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Modelling biological features
SPA designed for modelling computing systems do not readily capture
some of the features of biological systems.

Particular problems are encountered with:

I stoichiometry — the multiplicity in which an entity participates in a
reaction;

I general kinetic laws — while mass action is widely used other
kinetics are also commonly employed.

I multiway reactions — although thermodynamics arguments can be
made that there are never more than two reagents involved in a
reaction, in practice it is often useful to model at a more abstract
level.
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Illustration
Consider a conversion of a substrate S, with stoichiometry 2, to a product
P which is under the influence of an enzyme E, i.e.

2S
E
−→ P

In process algebras such as the stochastic π-calculus this must be
broken up into a sequence of unary and binary reactions, e.g.:

S + S −→ 2S 2S + E −→ 2S :E 2S :E −→ P :E P :E −→ P + E

The problems with this are various:

I The number of “states” of the system is significantly increased
which has implications for computational efficiency/tractability.

I Different possible decompositions.

I Rates must be found for all the intermediate steps.
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Motivation

Bio-PEPA has been designed to overcome these challenges:

I Unique rates are associated with each reaction (action) type,
separately from the specification of the logical behaviour. These
rates may be specified by functions.

I The representation of an action within a component (species)
records the stoichiometry of that entity with respect to that reaction.
The role of the entity is also distinguished.

I Multi-way reactions are possible in Bio-PEPA since it has CSP-style
synchronisation rather than CCS-style synchronisation. Thus a
multi-way reaction is abstracted as a multi-syncronisation.

Hillston and Ciocchetta. LFCS, University of Edinburgh.

Calculi for Biological Systems, Part 2



Introduction and motivation Bio-PEPA Examples Conclusions

Motivation

Bio-PEPA has been designed to overcome these challenges:

I Unique rates are associated with each reaction (action) type,
separately from the specification of the logical behaviour. These
rates may be specified by functions.

I The representation of an action within a component (species)
records the stoichiometry of that entity with respect to that reaction.
The role of the entity is also distinguished.

I Multi-way reactions are possible in Bio-PEPA since it has CSP-style
synchronisation rather than CCS-style synchronisation. Thus a
multi-way reaction is abstracted as a multi-syncronisation.

Hillston and Ciocchetta. LFCS, University of Edinburgh.

Calculi for Biological Systems, Part 2



Introduction and motivation Bio-PEPA Examples Conclusions

Motivation

Bio-PEPA has been designed to overcome these challenges:

I Unique rates are associated with each reaction (action) type,
separately from the specification of the logical behaviour. These
rates may be specified by functions.

I The representation of an action within a component (species)
records the stoichiometry of that entity with respect to that reaction.
The role of the entity is also distinguished.

I Multi-way reactions are possible in Bio-PEPA since it has CSP-style
synchronisation rather than CCS-style synchronisation. Thus a
multi-way reaction is abstracted as a multi-syncronisation.

Hillston and Ciocchetta. LFCS, University of Edinburgh.

Calculi for Biological Systems, Part 2



Introduction and motivation Bio-PEPA Examples Conclusions

Motivation

Bio-PEPA has been designed to overcome these challenges:

I Unique rates are associated with each reaction (action) type,
separately from the specification of the logical behaviour. These
rates may be specified by functions.

I The representation of an action within a component (species)
records the stoichiometry of that entity with respect to that reaction.
The role of the entity is also distinguished.

I Multi-way reactions are possible in Bio-PEPA since it has CSP-style
synchronisation rather than CCS-style synchronisation. Thus a
multi-way reaction is abstracted as a multi-syncronisation.

Hillston and Ciocchetta. LFCS, University of Edinburgh.

Calculi for Biological Systems, Part 2



Introduction and motivation Bio-PEPA Examples Conclusions

Reagent-centric view [CGH04]

I Bio-PEPA refers to the reagent-centric view modelling style.

I Models are based on discrete levels of concentration within a
species.

I The granularity of the system is defined in terms of the step size h
of the concentration intervals.

I We define the same step size h for all the species, with few
exceptions. This follows from the law of conservation of mass.

