
SPA — From Individuals to Populations

Stochastic Process Algebras — From Individuals
to Populations

Jane Hillston

Laboratory for Foundations of Computer Science
University of Edinburgh

24th February 2011



SPA — From Individuals to Populations

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Introduction

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules

b

c

a

b



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
�	

reset
@
@
@R
task2

Proc1 ‖task1 Res0
�
�
�
�
�
�
��

task2

Proc0 ‖task1 Res1
A
A
A
A
A
A
AK

reset



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
�	

reset
@
@
@R
task2

Proc1 ‖task1 Res0
�
�
�
�
�
�
��

task2

Proc0 ‖task1 Res1
A
A
A
A
A
A
AK

reset



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

This extension was motivated by a desire to bring this formal and
compositional approach to modelling to bear in performance
analysis supporting the derivation of measures such as throughput,
utlisation and response time.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

This extension was motivated by a desire to bring this formal and
compositional approach to modelling to bear in performance
analysis supporting the derivation of measures such as throughput,
utlisation and response time.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated timeintegrated time

orthogonal timeorthogonal timeorthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential only
PEPA, Stochastic π-calculusPEPA

exponential + instantaneousexponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPP

general distributionsgeneral distributionsgeneral distributions
TIPP, SPADES, GSMPA

exponential onlyexponential onlyexponential only
IMC

general distributionsgeneral distributionsgeneral distributions
IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated time

integrated time

orthogonal time

orthogonal timeorthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential only
PEPA, Stochastic π-calculusPEPA

exponential + instantaneousexponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPP

general distributionsgeneral distributionsgeneral distributions
TIPP, SPADES, GSMPA

exponential onlyexponential onlyexponential only
IMC

general distributionsgeneral distributionsgeneral distributions
IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated time

integrated time

orthogonal time

orthogonal timeorthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only
PEPA, Stochastic π-calculusPEPA

exponential + instantaneous

exponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPP

general distributions

general distributionsgeneral distributions
TIPP, SPADES, GSMPA

exponential onlyexponential onlyexponential only
IMC

general distributionsgeneral distributionsgeneral distributions
IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated time

integrated time

orthogonal time

orthogonal time

orthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only
PEPA, Stochastic π-calculusPEPA

exponential + instantaneous

exponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPP

general distributions

general distributionsgeneral distributions
TIPP, SPADES, GSMPA

exponential only

exponential onlyexponential only
IMC

general distributions

general distributionsgeneral distributions
IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated time

integrated time

orthogonal time

orthogonal time

orthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only
PEPA, Stochastic π-calculus

PEPA

exponential + instantaneous

exponential + instantaneous

exponential + instantaneous

EMPA, Markovian TIPP

general distributions

general distributions

general distributions

TIPP, SPADES, GSMPA

exponential only

exponential only

exponential only

IMC

general distributions

general distributions

general distributions

IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated time

integrated time

orthogonal timeorthogonal time

orthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

PEPA, Stochastic π-calculus

PEPA

exponential + instantaneousexponential + instantaneous

exponential + instantaneous

EMPA, Markovian TIPP

general distributionsgeneral distributions

general distributions

TIPP, SPADES, GSMPA

exponential onlyexponential only

exponential only

IMC

general distributionsgeneral distributions

general distributions

IGSMP, Modest



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q

- -
SOS rules state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

PEPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?

e ee e e eiee e
- - -

?
����

���

-

���
Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?
φ �

��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysis

Model checking

How long will it take
for the system to arrive

in a particular state?

e ee e e eiee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?
φ �

��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysis

Model checking

How long will it take
for the system to arrive

in a particular state?

e ee e e eiee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?

φ �
��

��
��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysis

Model checking

How long will it take
for the system to arrive

in a particular state?

e ee e e eiee e
- - -

?
����

���

-

���
Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?
φ �

��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





SPA — From Individuals to Populations

Introduction

Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.

c

b

a

c

b

a

c

b

a



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.

c

b

a

c

b

a

c

b

a



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Modelling at the level of individuals

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

���
���:

r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1
3r1

r3
2r3

min(3r1, 2r3) = 1
6 min(3r1, 2r3)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Modelling at the level of individuals

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

���
���:

r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1
3r1

r3
2r3

min(3r1, 2r3) = 1
6 min(3r1, 2r3)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

State space explosion

As the number of components, or the complexity of behaviour
within components, grows the state space may become so large
that it is infeasible to solve the underlying CTMC.

