b'. This can be proved
using(wL) to swapa for a’ andb for ¥'.

(AL) and swapping axiomsthese axioms describe the
behavior of swapping. The first three axioms imply swap-
ping a with itself has no effect; swapping is its own inverse;
and swapping acts as expected on atoms, respectively. The

Formulae are considered equal up to consistent renaming Ofemaining three axioms imply that swapping is is homo-

bound identifiers.

A (logical) contextis a multiset of propositions, usually
writtenI". Write V/(I") for the obvious extension df (-) to
many formulae. We may also wrile{z—s} and(a b) - T

morphic with respect ta-term structure. Note that in our
system, axiom (E1) of [10] becomes derivable:

(aa)-[(00)-1] = ([(aa)- 8] [(aa)-b])-[(a a') -] (3)
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Figure 1. First-order Logic with Equality
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Figure 2. Additional Rules for Fresh Logic
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Figure 3. Swapping axioms
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The axiom involving\ is particularly interesting: to see
why the added substitution is needed, consider applying a
swapping to thgd-equivalent termgix.z) ¢ andt.

2.3 TheW-quantifier rules

The rules(IR) and (L) are symmetric; we consider
just (MR). As discussed starting from Prop. 4.10 in [4], the
N-quantifier satisfies the “some/any” equivalences

Na.P < Jda.a # s NP < Vaa#xsDP (4)

wherexs = V(Wa.P) is a list of all free variables oP
except fora. So at first sight a sequent rule such as

T,a # zs b P{n—a} )
Ta#xzskEWn. P

(whereV (Wa.P) = xs) might seem appropriate. A deduc-
tion rule should be closed under substitution; this is nec-
essary to prove the substitution property which is needed
in cut-elimination fory and3. But (5) is not closed un-
der substitution, for substituting a non-variable term such
asc(y, z) for one of thexs results in a non-instance.

To make the deduction rules figrclosed under substitu-
tion, we useslices Caires and Cardelli have a similar notion
of ‘free term’ [1].

Definition 1. Aslice of P overnisatuple(P,n,ys, P',ts)
of P, a variable symbokh, and:

1. Variable symbolsy, . ..,y which we writeys, not ap-
pearing in P

2. A propositionP’ withV(P") = {n,y1,..., Yk}

3. Termsty, ..., t; which we writets, such thatn ¢
UsvV(t:) and P/ {yr—t:} ... {ys—ts} = P

There is a natural notion of minimal slice, the (unique up
to renaming theys) slice such that”’ is as small and the
ts are as large as possible. We omit the formal definition.
For example, the minimal slice gf(f(x,n),m) overn

is (p(f(x,n), m)?”v (yla y2)7p(f(yla n)va)ﬂ (m,m)), and
the minimal slice of the same term with respectritois

(p(f(l’, n)7 m)7 m, (yl)ap(ylv m>7 f(xv n))

We write P = P’[n, ts] as shorthand for “the minimal
slice of P overn is (P,n,ys, P’ ts) for someys”. The
following are useful technical results:

Lemma 1. If P = P'[n,ts] then for any terms,
P{n—s} = P'{n—s}Hys—ts}. Also, for anyn and s
such thatn € V(s), P{axrs} = P'[n, ts{z—s}].

Thus a substitution for in P does not affect thes, and
minimality of slices ovem is not affected by substitutions
that do not introduce free occurrenceswf



3 Example deductions

(D1) connectd/ and# within Fresh Logic. In the in-

stance of(IL), P = (n # y1)[n,z]. (D2) derives an nhorans X

equivalent of(w#) within Fresh Logic. IfD3) V(A) and (D1) (MR)

V(B) are the variables oA and B anda # V (A4, B) n#x b Wn.n# (newA)

is a list of freshness assumptions# « for eachz € FUn.n# neWE):