I If li is the concentration level for the species i, the concentration is
taken to be xi = li × h.
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Reagent-centric modelling (2)

Role Impact on reaction rate Impact on reagent
Reactant positive impact, e.g. proportional to

current concentration
decreases level

Product no impact, except at saturation increases level

Enzyme positive impact, e.g. proportional to
current concentration

level unchanged

Inhibitor negative impact, e.g. inversely pro-
portional to current concentration

level unchanged
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Reagent-centric view (3)

I The rate of a transition is consistent with the granularity.

I In a Bio-PEPA model the granularity must be specified by the
modeller as the expected range of concentration values and the
number of levels considered.

I The form of the CTMC derived from Bio-PEPA, which we term the
CTMC with levels, will depend on the granularity of the model.

I As the granularity tends to zero the behaviour of this CTMC with
levels tends to the behaviour of the ODEs [CDHC08].
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Bio-PEPA reagent-centric example

BA

C

b_a

c_b

ab_c

c_a

A def
= (ab c, 1)↓A + (b a, 1)↑A
+ (c a, 1)↑A

B def
= (ab c, 1)↓B + (b a, 1)↓B
+ (c b , 1)↑B

C def
= (c a, 1)↓C + (c b , 1)↓C
+ (ab c, 1)↑C(

A (lA0) BC
{ab c,b a}

B(lB0)
)
BC

{ab c,c a,c b}
C(lC0)
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State representation

I The state of the system at any time consists of the local states of
each of its sequential/species components.

I The local states of components are quantitative rather than
functional, i.e. distinct states of the species are represented as
distinct components, not derivatives of a single component.

I A component varying its state corresponds to it varying its
concentration level.

I This is captured by an integer parameter associated with the
species and the effect of a reaction is to vary that parameter by a
number of levels corresponding to the stoichiometry of this species
in the reaction.
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The syntax and semantics

The syntax

Sequential (species) component

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)
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The syntax and semantics

The Bio-PEPA system

A Bio-PEPA system P is a 6-tuple 〈V,N ,K ,FR ,Comp,P〉, where:

I V is the set of compartments;

I N is the set of quantities describing each species (step size,
number of levels, location, ...);

I K is the set of parameter definitions;

I FR is the set of functional rate definitions;

I Comp is the set of definitions of sequential components;

I P is the model component describing the system.
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The syntax and semantics

Semantics

The semantics of Bio-PEPA is defined in terms of an operational
semantics.
We define two relations over the processes:

1. capability relation, that supports the derivation of quantitative
information;

2. stochastic relation, that gives us the rates associated with each
action.
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The syntax and semantics

Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])
−−−−−−−−−−→cS(l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])
−−−−−−−−−−→cS(l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])
−−−−−−−−−−→cS(l) 0 ≤ l ≤ N

with op = �,⊕, or 	
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The syntax and semantics

Semantics: cooperation rules

coop1
P1

(α,v)
−−−→cP′1

P1 BC
L

P2
(α,v)
−−−→cP′1 BC

L
P2

with α < L

coop2
P2

(α,v)
−−−→cP′2

P1 BC
L

P2
(α,v)
−−−→cP1 BC

L
P′2

with α < L

coopFinal
P1

(α,v1)
−−−−→cP′1 P2

(α,v2)
−−−−→cP′2

P1 BC
L

P2
(α,v1::v2)
−−−−−−→cP′1 BC

L
P′2

with α ∈ L
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The syntax and semantics

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation
−→S ⊆ P × Γ × P, with γ ∈ Γ := (α, r) and r ∈ R+.

The relation is defined in terms of the previous one:

Final
P

(αj ,v)
−−−−→cP′

〈V,N ,K ,FR ,Comp,P〉
(αj ,rαj )
−−−−−→S〈V,N ,K ,FR ,Comp,P′〉

rαj represents the parameter of an exponential distribution and the
dynamic behaviour is determined by a race condition.
The rate rαj is defined as fαj (v ,N)/h.
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The syntax and semantics

The abstraction

I Each species i is described by a Bio-PEPA component Ci .

I Each reaction j is associated with an action type αj and its dynamics
is described by a specific function fαj .

Given a reaction j, all the species/components cooperate together
along the action type αj and consequently, reactants decrease their
levels, while products increase them. All the reactions are
abstracted by cooperation.

I Compartments are static and represented by names indicating the
location of species.

The species components are then composed together to describe the
behaviour of the system.
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Some simple examples

Example: Michaelis-Menten

The reaction S
E
−→P represents the enzymatic reaction from the substrate

S to the product P with enzyme E.