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

State space explosion

As the number of components, or the complexity of behaviour
within components, grows the state space may become so large
that it is infeasible to solve the underlying CTMC.

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

If we sacrifice looking at the identity of each component we
can often achieve substantial state space reduction by
aggregation.

This is supported by a shift in how we view the state of a
model, based on a counting abstraction.

The syntactic nature of PEPA (and other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access to
alternative mathematical interpretations (i.e. fluid
approximation).



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

If we sacrifice looking at the identity of each component we
can often achieve substantial state space reduction by
aggregation.

This is supported by a shift in how we view the state of a
model, based on a counting abstraction.

The syntactic nature of PEPA (and other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access to
alternative mathematical interpretations (i.e. fluid
approximation).



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

If we sacrifice looking at the identity of each component we
can often achieve substantial state space reduction by
aggregation.

This is supported by a shift in how we view the state of a
model, based on a counting abstraction.

The syntactic nature of PEPA (and other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access to
alternative mathematical interpretations (i.e. fluid
approximation).



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

If we sacrifice looking at the identity of each component we
can often achieve substantial state space reduction by
aggregation.

This is supported by a shift in how we view the state of a
model, based on a counting abstraction.

The syntactic nature of PEPA (and other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access to
alternative mathematical interpretations (i.e. fluid
approximation).



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Counting abstraction to generate the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

���
���:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Counting abstraction to generate the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

���
���:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Counting abstraction to generate the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

���
���:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw

(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

Even with aggregation models
may become too large to solve
the underlying CTMC. As an
alternative they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Discrete Event Simulation

The numerical solution of the CTMC is seen as being the exact
result.

Analysing a model via discrete event simulation can also produce
useful results, often with some measure of confidence in the
results. This is achieved by repeatedly taking random walks
through the state space and observing the results, which can be
very computationally intensive.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Discrete Event Simulation

The numerical solution of the CTMC is seen as being the exact
result.

Analysing a model via discrete event simulation can also produce
useful results, often with some measure of confidence in the
results. This is achieved by repeatedly taking random walks
through the state space and observing the results, which can be
very computationally intensive.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (simulation run A)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (simulation run B)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (simulation run C)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (simulation run D)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (average of 10 runs)



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency
when solving the model if we take a collective dynamics view of
the system.

Collective dynamics considers the behaviour of populations of
similar entities which can interactive with each other in seemingly
simple ways to produce phenomena at the population level.

In this case we lose the identity of components and even
individuality, but for many models this is an approximation we are
willing to make for the efficiency, or even tractability, of the
models.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency
when solving the model if we take a collective dynamics view of
the system.

Collective dynamics considers the behaviour of populations of
similar entities which can interactive with each other in seemingly
simple ways to produce phenomena at the population level.

In this case we lose the identity of components and even
individuality, but for many models this is an approximation we are
willing to make for the efficiency, or even tractability, of the
models.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency
when solving the model if we take a collective dynamics view of
the system.

Collective dynamics considers the behaviour of populations of
similar entities which can interactive with each other in seemingly
simple ways to produce phenomena at the population level.

In this case we lose the identity of components and even
individuality, but for many models this is an approximation we are
willing to make for the efficiency, or even tractability, of the
models.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Behaviour
In the natural world there are many instances of collective
behaviour and its consequences:



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Behaviour
In the natural world there are many instances of collective
behaviour and its consequences:



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:

Love Parade, Germany 2006



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a
system from the collective point of view. Service providers often
want to do this in any case. For example making contracts in
terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a
system from the collective point of view. Service providers often
want to do this in any case. For example making contracts in
terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.



SPA — From Individuals to Populations

Interpreting SPA for performance modelling

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a
system from the collective point of view. Service providers often
want to do this in any case. For example making contracts in
terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.



SPA — From Individuals to Populations

Continuous Approximation

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



SPA — From Individuals to Populations

Continuous Approximation

New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



SPA — From Individuals to Populations

Continuous Approximation

New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



SPA — From Individuals to Populations

Continuous Approximation

New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



SPA — From Individuals to Populations

Continuous Approximation

New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



SPA — From Individuals to Populations

Continuous Approximation

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action on a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action
zero if the component is not involved in the action.



SPA — From Individuals to Populations

Continuous Approximation

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action on a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action
zero if the component is not involved in the action.



SPA — From Individuals to Populations

Continuous Approximation

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action on a counting variable is

decrease by 1 if the component participates in the action

increase by 1 if the component is the result of the action
zero if the component is not involved in the action.