V(A)UuV(B). — (=r),(Ax)
The reverse entailmetitn. (PAQ) F in. PAUR.Q is nm#rrr=zx

similarly derivable. We can also derive similar equivalences (7L)

nm#xzk(nm) z=x R
(D2) n,m#x}—l/lm.(nm)-x:x( )

for the other connectives such asandv.
(D4) is one direction of a well-known commutativity

property~ (Un.Va.n # O P) <= VYa.n.P. R S (MR)
(D5) and (D6) are another well-known relation be- (newA), (newA).
tween#, W, and equality, specifically a # =z <= FWn.Nm.(nm) -z ==
Nb. (b a) - x = x (see [4, Prop. 4.10]). (Ax) (Ax)
AFA B+B
: . (AR)
4 Metatheoretic Properties n#V(AB), AB-ANB VL)
n# V(A,B), AUn.BF-AAB
Some basic metatheoretic properties include: (ML)
Substitution:If ' - C is derivable then so i§{z—t} + (D3)  n#V(AB), In A Vn. BEANB (AL)
C{x—t}, assuming: andt¢ are sort-compatible. n# V(A B), Wn.AVIn.BF- AANB
Weakeninglf I" - C'is derivable then so i§, P - C. _ A V(AB) Vin AVin BE Vin (AN B) (VR)
Moreover, these transformations are all height-preserving. (newA)
Uses of(Ax) can be restricted to atomi®: If I' - P is Wn. A,n. B+ Wn.(A A B)
derivable the.n it_ is derivable. using <_Jnly in.stances{Aﬁc). Wn. AAn. B - Wn. (A A B) AL).
where the principal formula is atomic. This follows by in-
duction onP. WhenP = Wa.Q the rule(newA) is re- T (Ax) PLp (Ax)
quired to obtain a fresh atom fo¥IL) and(/R.). (OL)
A right-hand form(7R) of (7L) is admissibleif T - P is n#xOP n#zvskP L) (VL
derivable, then there is also a derivationof (a b) - P. (D4) Un.Vz.n# x> P, n# z,vsF P (L), (VL)
The proof is a straightforward induction on derivations. (newA), (R)
Uses of(7L) can be restricted to atomi®: If I' - C VIn.ve.n# x> PFWn. P VR)
is derivable, then it has a derivation using only atomic in- Wn.Vz.n # x D> P+ Vz.Un. P
stances ofrL). (Ax)
This is proved by a stronger induction on the sizePathat (ba)-z=z+ (ba)-z=2x
an occurrence ofrR) or (L) with a non-atomic principal (D5) — (7#)
L . . a#Fz,b#Hzk (ba) z==x
formula can be converted to a derivation using only atomic (VR), (newA)
(L) and(7R) rules. This stronger invariant is needed for afatWb(ba) z=x
cases such g9 L) and(DR) wherer-rules are needed on — (Ax)
both sides of-. Finally, the atomig7R) rule can be de- affrtattz
rived from(Ax), (wL), and the other nonlogical rules. (na)-a# (na)-(na)-zFa#x -
General(IL)/(VUR)slice rules:Generalized versions of the (mL)
rules (ML) and (MR) which permit arbitrary slices instead (D6) n#(na)-zhafa (=s)
of minimal ones are admissible. n#a,(na)-c=zFa#z
The proof requires showing that the nonlogical rules can be (L)
used to infem # ts for P’[n, ts] minimal fromn # ts’ for n#zalnma z=atage (newA)
any slice(P, n,ys, P”,ts) of P. Wn.(na)-z=ztaf#zx

Soundness/CompletenegsNominal Logic formulaP is a

theorem if and only if- P is derivable in FL.

This just requires checking that all the axioms of Nominal Figure 4. Example deductions
Logic are derivable and all the rules of FL are valid proof

principles in Nominal Logic.



The most important property is, of course, cut- where the(~) step follows because {2 b) - ts = ts then
elimination. / /
Theorem 1 (Cut-elimination). If I' = C has a derivation (ab)- A{nra} = A/<a’ts) = A'(b,(ab)-ts)
in FL, then it has a cut-free derivation. = A'(b,ts) = A{n—b} (6)

This is proved as usual by first proving th@@ut) is using swapping axioms and Lemma 1. |
admissible and then using admissibility finitely many times

to remove all(Cut) instances from a derivation.