The dynamics is described by the law v×E×S
(K+S) .

S def
= (α, 1)↓S

E def
= (α, 1) ⊕ E

P def
= (α, 1)↑P

(S(lS0) BC
{α}

E(lE0)) BC
{α}

P(lP0)
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Some simple examples

Example: Competitive Inhibition

Binding of the inhibitor to the enzyme prevents binding of the
substrate and vice versa.

EI ←→ S + E + I ←→ SE −→ P + E

Under QSSA (the intermediate species SE and EI are constant)
we can approximate the reactions above by a unique reaction

S
E,I:fI
−−−−→P with rate fI =

w × S × E

S + KM(1 + I
KI

)

where w: turnover number (catalytic constant),
KM : Michaelis constant and KI: inhibition constant.
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Some simple examples

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

S = (α, 1)↓S P = (α, 1)↑P E = (α, 1) ⊕ E I = (α, 1) 	 I

The system is described by((
S(lS0) BC

{α}
E(lE0)

)
BC
{α}

I(lI0)
)
BC
{α}

P(lP0)

with functional rate
fα =

w × S × E

S + KM(1 + I
KI

)
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Equivalences

Equivalence relations

We are seeking to define a number of equivalence relations. for
BioPEPA — both those that are expected from the computer
science perspective and those that are useful from the biological
perspective.

From the computer science perspective we have defined an
isomorphism and a (strong) bisimulation.

From the biological perspective. we are investigating the situations
in which biologists regard models or elements of models to be
equivalent, particularly when this is employed for model
simplification.
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Analysis

Analysis

A Bio-PEPA system is a formal, intermediate and compositional
representation of the system.

From it we can obtain
I a CTMC (with and without levels)
I a ODE system for simulation and other kinds of analysis
I a Gillespie model for stochastic simulation
I a PRISM model for model checking

Each of these kinds of analysis can be of help for studying different
aspects of the biological model. Moreover we are exploring how
they can be used in conjunction.
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Genetic network with negative feedback loop

The biological model
Consider a genetic network with negative feedback through
dimers.

mRNA  (M)
Degradation (3)

Protein (P)
Degradation (4)

Dimer protein (P2)

Dimerisation  (5− 5i)

Transcription  (1)

Translation  (2)
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Genetic network with negative feedback loop

Species and reactions

The biological entities are:
I the mRNA molecule (M),
I the protein in monomer form (P) and
I the protein in dimeric form (P2).

All the reactions are described by mass action kinetics with the
exception of the first reaction, that has an inhibition kinetics.
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Genetic network with negative feedback loop

Translation into Bio-PEPA

Definition of the list N

[M : NM , hM; P : NP , hP ; P2 : NP2, hP2]

Definition of functional rates

fα1 =
v

KM + P2
fα2 = fMA (k2) fα3 = fMA (k3) fα4 = fMA (k4)

fα5 = fMA (k5) fα5 Inv = fMA (k5 Inv )
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Genetic network with negative feedback loop

Translation into Bio-PEPA (cont.)

Definition of the system components

M = (α1,1) ↑ M + (α2,1) ⊕ M + (α3,1) ↓ M;
P = (α2,2) ↑ P + (α4,1) ↓ P + (α5,2) ↓ P + (α5 Inv ,2) ↑ P);
P2 = (α1,1) 	 P2 + (α5 Inv ,1) ↓ P2 + (α5,1) ↑ P2;
Res = (α3,1) � Res + (α4,1) � Res;
CF = (α1,1) � CF;

Definitions of the system

((((CF(1) BC
{α1}

M(0)) BC
{α2}

P(0)) BC
{α5 ,α5 Inv }

P2(0)) BC
{α3 ,α4}

Res(0)
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Genetic network with negative feedback loop

Analysis: the CTMC with levels
For 2 levels, the CTMC consists of 8 states and 18 transitions.

