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Abstract

Model-checking can provide valuable insight into the behaviour of biochemical systems, answering quantitative queries
which are more difficult to answer using stochastic simulation alone. However, model-checking is a computationally inten-
sive technique which can become infeasible if the system under consideration is too large. Moreover, the finite nature of the
state representation used means that a priori bounds must be set for the numbers of molecules of each species to be observed
in the system.

In this paper we present an approach which addresses these problems by using stochastic simulation and the PRISM
model checker in tandem. The stochastic simulation identifies reasonable bounds for molecular populations in the context of
the considered experiment. These bounds are used to parameterise the PRISM model and limit its state space. A simulation
pre-run identifies interesting time intervals on which model-checking should focus, if this information is not available from
experimental data.
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1 Introduction

Model-checking and stochastic simulation techniques have both been applied to the study
of biochemical systems, and both allow researchers to make predictions and test hypothe-
ses. The questions which they answer can be different and complementary.

The stochastic simulation approach allows modellers to analyse the time evolution of all
species composing a system at the same time. However, since one simulation run generates
a single trajectory out of all the possible behaviours of systems, usually average values
among several runs need to be considered to achieve the necessary level of confidence in
the results obtained.
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Probabilistic model-checking instead answers quantitative temporal queries by per-
forming an exhaustive exploration of all the possible paths through the system. Model-
checking requires both the model and the specification of the system under study to be for-
mally specified: this allows the user to detect possible errors in the model or the presence
of deadlock states, and to automatically verify whether or not relevant properties are satis-
fied by the model. For these reasons, when analysing biochemical systems, it is often more
desirable to perform model-checking than simulation. Unfortunately, model-checking has
one major problem, the state-space explosion: a system with too many states becomes
intractable and needs to be constrained.

The aim of the present work is to investigate how combined use of stochastic simu-
lation and model-checking can lead to a better understanding of biochemical systems. In
particular, we investigate how to exploit the knowledge acquired from the simulation to
make the model-checking feasible. Specifically, the simulation results are used to establish
reasonable lower and upper bounds for the molecule counts of the species involved. We
show with a simple example how, by using the bounds estimated by our approach, we are
able to substantially speed up the model-checking without introducing significant error.

We use the high-level modelling language Bio-PEPA [6,7], a timed process algebra
designed specifically for the description of biological phenomena and their analysis through
quantitative methods such as stochastic simulation and model-checking. Several alternative
representations can be automatically generated from a Bio-PEPA specification, allowing us
to perform different kinds of analyses on the same model. In particular, we consider here
two generated models: one suitable for stochastic simulation using Dizzy [17], the other
suitable for model-checking using PRISM [16].

The novel contribution offered by the present paper is the use of simulation and model-
checking conjoined in two ways. Firstly, we use simulation to bound the model-checking
problem and later we compare model-checking results obtained through both exact and
approximate probabilistic model-checking. The former method elaborates the full state-
space of the model and uses linear algebra to solve the underlying Markov chain. The latter
uses simulation to answer the model-checking problem, up to a satisfactory confidence
interval.

The rest of the paper is structured as follows. In Sect. 2 we discuss some motivations
of our work and we illustrate them by means of a simple example. Sect. 3 is devoted to
the description of the background. In Sect. 4 we present our approach and in the following
Sect. 5 we apply it to two biochemical networks. Some related work is reported in Sect. 6
and finally, some concluding remarks are presented in Sect. 7.

2 Motivation

Analysing models of biological processes via probabilistic model-checking has consider-
able appeal. As with stochastic simulation the answers which are returned from model-
checking give a thorough stochastic treatment of the small-scale phenomena which are of
greatest interest to computational biologists today. However, in contrast to a simulation run
which generates just one of many possible trajectories, the analysis results computed by
probabilistic model-checking give a definitive answer. That is, it is not necessary to re-run
the analysis repeatedly and compute ensemble averages of the results. Further, by build-
ing a reward structure over the model it is possible to express complex analysis questions
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and evaluate these through model-checking. This form of analysis has the power to expose
of the system under study significant temporal behaviour which could not be appreciated
from simple inspection of the species time-series generated by simulation runs (see for
example [9]).

Set against this, the probabilistic model-checking approach faces the well-known prob-
lem of state-space explosion where, as the complexity of the system under study increases,
there is an exponential growth in the state-space of the underlying model. The use of an
exact discrete-state representation of the state-space of the model restricts the use of prob-
abilistic model-checking to the analysis of problems where all of the species are available
in low copy numbers. Multi-scale models (where some species are in plentiful supply and
others have very low molecule counts) generally give rise to discrete-state problems whose
numerical solution is infeasible.

Even in the case where all of the chemical species involved are present only in low copy
numbers it is still necessary to place a bound on the maximum molecule count which each
species will attain. For models involving biochemical processes such as synthesis, no such
bounds can be established. In the present paper we describe the application of stochastic
simulation to the problem of bounding discrete-state models allowing us to convert an
unbounded model-checking problem into a bounded one.