Lemma 2 (Admissibility of Cut). If ' Aandl', A+ C
have cut-free derivations, then so ddes C. 5.1 Global vs. Local

5 Variations

Proof. Proof is by induction o4, derivationIl of I' - P,
and derivationlI’ of I',; P + C. In each case we either (newA) is nondeterministic sincés is arbitrary. Nomi-
reduce the size ofl or A stays the same bdl or IT' is nal Logic has the similar axiorf¥'4), which isVzs.3a.a #
smaller. There are many cases, which can be classified intors. Though convenient for humans this may be undesir-
1. base casedT orTT' is (Ax), (LL), or (TR) ablg for searlch space in aut_omated deduc,;ti_on: Note that a
logically equivalenglobal variant of(newA)" insistsa be

2. left-commutative casesl is not principal inlI. “maximally fresh”; ts must include all variable symbols in
3. right-commutative cases! is not principal inIT’. the sequent. T.on#tskC

_ T —— A)
4. principal cases A is principal in bothIl andIT’. r=cC (newA)

We may assume that all instances(dfx) and (rL) are wheren ¢ V(T',C). Certainly every instance g¢hewA)’
atomic inII, II'. Many of the cases involve only standard is an instance ofnewA); the converse follows using weak-
first-order logic rules, and their proofs are as usual. The ad-ening.

ditional left- and right-commutative cases for the new rules

of FL are also straightforward. I is principal in both 5.2 Substitutive vs. Parametric

derivations, then there are potentially many new cases to

consider. Cl)n? obvious such case is wheérstarts with (VL), (3R) aresubstitutive in that the principal formula

(MR) andIl” with (UL). Except for(UIL) and (UR), all  in the lower sequent is instantiated with a specific term in
There are no rules with ato_mlc_formulae principal on the principal formula in the upper sequent contains an eigen-
right, so the only new combination of rules that leads 10 & yariable (a syntactically new parameter). In this terminol-

principal cutis(UR) and(VIL). _ ogy (ML) and(UR) as given are both substitutive.
Suppose the derivationd, 11’ are respectively of the Parametric versions are possible as self-duality (4) sug-
forms gests:
IL,TEC, A{n—a} IR T, A{n—b} - C UL
LL,I'-C,Wn.A (NR) I IV, nAFC (L) M (WULY  (n ¢ V(T,C))
wherel” = a # ts,b # ts, andA = A'[n,ts]. If a andb FF’ Vln#PtF I—CP
are the same term then this case is immediate. Otherwise, onEeT e (UR)" (n¢ V(D))
by appealing to the induction hypothesis twice we can con- ' Wn.P
clude whereP = P'[n, ts].
I 1" A{n—a} Call FL' the logic FL minus (ML), (MR) and plus
I', A{ni—a} - A{n—b} (ML), (MR)'. Clearly (UL)', (VR)" are derivable in FL
LI, A{n—b} = C IH IH using(newA) and(UL), (NR). The converse usésR):
,T'FC o
I a # ts b P{n—a}
The middle judgment follows by T ad ts,m A ts - (am)- Plnal (7R), W
: : m#)", (~)
A{nb} F A{nb) (Ax) - T,a #ts,m # ts + P{n—m} (MR)’
(ad)-ts =ts,(ab)  A{n—a} - A{n—b} 4 D,ast tst Vin.P
T
a # ts,b# ts,(ab) - A{n—a} b A{n—b} ) Similarly for (AL). Thus FL and FLhave the same conse-

a # ts,b# ts, A{n—a} b A{n—b} guence relation.