1

 

STATE 1 STATE 2 STATE 3 STATE 4 STATE 5

STATE 6
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STATE 8
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15 16

1

2

3

4

5

6

 7
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18
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17

States are (CF(l1),M(l2),P(l3),P2(l4),RES(l5)), with levels l1 . . . l5.
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Genetic network with negative feedback loop

Analysis: derivation of the ODE system

The stoichiometry matrix D associated with the system is

α1 α2 α3 α4 α5 α5 Inv

CF 0 0 0 0 0 0 xCF

Res 0 0 0 0 0 0 xRes

M +1 0 -1 0 0 0 x1

P 0 +1 0 -1 -2 +2 x2

P2 0 0 0 0 +1 -1 x3

The kinetic law vector is

wT = (
v × xCF

KM + x3
; k2 × x1; k3 × x1; k4 × x2; k5 × x2

2; k5 Inv × x3)
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Genetic network with negative feedback loop

Analysis: derivation of ODEs (cont.)

The system of ODEs is obtained as dx̄
dt = D × w:

dx1

dt
=

v × 1
KM + x3

− k3 × x1

dx2

dt
= k2 × x1 − k4 × x2 − 2 × k5 × x2

2 + 2 × k5 Inv × x3

dx2

dt
= k5 × x2

2 − k5 Inv × x3
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Genetic network with negative feedback loop

Analysis: stochastic simulation

The derivation of the Gillespie model is made by creating
molecules corresponding to each species and defining the
possible reactions with appropriate adjustment of kinetic rates.
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Genetic network with negative feedback loop

Simulation results

ODE results
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Genetic network with negative feedback loop

Simulation results

Stochastic simulation results (10 runs)
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Genetic network with negative feedback loop

PRISM model

Each species is represented as a PRISM module.

For example, the protein is represented as:

module p
p: [0..Np] init 0;
[Translation] p < Np → (p′ = p + 1);
[DegradationP] p > 0→ (p′ = p − 1);
[Dimerization] p > 1→ (p′ = p − 2);
[DimerizationInv] p < (Np − 1)→ (p′ = p + 2);
endmodule
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Genetic network with negative feedback loop

PRISM model (cont.)

An additional module is needed to capture the kinetic rates.

module Functional rates
dummy: bool init true;
[Transcription] m < Nm → (v/(K + p2 ∗ hp2) ∗ hp2) : (dummy′ = dummy);
[Translation] m > 0→ (k2 ∗m ∗ hm/hm) : (dummy′ = dummy);
[DegradationmRNA ] m > 0→ (k3 ∗m ∗ hm/hm) : (dummy′ = dummy);
[DegradationP] p > 0→ (k4 ∗ p ∗ hp/hp) : (dummy′ = dummy);
[Dimerization] p > 1→ (k5 ∗ p ∗ hp ∗ p ∗ hp/hp)(dummy′ = dummy);
[DimerizationInv] p2 > 0→ (k5 Inv ∗ p2 ∗ hp2/hp2) : (dummy′ = dummy);
endmodule
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Genetic network with negative feedback loop

PRISM analysis

I Proportion of monomer P in total P (in terms of levels).

We need to define a reward structure in the PRISM file as:

rewards
true : p

(p+p2) ;
endrewards

We can ask for the proportion of monomer P by using the query:

R =?[I = T ]

I Probability that P is at level i at time T

P =?[trueU[T ,T ]p = i]
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Genetic network with negative feedback loop

PRISM results

monomer frequency
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Genetic network with negative feedback loop

PRISM results

Probability monomer protein is at high level over time
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Goldbeter’s model

Goldbeter’s model [Goldbeter 91]

I Goldbeter’s model describes the activity of the cyclin in the cell
cycle.

I The cyclin promotes the activation of a cdk (cdc2) which in turn
activates a cyclin protease.

I This protease promotes cyclin degradation.

I This leads to a negative feedback loop.

I In the model most of the kinetic laws are of kind Michaelis-Menten
and this can be reflected in the Bio-PEPA model.
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Goldbeter’s model

The biological model

CYCLIN (C)

cdc2 inactive (M’)  

  Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5
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Goldbeter’s model

The biological model (2)

There are three different biological species involved:

I cyclin, the protein protagonist of the cycle, C;

I cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form
(i.e. phosphorylated). The variables used to represent them are M
and M′, respectively;

I cyclin protease, in both active (i.e. phosphorylated) and inactive
form (i.e. dephosphorylated). The variable are X and X ′.
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Goldbeter’s model

Reactions

id desc. react. prod. mod. kinetic laws
R1 creation of cyclin - C - vi
R2 degradation of cyclin C - - kd × C
R3 activation of cdc2 kinase M′ M - C∗VM1