SPA — From Individuals to Populations

Continuous Approximation

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action on a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action

zero if the component is not involved in the action.



SPA — From Individuals to Populations

Continuous Approximation

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action on a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action
zero if the component is not involved in the action.



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run A)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run B)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run C)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run D)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (average of 10 runs)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 Processors and 80 resources (average of 100 runs)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (average of 1000 runs)



SPA — From Individuals to Populations

Continuous Approximation

Numerical illustration

100 processors and 80 resources (ODE solution)



SPA — From Individuals to Populations

Example

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Example

Case study: A Virtual University



SPA — From Individuals to Populations

Example

Location, Time, and Size



SPA — From Individuals to Populations

Example

Case study: e-University Course Selection

The e-University was one of the case studies considered in the
recently completed SENSORIA project, an EU project focussed on
service-oriented computing.

In the Course Selection scenario students obtain information about
the courses available at their education establishment and may
enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed
in an actual application (e.g. authentication services) because their
impact on performance is assumed to be negligible.

We assume a constant population of students e.g. the application
is only accessible after the university’s matriculation process is
complete.



SPA — From Individuals to Populations

Example

Case study: e-University Course Selection

The e-University was one of the case studies considered in the
recently completed SENSORIA project, an EU project focussed on
service-oriented computing.

In the Course Selection scenario students obtain information about
the courses available at their education establishment and may
enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed
in an actual application (e.g. authentication services) because their
impact on performance is assumed to be negligible.

We assume a constant population of students e.g. the application
is only accessible after the university’s matriculation process is
complete.



SPA — From Individuals to Populations

Example

Case study: e-University Course Selection

The e-University was one of the case studies considered in the
recently completed SENSORIA project, an EU project focussed on
service-oriented computing.

In the Course Selection scenario students obtain information about
the courses available at their education establishment and may
enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed
in an actual application (e.g. authentication services) because their
impact on performance is assumed to be negligible.

We assume a constant population of students e.g. the application
is only accessible after the university’s matriculation process is
complete.



SPA — From Individuals to Populations

Example

Case study: e-University Course Selection

The e-University was one of the case studies considered in the
recently completed SENSORIA project, an EU project focussed on
service-oriented computing.

In the Course Selection scenario students obtain information about
the courses available at their education establishment and may
enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed
in an actual application (e.g. authentication services) because their
impact on performance is assumed to be negligible.

We assume a constant population of students e.g. the application
is only accessible after the university’s matriculation process is
complete.



SPA — From Individuals to Populations

Example

Model

The model: services

Access to the system is through the University Portal. There are
four services in this model:

Course Browsing allows the user to navigate through the
University’s course offerings;

Course Selection allows the user to submit a tentative course plan
which will be validated against the University’s
requirements and the student’s curriculum;

Student Confirmation will enforce the student to check relevant
personal details;

Course Registration will confirm the student’s selection.

These components make use of a Database service, which in turn
maintains an event log through a Logger service.



SPA — From Individuals to Populations

Example

Model

The model: services

Access to the system is through the University Portal. There are
four services in this model:

Course Browsing allows the user to navigate through the
University’s course offerings;

Course Selection allows the user to submit a tentative course plan
which will be validated against the University’s
requirements and the student’s curriculum;

Student Confirmation will enforce the student to check relevant
personal details;

Course Registration will confirm the student’s selection.

These components make use of a Database service, which in turn
maintains an event log through a Logger service.



SPA — From Individuals to Populations

Example

Model

The model: deployment diagram

Solid lines show request/response pairings whilst dashed lines show
deployment on processors.



SPA — From Individuals to Populations

Example

Model

The model: multi-threading

The University Portal instantiates a pool of threads.

Each thread deals with one request from one student for one
of the services offered.

During processing the thread is locked in the sense that it
cannot be acquired by further incoming requests.

When the request is fulfilled the thread clears its state and
becomes available again.

Analogous multi-threaded behaviour will be given to Database and
Logger.

If all threads are busy requests are queued. There will also be
contention with many threads running on the same processor.



SPA — From Individuals to Populations

Example

Model

The model: multi-threading

The University Portal instantiates a pool of threads.

Each thread deals with one request from one student for one
of the services offered.

During processing the thread is locked in the sense that it
cannot be acquired by further incoming requests.

When the request is fulfilled the thread clears its state and
becomes available again.

Analogous multi-threaded behaviour will be given to Database and
Logger.

If all threads are busy requests are queued. There will also be
contention with many threads running on the same processor.