To illustrate the problem which we are discussing here consider a simple model of the
Michaelis-Menten reactions involving four chemical species: an enzyme E, a substrate
S , a compound E:S and a product P. The species react over three reaction channels: r1

converting E and S to E:S, the backward reaction r−1 taking E:S to E and S , and the
reaction r2 converting the compound E:S into product P and releasing the enzyme E. The
reaction rates are governed by kinetic laws involving rate constants (k1, k−1 and k2) and the
molecular counts of the species involved.

The chemical equation describing Michaelis-Menten reactions is

E + S
k1

GGGGGBFGGGGG

k−1

E:S
k2
GGGAE + P .

In the Bio-PEPA language the notation fri is used to indicate the rate associated with the
reaction ri.

fr1 = k1 × E × S
fr−1 = k−1 × E:S
fr2 = k2 × E:S

When initiated with low molecule counts (E, S ,E:S, P) = (5, 5, 0, 0) this model gives
rise to a state space of very modest size, as indicated in Fig. 1. Starting in the state (5, 5, 0, 0)
each of the four species E, S , E:S and P can achieve molecular counts in the bounded
integer range 0 to 5. Of the 6 × 6 × 6 × 6 = 1296 potential states in the full product state
space of this model only 21 of these are actually reachable by any sequence of reactions.
One reachable state, (5, 0, 0, 5), is a “deadlock” state with no outgoing transitions. Reaction
r1 is prevented because S = 0 and reactions r−1 and r2 are prevented because E:S = 0.

However, if we consider an extension of the model with an additional reaction r0 which
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(5, 5, 0, 0)
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Fig. 1. Discrete state-space representation of the Michaelis-Menten reactions.

synthesises the compound E:S

∅
k0

GGGGGGAE:S

with the synthesis occurring at a constant rate fr0 = k0 then this additional reaction channel
changes the analysis of the model dramatically. The state which was previously a deadlock
state now admits an r0 reaction which leads it to a previously unreachable state, (5, 0, 1, 5).
The reactions r−1, r1 and r2 can occur in states reachable from that one as shown in Fig. 2.

(5, 0, 0, 5) (6, 1, 0, 5)

(5, 0, 1, 5) (6, 0, 0, 6)r0

r1r
−1

r2

Fig. 2. Synthesis of the compound adds further states.

Each of these states, and every other state, now allows an r0 reaction, taking them to
previously unreachable states each of which allows r0 and reactions r−1, r1 and r2 subse-
quent to that. The effect of introducing this single synthesis reaction is that we now cannot
find any upper bound N such that the molecular species counts are guaranteed to lie in
the bounded integer range 0 to N. In general, if we are unable to bound the reachable
state-space then we cannot analyse our model by probabilistic model-checking.

Here we seek to bring the unbounded state-space back within bounds by exploiting the
following observations.

(i) The generation of the derivation graph of the underlying state-space does not take
into account the numerical values assigned to the rate constants, and the propensity
functions which depend on those. This means that the derivation graph may include
many states which the system is almost sure not to reach within a particular time
bound.

(ii) Most chemical systems involve several widely varying time scales, so such systems
are nearly always stiff [18]. A consequence of this is that the first passage time to
many states is likely to be long and truncation of the state-space using a time-bounded
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reachability metric is likely to be productive.

(iii) Many of the logical formulae which we wish to check involve reaching within a fixed
time bound model states which satisfy a given predicate.

(iv) Stochastic simulation methods such as Gillespie’s Direct Method [8] generate exact
stochastic simulations of trajectories from the initial state to states reachable within a
given time bound.

3 Background

The context of application we consider is that of biochemical networks. A biochemical
network is composed of n species which interact through m reactions; the dynamics of
reaction j is described by a kinetic law f j. The quantitative behaviour of a biochemical
network depends on the initial values of the involved species and on the kinetic parameters.

In the following, we distinguish between structurally bounded and structurally un-
bounded biochemical networks. A biochemical network is (structurally) bounded if for
each species S i (i ∈ {1, . . . , n}) there exists a value Maxi ∈ N such that Xi(t) < Maxi ∀t,
where Xi(t) is the amount of species i at time t. The values Maxi for a generic biochemical
network, if they exist, depend on the kind of reactions involved, on their kinetic laws and
constants, and on the initial state of the system. If, instead, the amount of one or more
species has the potential to grow without bound, the network is structurally unbounded.

If we assume a finite number of molecules for each species in the initial state, and
we do not consider reactions which can increase the amount of any species, then we have
structurally bounded networks. If instead, we consider synthesis reactions (e.g. ∅ → A,
C → C + A) or arbitrary split reactions, we have structurally unbounded networks. In
many cases a structurally unbounded network may have a pragmatic bound because of
the quantitative relations between the molecules and the reactions composing the network.
Specifically, even though some synthesis reactions are present, the average value of each
species can be bounded.