(Kc+C)
M′

(K1+M′)

R4 deactivation of cdc2 kinase M M′ - M×V2
(K2+M)

R5 activation of cyclin protease X ′ X M X ′×M×VM3
(K3+X ′)

R6 deactivation of cyclin protease X X ′ - X×V4
K4+X

R7 X triggered degradation of cyclin C - X C×vd×X
C+Kd

R1 and R2 have Mass-Action kinetics, whereas all others are
Michaelis-Menten.
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Goldbeter’s model

Translation into Bio-PEPA
Definition of the set N:

N = [Res : 1, 1; CF : 1, 1; C : hC ,Nc ; M : hM ,NM;
M′ : hM′ ,NM′ ; X : hX ,NX , ; X ′ : hX ′ ,NX ′ ]

Res and CF represent degradation and synthesis respectively.

Definition of functional rates (F ):

fα1 = fMA (vi); fα2 = fMA (kd);
fα4 = fMM(V2,K2); fα5 = fMM(V3,K3);
fα6 = fMM(V4,K4); fα7 = fMM(Vd ,Kd);

fα3 =
v1 × C
Kc + C

M′

K1 +M′
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Goldbeter’s model

The Bio-PEPA system (2)
Definition of species components (Comp):

C = (α1, 1)↑C + (α2, 1)↓C + (α3, 1) ⊕ C + (α7, 1)↓C;
M′ = (α3, 1)↓M′ + (α4, 1)↑M′;
M = (α3, 1)↑M + (α4, 1)↓M + (α5, 1) ⊕M;
X ′ = (α5, 1)↓X ′ + (α6, 1)↑X ′;
X = (α5, 1)↑X + (α6, 1)↓X + (α7, 1) ⊕ X ;
Res = (α2, 1) � Res; CF = (α1, 1) � CF ;

Definition of the model component (P):

C(l0C ) BC
{α3 }

M(l0M) BC
{α3 ,α4 }

M
′

(l0M′ ) BC
{α5 ,α7 }

X(l0X ) BC
{α5 ,α6 }

X
′

(l0X ′ )

BC
{α2 }

Deg(0) BC
{α1 }

CF(1)
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Goldbeter’s model

Analysis: CTMC with 2 levels
Assume two levels for each species and initially C, M and X present
(level 1) and the other elements not present (level 0).
The initial state is (lC (1), lM′ (0), lM(1), lX ′ (0), lX (1)).

(0,0,1,1,0)(0,1,0,1,0)

(0,1,0,0,1)(1,0,1,1,0)

(1,1,0,1,0) (0,0,1,0,1)

(1,0,1,0,1) (1,1,0,0,1)

4

1 2

3

5 6 9 10 11

12 13

14 15

16

7

17

8

22
21

20

19

18

23
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Goldbeter’s model

Analysis: ODEs
The stoichiometry matrix D:

R1 R2 R3 R4 R5 R6 R7
C +1 0 0 0 0 0 -1 xC

M′ 0 0 -1 +1 0 0 0 xM′

M 0 0 +1 -1 0 0 0 xM

X ′ 0 0 0 0 -1 +1 0 xX ′

X 0 0 0 0 +1 -1 0 xX

The vector that contains the kinetic laws is:

w =
(
vi × 1, kd × xC ,

VM1 × xC

Kc + xC

xM′

(K1 + xM′ )
,

V2 × xM

(K2 + xM)
,

VM3 × xM × xX ′

(K3 + xX ′ )
,

V4 × xX

(K4 + xX )
,

vd × xC × xX

(Kd + xC )

)
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Goldbeter’s model

Analysis: ODEs (2)
The system of ODEs is obtained as dx̄

dt = D × w, where
x̄T =: (xC , xM′ , xM , xX ′ , xX ) is the vector of the species variables:

dxC

dt
= vi × 1 − kd × xC −

vd × xC × xX

(Kd + xC )
dxM′

dt
= −

VM1 × xC

Kc + xC

xM′

(K1 + xM′ )
+

V2 × xM

(K2 + xM)
dxM

dt
= +

VM1 × xC

Kc + xC

xM′

(K1 + xM′ )
−

V2 × xM

(K2 + xM)
dxX ′

dt
= −

VM3 × xM × xX ′

(K3 + xX ′ )
+

V4 × xX

(K4 + xX )
dxX

dt
=

VM3 × xM × xX ′

(K3 + xX ′ )
−

V4 × xX

(K4 + xX )
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Goldbeter’s model

ODE results

K1 = K2 = K3 = K4 = 0.02µM
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Goldbeter’s model

ODE results

K1 = K2 = K3 = K4 = 40µM
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Goldbeter’s model

Extension of the Goldbeter’s model

I Gardner et al. [Gardner 98] proposed an extension of the
Goldbeter’s model in order to represent a control mechanism for the
cell division cycle.