5.3 Sequents vs. Natural Deduction clausegoals and program clauses:

) ) . o G == Tlpits)|GAG|Tz.G | VNa.G @)

Two versions of Fresh Logic exist: the one in this paper D = T|p(ts)|DAD|G>D ®)
which we temporarily call Fk.,, and another is a Natural
Deduction system [5], call if’' Ly p, which we mentioned | Va.D [ Wa.D
previously. F'Ls.q is better for proof-search and suggests The |1-free fragment is the Horn clause logic program-
notions of logic programming which we consider below. ming |language. An important property of such a lan-
Conversely}"Lyp is (arguably) easier to give a semantics gyage is completeness ohiform proof search [8]. This
to and we do thatin [5]. We do not discuss semantics in this s goal-directed proof search which decomposes the goal
paper but we see no barrier to applying the same Kripke-ith right-rules until it is atomic, then uses just left-rules.

style model in FM sets [4, 5] as we used 0Ly p. A language of goals and program clauses isastract
logic programming languagewhen uniform proof search
5.4 Atoms as Constants vs. Variables is complete; ifD = G then auniform derivation exists.

This may fail in the presence of disjunctive program

Another basic design decision is whether to trtaims ~ clauses:A v B = AV B has a trivial proof usingd Ax)
as constants (AAC)or atoms as variables (AAV) Nom-  but no uniform proof. If we decompose the gotl B to
inal Unification [12], FLyp, and recent work on Nomi- 4 (or symmetrically3), thenA v B - A is unprovable.
nal Rewriting [3] make the former choice. Nominal Logic And indeed,v and for similar reasons are not allowed in
[10], FM-HOL [7], and this paper make the latter choice. [ above.
Atoms-as-constants makes it much easier to test for term Miller et al. showed uniform provability complete for
equality and unifiability, since equality and syntactic equal- first- and higher-order variants of Horn clause languages as
ity coincide for atoms. For example, the nominal unification Well as for hereditary Harrop formulae , which include
problem(a b) - = ~? = has multiple incomparable nominal additional goal forms including implication and universal
unifiers ifa, b are variables, but only onedfandb are atom-  quantification. We now develop nominal logic program-
constants. ming languages which generalize first-order Horn clauses
Any Fresh Logic AAC proof certainly be converted to and hereditary H_arrop formu_lae and for which an ap_propri-
an AAV proof, by mapping atom constantsb injectively ate notion of umform proof is complete.. This prowdes a
to new variables;, b and augmenting the hypotheses of all solid prpof-theoretm foundation for mominal logic pro-
judgments with freshness assertions of the farg b. For gramming languagessuch asxProlog [2].
example, an AAC judgment likg(a,b) &= g(c,z), where  Definition 2. Auniform proofin FL is a sequent proof such
a, b, andc are distinct atoms and is a variable, would be  that for all subderivationgI concluding a non-atomic goal
translated to an AAV sequent# b,a # c,b # c,p(a,b) = G, the final inference rule is either aR-rule or (newA). A
q(c, ). language of goals and program clauses isadstract logic
AAV is strictly more expressive than the AAC used in programming languagef for any sefl’ of program clauses
the works cited abovez y) - c(t1,t2) is notan AAC term,  and goalG, the judgment + G has a proof if and only if
because in AAC swappings are always attached directly toit has a uniform proof.
free variables. However if a derivable sequent in the Fresh

Logic here is expressibl ntin the Fresh Logic in Note that(newA) may be applied at any point. This is
0gIc here 1S EXpressible as a seque € resh Logict technically necessary because it cannot be permuted up past
[5], then it is derivable. The derivation uses a case-analysis

rule (Consk) [5, Fig.3] which we apply over all possible (3R): the witnesg may mention the fresh variable gener-

equalities and inequalities between variables of sort atomsated by(new,). The(rL) rule also increases proof-search
inqthe sequent a complexity since (modulo the other swapping laws) any two

. . - atoms may be swapped. These are important considerations
Thus many interesting variations on the rules of FL are y bp P

. : . : for implementations. Some lessons may be drawn from pre-
possible, in most cases without changing the essence of th‘?/ious work in FM machine deduction [7]

logic. The design depisipns made in this_ Paper SEEm Use- o), D,V F G anfnhe judgment, whereV is a set of

ful for mangal reasoning in FL; other applications may find atomic formulae. Anfnhc derivation is one all of whose

advantage in the alternatives. judgments arénhc. The atomic formula conteX¥ is nec-
essary because atomic equality and freshness formulae are

6 Uniform Proofs in FL not considered program clauses, but many rules (such as
(newA), (L), (MR)) manipulate atomic formulae in.