Note that, in the real world, biochemical networks are generally bounded: degrada-
tion, for instance, is an important mechanism cells use to avoid an uncontrolled increase of
molecules. However, structurally unbounded networks are interesting because an anoma-
lous behaviour of some biological entity could trigger such an uncontrolled growth. More-
over, biological models are often limited to particular sub-systems, in which the bounding
reaction might not be included.

3.1 Bio-PEPA

The Bio-PEPA language [7,6] allows us to explicitly represent some features of biochem-
ical models, such as the stoichiometry of reactions and the role of each species in a given
reaction, and allows the definition of general kinetic laws. Bio-PEPA models can be anal-
ysed by different techniques (stochastic simulation, analysis based on ODEs, numerical so-
lution of the continuous-time Markov chain (CTMC), and probabilistic model-checking),
since the mappings of Bio-PEPA models into specifications for those approaches have been
defined [6].

The language is based on discrete levels of parameterised species: each component
represents a species and its parameter may be interpreted as the number of molecules or

5



Ciocchetta et al

discrete levels of concentration depending on the type of analysis to be applied. Parametric
levels are considered for the definition of the transition system and for the derivation of a
CTMC whose states represent the concentration levels of the species.

The syntax of Bio-PEPA is defined as:

S ::= (α, κ) op S | S + S | C P ::= P BC
L

P | S (l)

where op = ↓ | ↑ | ⊕ | 	 | �.
The component S is called a sequential component (or species component) and rep-

resents the species whereas the component P, called a model component, describes the
system and the interactions among components. The parameter l ∈ N represents the dis-
crete level of concentration. The prefix term (α, κ) op S contains information about the role
of the species in the reaction associated with the action type α: κ is the stoichiometry co-
efficient of the species and the prefix combinator “op” represents the role of the element in
the reaction. Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor
and � a generic modifier. The operator “+” expresses the choice between possible actions
and the constant C is defined by an equation C

def
= S . Finally, the process P BC

L
Q denotes

the cooperation between components: the set L determines those activities on which the
operands are forced to synchronise.

In order to specify a model in Bio-PEPA, in addition to the definition of the species
and model components, we need to define a set of functional rates F expressing the kinetic
laws of the reactions, a set of constant parameters K and the compartment size (in the set
V). For discrete state space analysis the behaviour of the system is defined in terms of
an operational semantics. The rules are reported in [6]. In the following we indicate a
Bio-PEPA model withM.

The Bio-PEPA language is supported by software tools which automatically process
Bio-PEPA models and generate other representations in forms suitable for simulation and
model-checking. The generated simulation model can be executed using the Dizzy stochas-
tic simulator [17]. The representation which is used for discrete state-space generation and
analysis by numerical solution of the underlying CTMC is expressed in the reactive mod-
ules language supported by the PRISM model-checker. In addition the Bio-PEPA tools
generate reward structures and common CSL formulae used in model-checking.

In this paper we consider only numbers of molecules, therefore the CTMCs obtained
from our Bio-PEPA models are in terms of number of molecules as well.

3.2 Model Analysis

Both stochastic simulation and the probabilistic model-checking that we consider are based
on an underlying mathematical model which is a CTMC. A continuous-time Markov chain
is a discrete-state process whose evolution is governed by exponential distributions, giving
the stochastic process the memoryless or Markovian property.

Gillespie’s stochastic simulation algorithm [8] is a widely-used method for the simu-
lation of biochemical systems. It applies to homogeneous, well-stirred systems in thermal
equilibrium and constant volume. Broadly speaking, the goal is to describe the evolution
of the system X(t), described in terms of the number of elements of each species, starting
from an initial state.
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PRISM [16] is a probabilistic model checker, which can be used to check properties
of discrete-time Markov chains and Markov decision processes, in addition to CTMCs.
It has been used to analyse systems from a wide range of application domains. Models
are described using the state-based PRISM language and for a CTMC model it is possible
to specify quantitative properties of the system using a temporal logic, called CSL [1,2]
(Continuous Stochastic Logic).

The PRISM language is composed of modules and variables. A model is composed of
a number of modules which can interact with each other. From a Bio-PEPA model there
will be one module for each species. A module contains a number of local variables. The
values of these variables at any given time constitute the state of the module. Such a variable
will be used to record the number of molecules which are currently present in the system.
The global state of the whole model is determined by the local state of all modules. This
corresponds to X(t) in the stochastic simulation. The behaviour of each module is described
by a set of guarded commands. Each command describes a transition which the module
can make if the guard is true. A command includes an update which gives new values
to the variables. In the mapping from a Bio-PEPA model the transitions correspond to
the activities of the Bio-PEPA model and the updates take the stoichiometry into account.
Transition rates are specified in an auxiliary module which defines the functional rates
corresponding to all the reactions.