I They introduce a protein that binds to and inhibits one of the
proteins involved in the cell division cycle.

I This influences the start and the stop of the cell division and
modulates the frequency of oscillations.

Several possible extensions were presented; we consider one of them.
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Goldbeter’s model

Schema of the extended model

 

  

Protease inactive (X’) Protease active (X)

R7

R6

cdc2 active (M)
R4

cdc2 inactive (M’)

CYCLIN (C)
R1

INHIBITOR−CYCLIN (IC)

INHIBITOR (I)
R11R10

R3

R5

R2

R8R9

R13

R12
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Goldbeter’s model

Extended Bio-PEPA system

C = · · · + (α8, 1)↓C + (α9, 1)↑C + (α12, 1)↑C;

...
...

Res = · · · + (α11, 1) � Res; CF = · · · + (α10, 1) � CF ;

I = (α8, 1)↓I + (α9, 1)↑I + (α10, 1)↑I + (α11, 1)↓I + (α13, 1)↑I;

IC = (α8, 1)↑IC + (α9, 1)↓IC + (α12, 1)↓IC + (α13, 1)↓IC;
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Goldbeter’s model

New functional rates

fα8 = vs ;
fα9 = fMA (d1);
fα10 = fMA (a1);
fα11 = fMA (a2);
fα12 = fMA (θ × d1);
fα13 = fMA (θ × kd)
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Goldbeter’s model

Complete Bio-PEPA system

C(l0C ) BC
{α3}

M(l0M) BC
{α3 ,α4}

M
′

(l0M′ ) BC{α5 ,α7}
X(l0X ) BC

{α5 ,α6}
X
′

(l0X ′ ) BC{α2}

Deg(0) BC
{α1}

CF(1)

BC
{α8 ,α9 ,α10 ,α11}

I(l0I) BC
{α8 ,α9 ,α12 ,α13}

IC(l0IC )
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Goldbeter’s model

New ODE results

a1 = a2 = 0.3 and vs = 0.6
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Goldbeter’s model

New ODE results

a1 = a2 = 0.7 and vs = 1.4
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Goldbeter’s model

New ODE results

a1 = a2 = 0.05 and vs = 0.1
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Conclusion: SPA for Systems Biology
Whilst the notation can be a challenge, the compositionality and
precise interpretation of process algebras make them attractive for
modelling biological signalling pathways.

Choices in the design of the SPA such as the form of
synchronisation which is incorporated has a strong influence on
the way in which systems can be modelled.

The inclusion of stochastic information about the duration of
actions/reactions creates a very natural mapping from SPA models
to stochastic simulations at the molecular models.

However, such molecular mappings typically generate state
spaces which are too large for other SPA analysis techniques.
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Conclusions: Bio-PEPA

Bio-PEPA is a modification of the process algebra PEPA for the
modelling and analysis of biochemical networks.

Bio-PEPA allows us to represent explicitly features of biological
networks, such as stoichiometry and general kinetic laws.

Moreover the reagent-centric, abstract style of modelling supports
an integrative approach in which several different approaches to
analysis may be applied to the same model.
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Conclusions: Abstract Modelling

Abstract modelling offers a compromise between the
individual-based and population-based views of systems which
biologists commonly take.

Moveover we can undertake additional analysis based on the
discretised population view.

The abstract Markovian models allow quantities of interest such as
“response times” to be expressed as probability distributions rather
than single estimates. This may allow better reflection of wet lab
data which also shows variability.
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Future directions

There are number of areas for on-going and future work. For
example:
I The definition of bisimulations and equivalences.
I The extent to which the process algebra compositional

structure can be exploited during model analysis, particularly
in conjunction with model checking techniques.

I The issue of coping with unknown and uncertain values in
experimental data.

I ...and many more...
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Thank you
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