SPA — From Individuals to Populations

Example

Model

The model: multi-threading

The University Portal instantiates a pool of threads.

Each thread deals with one request from one student for one
of the services offered.

During processing the thread is locked in the sense that it
cannot be acquired by further incoming requests.

When the request is fulfilled the thread clears its state and
becomes available again.

Analogous multi-threaded behaviour will be given to Database and
Logger.

If all threads are busy requests are queued. There will also be
contention with many threads running on the same processor.



SPA — From Individuals to Populations

Example

Model

The model: modelling processors and services

Processor1
def
= (acq, racq).Processor2

Processor2
def
= (type1 , r1 ).Processor1

+ (type2 , r2 ).Processor1

+ . . .
+ (typen, rn).Processor1

A
def
= (reqA,B , rreqA).(replyA,B , rrepA).A′

B
def
= (reqA,B , rreqB).(execute, r).(replyA,B , rrepB).B ′

The communication between A and B will be expressed by means
of the cooperation operator A ��

L
B, L = {reqA,B , replyA,B}.



SPA — From Individuals to Populations

Example

Model

The model: modelling processors and services

Processor1
def
= (acq, racq).Processor2

Processor2
def
= (type1 , r1 ).Processor1

+ (type2 , r2 ).Processor1

+ . . .
+ (typen, rn).Processor1

A
def
= (reqA,B , rreqA).(replyA,B , rrepA).A′

B
def
= (reqA,B , rreqB).(execute, r).(replyA,B , rrepB).B ′

The communication between A and B will be expressed by means
of the cooperation operator A ��

L
B, L = {reqA,B , replyA,B}.



SPA — From Individuals to Populations

Example

Model

The model: modelling processors and services

Processor1
def
= (acq, racq).Processor2

Processor2
def
= (type1 , r1 ).Processor1

+ (type2 , r2 ).Processor1

+ . . .
+ (typen, rn).Processor1

A
def
= (reqA,B , rreqA).(replyA,B , rrepA).A′

B
def
= (reqA,B , rreqB).(execute, r).(replyA,B , rrepB).B ′

The communication between A and B will be expressed by means
of the cooperation operator A ��

L
B, L = {reqA,B , replyA,B}.



SPA — From Individuals to Populations

Example

Model

The model: University Portal

A single thread of execution for the application layer University
Portal is implemented as a sequential component which initially
accepts requests for any of the services provided:

Portal
def
= (reqstudent,browse , ν).Browse
+ (reqstudent,select , ν).Select
+ (reqstudent,confirm, ν).Confirm
+ (reqstudent,register , ν).Register

The rate ν is used throughout this model in all the request/reply
activities.



SPA — From Individuals to Populations

Example

Model

The model: Course Browsing (example service)

The action type acqps is used to obtain exclusive access to
processor PS .

Browse
def
= (acqps , ν).Cache

Cache
def
= (cache, 0.95rcache).Internal

+ (cache, 0.05rcache).External

Internal
def
= (acqps , ν).(internal , rint).BrowseRep

External
def
= (reqexternal ,read , ν).(replyexternal ,read , ν).

(acqps , ν).(external , rext).BrowseRep

BrowseRep
def
= (replystudent,browse , ν).Portal

The other services, Course Selection, Student Confirmation and
Course Registration are modelled analogously.



SPA — From Individuals to Populations

Example

Model

The model: Course Browsing (example service)

The action type acqps is used to obtain exclusive access to
processor PS .

Browse
def
= (acqps , ν).Cache

Cache
def
= (cache, 0.95rcache).Internal

+ (cache, 0.05rcache).External

Internal
def
= (acqps , ν).(internal , rint).BrowseRep

External
def
= (reqexternal ,read , ν).(replyexternal ,read , ν).

(acqps , ν).(external , rext).BrowseRep

BrowseRep
def
= (replystudent,browse , ν).Portal

The other services, Course Selection, Student Confirmation and
Course Registration are modelled analogously.



SPA — From Individuals to Populations

Example

Model

The model: the database

The Database offers two functions: reading and writing.

Database
def
= (reqexternal ,read , ν).Read
+ (reqregister ,write , ν).Write

Read
def
= (acqpd , ν).(read , rread ).ReadReply

ReadReply
def
= (replyexternal ,read , ν).Database

Write
def
= (acqpd , ν).(write, rwrite).LogWrite

LogWrite
def
= (reqdatabase,log , ν).

(replydatabase,log , ν).WriteReply

WriteReply
def
= (replyregister ,write , ν).Database

Reading is a purely local computation.
Writing additionally uses the Logger service.