The well-formed formulae of CSL are made up of state formulae φ and path formulae
ψ. The syntax of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= X φ | φ UI φ | φ U φ

Here a is an atomic proposition, ./ ∈ {<,≤, >,≥ } is a relational parameter, p ∈ [0, 1] is
a probability, and I is an interval of R+. The operator P./p[ψ] is used to express transient
properties (i.e. dependent on time) whereas the operator S./p[φ] is used to express steady
state properties (i.e. hold in the long run). The operators X and U are used to express
neXt and Until properties, respectively. Time-bounded Until formulae UI are indexed by
an interval I. Derived logical operators such as implication (⇒) can be encoded in the usual
way.

3.3 Model-checking with PRISM

PRISM [16] includes support for the specification and analysis of properties based on re-
wards: real values are associated with certain states or transitions of the model. In this
way it is possible to reason about various quantitative measures such as “expected number
of processes/proteins” or “expected number of reactions”. The PRISM reward language
allows the expression of both instantaneous and cumulative rewards.

PRISM supports both exact and approximate probabilistic model-checking (in the style
of the APMC tool [12,13]). In approximate model-checking Monte-Carlo simulation is
used together with the theory of randomised approximation schemes to give accurate ap-
proximations of satisfaction probabilities. Properties of large discrete-state systems can be
checked using very little memory but in practice the run-times of such simulations can be
very long. In our experience a simulation pre-run followed by exact probabilistic model-
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checking is less costly than computing the same results using approximate model-checking
alone. We will compare the results obtained from the two methods.

4 Estimating Lower and Upper Bounds on Molecules

As mentioned above, from a Bio-PEPA system M we can generate a Dizzy model for
stochastic simulation and a PRISM model for model-checking. The initial amount of each
species, stoichiometric information and the kinetic laws with the associated parameters are
needed for the simulation model. This information can be collected fromM. In addition,
the lower and upper bounds for each species are also needed in the PRISM model in order
to build a finite CTMC and, hence, to make the analysis by means of CTMC feasible.
Especially in the case of unbounded networks it is essential to define an upper bound that
makes the analysis feasible but still is able to capture the behaviours of interest of the
system.

The main issue we investigate in this work is: how to specify the minimum and max-
imum amount of each involved species? In principle, in some networks, bounds on the
number of molecules can be obtained from pre-existing biological knowledge about the
system and from experimental data. However, this information is often incomplete, we
could have only little pre-existing knowledge of the (normal and anomalous) behaviour of
the system and there can be a high variability among different experiments. In these cases
the derivation of the bounds is particularly hard to face. Furthermore, the bound values are
tightly dependent on the initial conditions and on the parameter values; since wet experi-
ments are generally time-consuming and costly, assuming that such bounds are known for
each relevant parameter set is not realistic.

Even in the complete absence of experimental data it is possible for a structurally
bounded network to derive theoretically both lower and upper bounds for the number of
molecules. For instance, in the simple case with stoichiometry equal to one and no arbi-
trary split of molecules/complexes, the lower bound can be fixed to 0, while an upper bound
is given by the sum of the initial amount of each species.

However, in general, for real life complex systems, it is hard to derive this information
and, depending on the relative rates of the reactions, the theoretical bounds could be prac-
tically unreachable. Unfortunately, bounds calculated in this way are very loose and the
system is almost always intractable for model-checking if these bounds are used. Further-
more, when unbounded networks are considered it is not even possible to derive these loose
theoretical bounds.

Here we use stochastic simulation to estimate the minimum and maximum number of
molecules for each species. We run a number of simulation experiments and use the output
results as a rule of thumb for selecting lower and upper bounds for model-checking. The
number of simulation runs should be chosen depending on the variability of the specific
system under study. Due to the nature of stochastic simulation, the more simulation exper-
iments we perform, the higher will be our confidence in the derived bounds. This approach
is the sole way of deriving bounds if the total number of molecules present in the system
can increase compared to the initial state.

In the case of structurally bounded networks, the species can assume values between a
minimum and a maximum value. From the simulation results, we can derive an estimate of
the maximum value for each species S i as Maxi = max{X j

i (t), j = 1, . . . ,Nruns, t ∈ [0,T ]},
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where X j
i (t) is the amount of the species i, in the simulation j at time t, Nruns is the number

of simulation runs and T is the simulation stop-time, which depends on the specific network
and is usually defined according to experimental data or set to some time of interest. A
similar approach is used to derive the minimum value Mini.