The following grammars define a core logic program- Theorem 2. fnhc is an abstract logic programming lan-
ming language, consisting dirst-order nominal Horn guage.



Proof. We must show that if* - C'is derivable in FL then
there is a uniform proof. It suffices to check that (1) When-
ever afnhc sequenf” - C has a proof, it has a proof in-
volving only fnhc sequents, and (2) For proofs fihc se-
guents, all of the left-rules can be permuted above the right-
rules andnewA). Given these facts, we can transform any
proof of afnhc sequent into &nhc derivation and permute
L-rules up pastkz-rules for a uniform proof.

The first part is a straightforward induction based on an
existing model by Miller et al. [8]; note that this is where

V is needed. For the second part, many of the cases (and I @)z =y C

their proofs) carry over from the proof for first-order Horn
clauses. It is easy to verify tha¥lL) and the nonlogical
left-rules commute up past right rules afgewA). This
makes sense becaudebehaves like/ on the left and like
3 on the right, an®/ and3 are well-behaved on the left and
right respectively. O

We now consider the language fifst-order nominal
hereditary Harrop goalsG and program clauses:

G == T|pits)|GAG|3ze.G|VNa.G  (9)
| Ve G|GVG|D>G
D == T|plts)|DAD|GDD (10)

|  Va.D|Wa.D

Call this languagédnhh. Define fnhh sequents and deriva-
tions similarly to the case faihc.

As with Horn clauses, Miller et al. proved that uniform
proofs are complete with respect to intuitionistic provability
for both first- and higher-order hereditary Harrop programs.
We will show that uniform proofs are complete féthh
programs as well.

Theorem 3. The languagéefnhh is an abstract logic pro-
gramming language.

Proof. As for fnhc, before, this theorem follows from two
observations. First, if &nhh sequent has any proof, then it
has one in which every sequentfishh. This is straightfor-
ward to prove by induction. Second, any left-rule that can
arise in such a proof commutes with every right-rule.

The only cases that were not already checkedifbe in-
volve commuting(/AL) and nonlogical rules upwards past
(VR), (VR;), and(DR). These cases are all straightfor-
ward, sincé/l behaves lik&/ on the left and nonlogical rules
are generally well-behaved. O

Adding atomic freshness and equality goalsfitbc or
fnhh is no problem for uniform proof search since it does
not comment on how atomic goals are to be derived. We
have already noted that the search spacdXovV + ¢t = u
ort # u may be large, but this is a separate issue. In addi-
tion, adding program clauses denoting orthogonal (possibly
conditional) rewriting rules as in functional logic program-
ming seems unlikely to pose problems.

6.1 Examples

Abstractions (as developed in [4, 11]) may be incorpo-
rated into FL by adding an abstraction sort constru¢pr
and constantsbs, : A—7—(A)7 for eachr. We write (a)t
for abs, a t. The following additional laws are needed for
abstractions (cf. axioms (A1) and (A2) of [10]):

T, {(a)t = (byuk C
T, a#u,t =(ab)-ukC

(y:()7, 2 g V(L a,y,C))

(=abs)

Tafyrc apsh)
Let Lam be a sort with constructors : A—Lam, a :
Lam—Lam—Lam, andl : (A)Lam—Lamn (not to be confused
with Al). Then for closed terms, equality coincides with
equivalence in the usual sense: for examplém)v(m))
1((n)v(n)).

Capture-avoiding substitution : Lam—A—Lam—Lam
can be defined usingnhc clauses in what is now a
standard FM way [4]. A higher-order version
(A—Lam)—Lam—Lam may be defined as follows:

O'(fvv(n)) =fn U(f’ a('r’y)) = a(a(f, ZIJ),O’(f, y))
m# f D o(f,1((m)x)) = 1((m)o(f, z)).

o is total despite the precondition on the third clause: by
(newA), (absL), for any abstractiop it is always possible
to find anm, = such thatn # f andy = (m)z.