In structurally unbounded networks it is possible that a species does not have an upper
bound on the number of molecules on the long run. However here we are interested in the
behaviour of the system until a fixed time T of interest and therefore we consider the max-
imum value for each species in the interval [0,T ]. By considering the simulation results,
we can derive an estimate of the maximum and of the minimum value as before. It is worth
noting that, by this approach, we impose some bounds on systems which are not bounded.
As a consequence, we can only verify time-bounded formulae over the interval [0,T ]. In
practice this is not a severe restriction because almost all of the formulae which we use are
time-bounded Until formulae.

A final observation is about the time interval [0,T ]. In our experience transient prop-
erties (i.e. dependent on time) are of greatest interest to biologists, not steady-state be-
haviour. Generally, the time bound considered is the one used in the experimental work.
When analysing models, therefore, we are interested in checking properties within that time
bound, as these can be validated against the available experimental data. However, when
experimental data is not available or is partial or incomplete, the time bound needs to be
arbitrarily defined. Since checking properties can be very time-consuming for models rep-
resenting real life systems, it is desirable to focus on the shortest time interval which allows
us to capture the interesting behaviour. For example, if a steady state exists, it is pointless to
consider a time longer than the one at which the steady state is reached. On the other hand,
one might not be interested in the very first time steps. Again, the time-series generated
by a simulation pre-run can provide a good estimate of the time interval to choose for the
verification of transient properties.

5 Application and Results

We consider here two simple models in order to illustrate our approach, to show the com-
putational advantage of using the estimated bounds in model-checking, and to discuss the
error which is introduced by truncating the state space. These models are abstract represen-
tations, under different assumptions, of a general genetic network with a negative feedback.
An example of this kind of network is the control circuit for the λ repressor protein CI of
λ-phage in E.Coli, modelled in [3].

A schema of the general network is reported in Fig. 3. We have four biochemical entities
that interact with each other through six reactions. The biochemical entities are the DNA
(D), the mRNA (M), a protein in monomeric form (P) and a protein in dimeric form (P2).
The first reaction in the network is the transcription of the mRNA from the DNA. The
protein in dimeric form, which is the final product of the network, has an inhibitory effect
on the transcription process. The second reaction is the translation of the protein from the
mRNA. Reactions degradation M and degradation P represent the possible degradation of
mRNA and of the protein, respectively. Finally, dimerization and monomerization are the
protein dimerization and its inverse reaction. All reactions are described by mass-action
kinetics, apart from transcription, which follows Michaelis-Menten kinetics.

The network is structurally unbounded, since both transcription and translation lead
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DNA (D)

degradation _P 

degradation_M  
 mRNA (M)

Protein (P)

 Dimer Protein (P2)

    transcription  

  translation  

 dimerization monomerization

Fig. 3. Genetic network model.

to the creation of new molecules. However, the two degradation reactions and the tran-
scription inhibition by means of the dimeric protein have a regulatory effect on the protein
synthesis and therefore, under some conditions, all the species reach a finite average value.

Our two models represent the network described above with two different sets of pa-
rameters and a different assumption on the degradation of the protein. The set of parameters
used in the first model makes the protein degradation fast enough to yield to a pragmatically
bounded system (on average). In the second model, instead, we consider different values
for some of the parameters and the complete absence of protein degradation. These as-
sumptions have a dramatic effect on the systems behaviour: it makes the amount of protein
increase indefinitely.

5.1 Specification of the Networks in Bio-PEPA

5.1.1 The Network with Protein Degradation (M1)
In the following we define the Bio-PEPA systemM1 representing the first network.

The set of species components and the model component are defined as follows.

D
def
= (transcription, 1) � D;

M
def
= (transcription, 1)↑M + (translation, 1) � M + (degradation M, 1)↓M;

P
def
= (translation, 1)↑P + (dimerization, 2)↓P + (monomerization, 2)↑P+

(degradation P, 1)↓P;

P2
def
= (transcription, 1) 	 P2 + (dimerization, 1)↑P2 + (monomerization, 1)↓P2;

Res
def
= (degradation M, 1) � Res + (degradation P, 1) � Res;

(((D(1) BC
{transcription}

M(0)) BC
{translation}

P(0)) BC
{dimerization,monomerization}

P2(0)) BC
{degradation M,degradation P}

Res(1)

All the species are in the same compartment, defined as vcell : 1 nM−1. Initially we
have one molecule of DNA and one molecule of the generic modifier Res. We omit the
information about levels, since in this work we consider the molecular level, as usual in
stochastic simulation. The set of functional rates FR and stochastic parameters K are re-
ported below.
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ftranscription =
v × D

KM + P2
; ftranslation = k2 × M;

fdegradation M = k3 × M; fdegradation P = k4 × P;

fdimerization =
k5 × P × (P − 1)

2
; fmonomerization = k−5 × P2;

KM = 356 molecules; v = 2.19 s−1; k2 = 0.043 s−1;

k3 = 0.039 s−1; k4 = 0.0007 s−1;

k5 = 0.025 s−1; k−5 = 0.5 s−1 .

5.1.2 The Network Without Protein Degradation (M2)
The definition of the Bio-PEPA systemM2 representing the second network is very similar
to the case of the first network. Below we report only the parts of the specification ofM2

that differ fromM1. The changes concern the definition of the species components P and
Res (the term for protein degradation is removed), the elimination of the functional rate
fdegradation P (representing the kinetic law for the protein degradation), and some parameter
values in the set K .

P
def
= (translation, 1)↑P + (dimerization, 2)↓P + (monomerization, 2)↑P;

Res
def
= (degradation M, 1) � Res;

(((D(1) BC
{transcription}

M(0)) BC
{translation}

P(0)) BC
{dimerization,monomerization}

P2(0)) BC
{degradation M}

Res(1)

The new set of parameters K ′ is:

KM = 356 molecules; v = 2.19 s−1; k2 = 0.03 s−1;

k3 = 0.039 s−1; k5 = 0.06 s−1; k−5 = 0.5 s−1 .

With respect to M1, the rate of dimerization (k5) is increased, the rate of translation
(k2) is decreased, and k4 is removed as we assume that there is no protein degradation.

5.2 Simulation and Model-Checking

Here we apply our approach to both M1 and M2. Notice that since both describe an
unbounded network, it is not possible to calculate even loose theoretical bounds from the
initial conditions.

5.2.1 NetworkM1

We focus first on M1. We perform 1000 independent stochastic simulation runs using
Gillespie’s Direct Method [8]. The chosen number of runs is large enough to take into
account the variability of the system, but still makes the total simulation time reasonable
(in the order of minutes). We used T = 20000 s as a simulation stop-time: by that time the
system has reached a stable state.

The simulation results are reported in Fig. 4, which shows the average values obtained
over all the runs. As the figure shows, both the monomeric protein P and the dimeric protein
P2 rapidly increase until they reach levels which remain stable within the considered time
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bound.
This simple network is an interesting example because, despite being structurally un-

bounded, a stable behaviour is observed by looking at the average values of multiple runs:
the amount of all the species is not unbounded.

We can estimate the upper bounds for the amounts of each species as the maximum
values obtained in any run at any time instant,

MaxM = 5; MaxP = 33; MaxP2 = 18

and we can use these values in the PRISM model. The amounts of the other species, D and
Res, are not affected by the reactions in which they are involved and, therefore, they are
constant at value 1.

In this example, the lower bounds for all the interesting species are 0, since they are not
present at system initialisation.

In Fig. 4 we also report the expected values for the amounts of the interesting species
(M, P and P2) obtained by PRISM using the derived bounds. The results are in agree-
ment with the average values calculated from the simulation runs. These values have been
obtained by checking the instantaneous reward properties

RM
=?[I = t], RP

=?[I = t], RP2
=?[I = t]

varying the time t ∈ [0,T ], where M, P and P2 are reward structures associating with each
state the current number of molecules of each species. In the same Fig. 4 we consider
the standard deviation of the number of molecules for the PRISM model. Specifically, we
define reward structures associating with each state the square of the number of molecules
of each species and the standard deviation is then calculated as the square root of the vari-
ance E(Y)2 − E(Y2), where Y is the random variable representing a species in the network,
whereas E(Y) and E(Y2) indicate the expected values for the amount of the species Y and
for its square value.

In order to confirm the belief that the choice of the bounds is crucial for having the right
compromise between correctness and efficiency, we performed a few more experiments,
both with smaller and with bigger upper bounds. The result is that, if the selected bounds
are too low, the obtained behaviour is not in agreement with the average simulation result.
On the other hand, using bounds which are too high has the effect of dramatically increasing
the state space and, thus, it makes the model-checking much slower. For instance, the
verification of the next set of properties in a model where the bounds for the three species
are doubled is over 20 times slower, while verifying the previously-used CSL formulae
(with no increase in the bound to be reached to satisfy the formula) produces the very same
values reported in Fig. 5. All values are equal up to the fifth decimal digit at least. This
confirms that the bounds we have imposed do not alter the behaviour of the system.

The agreement of the stochastic simulation results and the expected values computed
by model-checking is a form of validation of our approach per se: it shows that we have not
introduced significant errors. As another form of validation of the derived bounds, we have
calculated the probabilities of reaching them at different time instants (P=?[true U≤t M =
5], P=?[true U≤t P = 33], and P=?[true U≤t P2 = 18]). The results, reported in Fig. 5,
provide a means for estimating the error which might have been introduced by bounding
the system.
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Fig. 4. Simulation, exact and approximate probabilistic model-checking results forM1: average number of molecules over
1000 simulation runs (thick lines), expected number of molecules at time t (points) and its standard deviation (thin dashed
lines), obtained by using reward structures in PRISM. We observe that the agreement between the three sets of results is
good.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  5000  10000  15000  20000

P
ro

ba
bi

lit
y

Time

M at max
P at max

P2 at max

Fig. 5. Model-checking results forM1: probability of each species reaching its upper bound.