Note that this suggests an essentially algebraic approach
to substitution. For any with an injectionv — T, itis pos-
sible to directly axiomatise capture-avoiding substitution
as an algebraic system of equalities for a ternary operator
o : T—A—7—T7, Using# /W to avoid capture. These give
‘boiler-plate’ substitution actions similar to those offered
by higher-order encodingsgi/n-conversion, typechecking,
and evaluation relations can also be encoded usithg
clauses. For example#z D x —, 1(n,a(z,v(n))) de-
finesn-conversion.

LetPi, Act be sorts forr-calculus process/action terms
with channel names encoded usingnd abstraction. Tran-
sition rules can be encoded usifitic clauses, for example:

P PIA P, T P Ay#P) O Py | Pe 5 viy) (Pl | P

T(z)

(P ™ P' A 2#tP Az A2#tP') D w(y)P ™5 (y 2) - P/

Bisimulation= can be encoded using dimhh clause:
(vP'\2,y. (PP 53Q.Q™Q AP 2Q)
APz Wy (P P 53Q.Q "YW Q' AP =Q)
AVP 2. Wy (PE P 53Q.Q = Q'
AVz. P'lz/y] = Q'[2/y])
AP (PSP 53QQ B QAP =Q)) 5 P=Q



Also, we can reason effectively using this definition using  Miller and Tiu showed how to usBO\*Y, an extension
additional proof rules for stratified definitions such as those of FOAY with rules for definitions, as a metalanguage to
of FONAV [9]; as discussed at the end of the next section encode object languages and properties of interest, includ-
adding such rules to FL appears to be straightforward, buting a late transition system and simulation/bisimulation for

is beyond the scope of this paper. ther-calculus and a simple Horn clause logic programming
language interpreter.
7 Encoding Generic Judgments V and 1 satisfy several common properties, for exam-

ple both are self dual and commute with all propositional

) ) connectives, and
Miller and Tiu’s sequent calculuBO\Y (a sublanguage

of FONAY [9]) is first-order logic over simply-typed- QrQy.Bry = QyQz.Bxy (112)
terms with an additional quantifier. Like /1, V has sym- Qz.Bxz ¢ QuQuz.Bxy (12)
metric left- and right-introduction rules and is self-dual.

FOMY sequents have the for : T' + A, where for@Q e {I,V}.
A = o> Pis aformulaP in alocal contexto, andT is However,1 andV are not identical:
a multiset of hypotheses with local contexs.is a global
context containing eigenvariables introduced(bR) and
(3L). The more interesting rules dFO\V are shown in
Figure 5; the remaining rules are essentially ordinary se-
guent rules except for the presence of local contexts. The
local contextsr are used for the parameters introduced by
the (VL) and(VR) rules. Local and global environments 1. Va:7-quantified local parameters can be modeled with
bind the names they mention, and formulae- and judgments- N-quantifiedatomssuitablyinjectedinto 7.
in-context are considered equal up derenaming. Thus
z,y>p(z,y) =y, 2> p(y, o).

Dependence of global parameters on local parameters is
encoded usingaising. Thus, if the local context of the

principal formula iso, then the parametric rulg¥R) and  we introduce a constructar:A — 7 for eachFOMY sortr
(FR) introduce a parametér of typer, — 7 to represent  that provides the injection required for part (1). For part (2),
a parameter of type, wherer, is the sequence of types e introduce a predicate, () (read *: is equivariant”) for

of parameters i, and the applicatioo (shorthand for  eachFOAY sortr which is defined a¥a:A.a # x. Equiv-

h oy ---0y) is substituted for the quantified variable. ariance is equivalent to invariance under arbitrary swapping.