In this case the state space truncation has almost no impact on the behaviour of the
system. However, it is worth mentioning that, in general, the effect of such truncation is
dependent on the nature of the specific system under study. Notably, the results obtained by
checking the last property shown can be used to refine the model, by increasing the bounds
in case the probability of them being reached is considered to be too high. When one is sat-
isfied with the resulting probabilities, PRISM can be used to evaluate other CSL formulae
on the defined model, in order to provide additional insight into the system behaviour.

13



Ciocchetta et al

We consider in the following a number of properties which can be automatically checked,
though for such a small example the behaviour of the system is simple and the model-
checking approach does not happen to be particularly meaningful. In the case of real life
systems with complex behaviour further specific properties could be verified.

As a first example we consider the cumulative reward property

R
〈react〉
=? [C ≤ t]

where 〈react〉 is a reaction name (e.g. “transcription”, “translation”, “degradation M”,
etc.), with which a transition reward is associated. These properties, analysed at different
time instants t ∈ [0,T ] return the expected number of occurrences of a reaction by that time
(see Fig. 6, where we have separated slow and fast reactions in two different graphs for the
sake of readability because of their very different scales).
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Fig. 6. Model-checking results forM1: expected number of occurrences of reactions by time t.

Fig. 7 shows the expected amounts of monomers (P) compared to the total amount of
proteins (P + P2) present at time t. Specifically, it refers to the formula Rratio

=? [I = t] where
“ratio” is a reward structure which associates the reward P

P+P2 with each state.
We point out that properties such as the ones just mentioned and many others (e.g. the

expected time at which a protein dimer is first produced, the probability of having more
dimers than monomers at some time t, etc.) can be evaluated in a probabilistically precise
manner by model-checking: all the user needs to do is to provide the model-checker with
the CSL specification of the desired property and wait for the definitive answer. On the
other hand, the analysis of these properties by simulation, if possible, requires the use of
reward-based simulation tools in which the user often needs to implement the reward func-
tions themselves; in addition, the answers regarding the satisfaction of properties obtained
by simulation could only be up to some confidence interval and, often, an extremely high
number of simulation runs would be required to achieve a satisfactory confidence.

In this example, we have checked all properties at time instants in the interval [0,T ].
However, as one can easily see from Fig. 4, the system reaches a stable behaviour much
before time T . In cases like this, and if the time required for model-checking experiments
is long, the number of experiments to run could be reduced by considering this further
information from the simulation results.

14



Ciocchetta et al

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

P
ro

ba
bi

lit
y

Time

P / (P + P2)

Fig. 7. Model-checking results forM1: expected ratio between protein monomers and total proteins at time t.

5.2.2 NetworkM2

We consider hereM2. The simulation results reported in Fig. 8 show that the system does
not reach a stable (average) state within the simulation time in which we are interested
(T = 20000s): since in the model there is no protein degradation, both the monomeric
protein P and the dimeric protein P2 increase without limit.
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Fig. 8. Simulation, exact and approximate probabilistic model-checking results forM2: average number of molecules over
1000 simulation runs (thick lines), expected number of molecules at time t (points) and its standard deviation (thin dashed
lines) obtained by using reward structures in PRISM. We observe that the agreement in all three cases is good but that
the strongest agreement is between the average simulation results and the probabilistic model-checking results. The results
obtained by approximate model-checking appear to indicate higher numbers of both monomers and dimers than the other
two methods.
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Again, we estimate the upper bounds for the amounts of each species as the maximum
values obtained in any run at any time instant up to the simulation stop-time,

MaxM = 5; MaxP = 51; MaxP2 = 64

and we use these values in the PRISM model. The amounts of D and Res are constant in
this case, too.

In Fig. 8 we report the expected values (and their standard deviation) of the amounts
of the interesting species obtained by PRISM, which are in agreement with the average
values calculated from the simulation runs. These values have been obtained by checking
the instantaneous reward properties

RM
=?[I = t], RP

=?[I = t], RP2
=?[I = t] .

Fig. 9 reports on the probabilities of reaching the upper bounds at different time instants
(P=?[true U≤t M = 5], P=?[true U≤t P = 51], and P=?[true U≤t P2 = 64]).
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Fig. 9. Model-checking results forM2: probability of each species reaching its upper bound.

The occurrences of each reaction by time t are reported in Fig. 10, while Fig. 11 shows
the expected amounts of monomers (P) compared to the total amount of proteins (P + P2)
present at time t (they refer to the same properties described forM1).

Finally, Fig. 12 shows the probability of the amount of P2 being greater than the amount
of P at different time instants (P=?[true U[t,t] P2 > P]). As expected, this probability
increases as time increases. However, it does not reach 1. Indeed, even if the average
behaviour shows that in the long run the amount of P2 is greater than the amount of P (see
Fig. 8), this is not generally true for all possible behaviours: the system is highly variable,
and there can be some paths in which P2 < P even when approaching the simulation stop-
time. This is not very surprising because the confidence intervals around the times series
for P and P2 are still overlapping up to the stop time of 20000 seconds (see Fig. 8). The
formal confirmation of this remark is given by the fact that the probability of P2 being
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Fig. 10. Model-checking results forM2: expected number of occurrences of reactions by time t.
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Fig. 11. Model-checking results forM2: expected ratio between protein monomers and total proteins at time t.

greater than P in every state after time t (P=?[G[t,T ] P2 > P]) is 0 for any t ∈ [0,T ).

6 Related Work

In this work, as in our earlier work [4], we are concerned with obtaining the exact probabil-
ity distribution across all of the states of the reachable state-space of a network of chemical
reactions. In our earlier work we used the stochastic process algebra PEPA [15,14] to ex-
press the model and applied numerical linear algebra to solve the underlying Markov chain.
In this paper we are using the Bio-PEPA language and applying model-checking to obtain
our results.

The use of probabilistic model-checking for the analysis of models of biological phe-
nomena is already well established. In [5] the authors consider signal transduction in the
RKIP-inhibited ERK pathway and manage the state-space explosion problem by using ap-
proximate techniques where concentrations are modelled by discrete abstract quantities.
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Fig. 12. Model-checking results forM2: expected probability of P2 > P at time t.

In [9] the authors apply model-checking to the complex FGF (Fibroblast Growth Factor)
signalling pathway.

Another programme of work bringing together the analysis methods of stochastic sim-
ulation and the numerical solution of the Markov chain is perfect sampling [10]. This work
joins the “Dominated Coupling From The Past” Algorithm from Monte-Carlo Markov
Chain theory with Gillespie’s Stochastic Simulation Algorithm in the DCFTP-SSA [11].
The DCFTP-SSA guarantees sampling from the stationary probability distribution of the
Chemical Master Equation and can be used to study steady-state properties of a broad class
of stochastic biochemical networks. Our work guarantees that we are using the transient
probability distribution of the CME and can be used to study time-dependent properties
of a broad class of stochastic biochemical networks up to the stop-time of the simulation
pre-run.

7 Conclusions

Summing up, our approach is the following:

• We consider a Bio-PEPA systemM representing a biochemical network, and we auto-
matically derive from it a model specification to be used for stochastic simulation (by
Dizzy) and one to be used for model-checking (by PRISM).

• We set the simulation time T and the number of simulation runs.
• We pick as bound for a species the largest number of molecules which that species has

obtained in any simulation run within time T .
• We update the PRISM model derived from the Bio-PEPA model with the estimated

bounds, and we validate this model by comparing the expected values calculated by
PRISM with the average values obtained by simulation.

• We use PRISM to analyse the model by verifying specific CSL properties.
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In addition to the fact that simulation allows us to set some bounds which make model-
checking feasible, the combination of those two analysis techniques is itself advantageous.
Simulation and model-checking are complementary techniques and they can be used to
investigate different properties of the same system in order to give a more complete un-
derstanding. Moreover, since the Dizzy model and the PRISM model are equivalent, we
expect the results obtained with the two approaches to be in agreement. If this is the case,
that can give us staunch confidence about the correctness of the results. If, instead, we get
different results, that means there is some mistake in either approach (e.g. more simulation
runs need to be performed, the chosen bounds are too low, or the simulation stop-time is
too small), and this information could be used to refine the model or the simulation settings.

We have automated the generation of the simulation model and the model-checker input
from a model expressed in the Bio-PEPA process algebra. We have automated the repeated
execution of a set of independent simulation runs and the identification of the maximum
and minimum values of each species from the simulation results. The user then only needs
to load the PRISM model, supply the identified parameters and execute it. However, the
choice of the number of simulation runs to be performed remains in the hands of the mod-
eller.

We point out that the upper bounds estimated by using this approach are approximate
because, given the stochastic nature of the simulation, we can have genuine confidence
in the chosen bounds only if we run a suitably large number of simulations. However,
this issue is not specific to this approach. The choice of the number of simulation runs is
needed for any stochastic simulation experiment; on top of that, we use the simulation just
as a supporting technique to the model-checking, and we believe that the combined use of
the two approaches helps to minimize the uncertainty due to the stochastic simulation.

The good agreement between the results obtained by simulation and by model-checking
on the presented example makes us confident that, provided an adequate number of simu-
lation runs is performed, then our approach does not introduce significant errors. However,
we stress again the fact that the sensitivity to the truncation of the state space is strongly
dependent on the system itself; therefore, in order to assess the correctness of the estimated
bounds for a specific system, the results obtained by model-checking should be validated
against the behaviour obtained by simulation and against previous experimental and com-
putational data, if there is any available.
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