In the substitutive ruleg¢vL), (3R ), the substituted term The translation of"OAY into FL, written[-]}, is given as
t must be well-formed in the conteXt, o whereo is the follows:

local context of the principal formula. Together, these rules

Ve.Bx D Wx. Bx, Wzx.Bx D> Jdx.Bx, B D> Wx.B
(13)
(wherex ¢ V(B)), none of these are valid for.
We now give a translation dfO\Y into FL. This trans-
lation combines two essential ideas:

2.V, 3-quantified global parameters can be modeled with
V, 3-quantifiedequivariantparameters suitablaised
out of the local contexd.

ensure that a formula’s validity is independent of the values [, =t
of any V-quantified variables. [PeQ], = [P],®[Q], (®¢€{AV,D})
[Va:r.P], = Vhir,—7.ev(h) D[P], {x—ho}
|

(3,h);T F o> Alho /2] (VR) (hé %) [ Jh:t,—1.ev(h) A[P], {x—ho}

Y:TkFopVe. A (Va:r.P], = le:A.[[P]](a x){:ct—me}
Yobt:m Y:T,opAft/z]HC ,

o> P = WoA.[P] {o—no
Y:TooVor.AFC (VL) [ ] [ ]]”{ }
Y,obt:7 Y:TFobpAlt/x) In the cases fo¥ and3, 7, — 7 is shorthand forr; —
S:TFkop3zr.A (3R) - — 1, — T, Where the types of the local parame-
(2,h);T, 0> Alho/z] F C ters ofo arery,...,7,. The translation of a multisef
S (L) (h¢x) is the multiset containing translations of all the elements
Y:I,orde A C g
S:TF (0,y) > Aly/a] A € T'. In addition, we translate term-variable environ-
ST |—7al>Vx 1 (VR) (y ¢ o) mentsy = z; : t,...,z, : T, t0 to additional hypothe-
E.F'( Vo A /' Lo ses[X] = ev(xy),...,ev(x,). This set of assumptions
1 (0,y) > Aly/a] (VL) (y ¢ o) helps maintain the invariant that adyv-quantified?O\Y

:TopVzAFRC variable corresponds to an equivariahtv-quantified FL

. _ variable. The translation of a judgmeht : ' + C is
Figure 5. Interesting rules of FOMY [Z],00] F[CT-



We first state without proof that well-forme@dO)\Y en-

NoWz[A], . {z—nz} =[o > Vz.A], this derivation suf-

tities (contexts, propositions, terms) are transformed to cor-fices.

responding well-formed FL entities. We Wriﬁf to dis-
tinguish the well-formedness judgments of systerfrom
the consequence judgmert.

Lemma 3 (Well-formedness preservation).If I—,ZJ?’\V N

then-51 3 in FL and 55 [S]).
If 3,0 I—E?’\V t: 7 thenX I—Z"f e, : 7

If £ FEY o b AthenS FF oo A].

If £ FEQN T thens: FiY [T

Two additional important facts are the invertibility of
the M-rules and the fact that well-formedO\Y terms are
translated to equivariant terms mod[i¥j]. We use the no-
tations P[0, ts] for the appropriate generalization of mini-
mal slices to multiple atom-variables; the notatiogt xs
indicates that all the variables amoagare fresh for each

For (VR), we have

(3,h);T F o> A{z—ho}
>:I'kFopVx.A

(VR)

By induction we have a derivation df%, n)],[I'] +
[o > A{x—hol}], or, unwinding definitions,
2], ev(h),[T] + Wo[A{x—ho}]. Then by the right-
inversion lemma fokl, we may derive

[X], ev(h).[T] o # X F[Al{w—ha} g
[Z][, 0 # 2 evlh) S[ANz—ho} =g,
[Z],[T], 0 # £ - Yhev(h) S [A]{zrho} :

Then applying IR)) finitely many times we obtain a deriva-
tion of [X],[T] + Wo.Vh.ev(h) D [A]J{z—ho}, as re-

quired for the definition dfo > V. A].

other and each € xs. For (3R), we have

Lemma 4 (W-inversion). Assume the variables af are
distinct fromzs = V (T, C, in. P).

IfT'F Wo.Pthenl',o # xs + P.

If T, lo.P - Cthenl',o # xzs, P+ C.

Yobt:r X:TtFop A{a—t}
Y:I'topdz.A

(3R)

SinceX,0c F ¢ : 7, by Lemma 5, we hav§X] +
ev(Ao.t). Moreoverlo.t is well-formed at typer, — T
sinceX,o F ¢ : 7. By induction, we hav§X],[I'] +
WNo.([A]{z—t}). Note that since: is new,[A]{z—t} =
[A{x—ho}{h—Ao.t}. Using rightW-inversion, then de-

Proof. Straightforward induction. O

Lemma 5 (Equivariance). If .o HZ?*V t

2] ™ ev(Not).

: 7 then

riving
Proof. By induction on the definition of term well-
formedness. For the base case- x, x must appear in [Z] F ev(Aot) [Z].IT],0 # = F[A]J{ax—t} (AR)
%, soev(t) = ev(x) is a hypothesis ifiX]. The remain- [ZLIT], 0 # 2+ ev(h) A[AJ{x—t}
ing cases follow from these easily verified properties of (FR)

ev: ev(c) for any constant; ev(t) A ev(u) D ev(t u) [Z1[T], o # 2+ Sh.ev(h) A[A]{z—ho}
foranyt,u suchthat - ¢t : 7 — 7, X F u : 7
and (Vz.ev(z) D ev(t)) D ev(Az.t) for anyt such that
S,x:T Ht:T. O

and using R finitely many times and applying the defi-
nition of [o > 3z. A, we see that we can derive the desired
sequent.

This completes the proof. O

Theorem 4 (Soundness).If ¥ : I' F'O* A then

[S0,000 = [A]

Proof. The proof is by induction on the structure of a
FOM\Y-derivation. All of the cases for propositional con- ) ) . )
nectives and initial sequents are straightforward induction (7> )>A is notderivable and neitherfiso>A 5 Va. A for
steps. The interesting cases are those for the quantifiers” ¢ V (4), whereas its translatida Vo [A] > Mo Wz {A]
We illustrate the representative caseWR), (VR), and is derivable in FL. On the other hand, the translation is

(3R); the other three cases are symmetric. at least consistent (that i : I' - o> L] = [Z],[I'] -
For (VR), we have Wo. L is underivable, since it has no cut-free proof).

Miller and Tiu designed®O\Y as one of a number of
related logics. They are concerned with effectively express-
ing their case studies and not with relative proof-theoretic
strength or semantics; there may be obvious translations
between variants of’O\Y, which may fail to be com-
plete. Despite its incompleteness, therefore, the translation

Completeness does not hold. However, this is for no
deep reason: for example, becaus®\V does not al-
low weakening on local signatures, the judgment A +

YT+ (o,y) > A{z—y}
Y:I'ko>Vz.A

(VR)

By induction we have[X],[T] + [(o,y)> A{z—y}].
Since((a,y) > Afz—y}] = Nolly[A], , {z—ny} =



of FOMY into FL sheds light on the meaning ®f and the ment Miller-Tiu-like logics with a minimum of changes.

relation betweerV andi. Additional directions for future work include exploring
Note thatZ’O)\Y is not necessarily useful by itself. Ei- algebraic theories possible in FL, such as that of capture-
ther definition rules FOA2Y) or equality rules FOA=Y) avoiding substitution; applying the Curry-Howard corre-

permitting case analysis are necessary for a useful metaspondence to obtain a dependent type theory with names;
logic. We have translations to similar extensions of FL and adding definitions (along the lines TOA*VY) and
and they pose little difficulty. The important insight is that structural induction principles to obtain a first-order FL-
FOMNY and FOX=Y use\-abstractions to ensure that the based metalogic for reasoning about abstract syntax with
distinct locally-scoped parameters @fcannot be unified,  binding. Higher-order syntax encodings either lack straight-
and FL-based extensions use freshness constraints forbidforward structural induction principles or require addi-
ding distinct any globally-scoped atoms from being unified. tional well-formedness constraints to exclude exotic terms,
whereas these problems do not arise for encodings via fresh-
8 Conclusions ness,l, abstraction, and swapping, since they are essen-
tially first-order [4, 6]; thus, we believe a metalogic based

. . on FL would be very powerful and useful.
This paper has presented Fresh Logic as a modular ex- yp

tension of a conventional first-order sequent calculus with
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