SPA — From Individuals to Populations

Example

Model

The model: the database

The Database offers two functions: reading and writing.

Database
def
= (reqexternal ,read , ν).Read
+ (reqregister ,write , ν).Write

Read
def
= (acqpd , ν).(read , rread ).ReadReply

ReadReply
def
= (replyexternal ,read , ν).Database

Write
def
= (acqpd , ν).(write, rwrite).LogWrite

LogWrite
def
= (reqdatabase,log , ν).

(replydatabase,log , ν).WriteReply

WriteReply
def
= (replyregister ,write , ν).Database

Reading is a purely local computation.
Writing additionally uses the Logger service.



SPA — From Individuals to Populations

Example

Model

The model: the database

The Database offers two functions: reading and writing.

Database
def
= (reqexternal ,read , ν).Read
+ (reqregister ,write , ν).Write

Read
def
= (acqpd , ν).(read , rread ).ReadReply

ReadReply
def
= (replyexternal ,read , ν).Database

Write
def
= (acqpd , ν).(write, rwrite).LogWrite

LogWrite
def
= (reqdatabase,log , ν).

(replydatabase,log , ν).WriteReply

WriteReply
def
= (replyregister ,write , ν).Database

Reading is a purely local computation.
Writing additionally uses the Logger service.



SPA — From Individuals to Populations

Example

Model

The model: the Logger

The Logger service accepts requests from Student Confirmation
and Database respectively. It is deployed on the same processor as
Database, (processor PD) so one thread execution may be
modelled as:

Logger
def
= (reqconfirm,log , ν).LogConfirm
+ (reqdatabase,log , ν).LogDatabase

LogConfirm
def
= (acqpd , ν).

(logconf , rlgc).ReplyConfirm

ReplyConfirm
def
= (replyconfirm,log , ν).Logger

LogDatabase
def
= (acqpd , ν).

(logdb, rlgd ).ReplyDatabase

ReplyDatabase
def
= (replydatabase,log , ν).Logger



SPA — From Individuals to Populations

Example

Model

The model: The processor PD

PD1
def
= (acqpd , ν).PD2

PD2
def
= (read , rread ).PD1 + (write, rwrite).PD1

+ (logconf , rlgc).PD1 + (logdb, rlgd ).PD1



SPA — From Individuals to Populations

Example

Model

The model: Student Workload

A student is modelled as a sequential component which interacts
with the university portal and accesses all of the services available.
The behaviour is cyclic and the student interposes some think time
between successive requests.

StdThink
def
= (think, rthink ).StdBrowse

StdBrowse
def
= (reqstudent,browse , ν).(replystudent,browse , ν).StdSelect

StdSelect
def
= (reqstudent,select , ν).(replystudent,select , ν).StdConfirm

StdConfirm
def
= (reqstudent,confirm, ν).(replystudent,confirm, ν).StdRegister

StdRegister
def
= (reqstudent,register , ν).(replystudent,register , ν).StdThink



SPA — From Individuals to Populations

Example

Model

The model: Student Workload

A student is modelled as a sequential component which interacts
with the university portal and accesses all of the services available.
The behaviour is cyclic and the student interposes some think time
between successive requests.

StdThink
def
= (think, rthink ).StdBrowse

StdBrowse
def
= (reqstudent,browse , ν).(replystudent,browse , ν).StdSelect

StdSelect
def
= (reqstudent,select , ν).(replystudent,select , ν).StdConfirm

StdConfirm
def
= (reqstudent,confirm, ν).(replystudent,confirm, ν).StdRegister

StdRegister
def
= (reqstudent,register , ν).(replystudent,register , ν).StdThink



SPA — From Individuals to Populations

Example

Model

The model: System Equation

The system equation captures the multiplicity of threads and
processors.

StdThink[NS ] ��
∗

((
Portal [NP ] ��

M1
ValUni [NP ] ��

M1
ValCur [NP ]

)
��
M2

Database[ND ] ��
M3

Logger [NL]
)
��
∗

(
PS1 [NPS ] ��

∅
PD1 [NPD ]

)
where

M1 = {fork , join}
M2 = {reqexternal ,read , replyexternal ,read , reqregister ,write , replyregister ,write}
M3 = {reqconfirm,log , replyconfirm,log , reqdatabase,log , replydatabase,log}

The separate validating threads ValUni and ValCur inherit the
multiplicity levels of the thread Portal which spawns them.



SPA — From Individuals to Populations

Example

Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for
example, adding one portal thread can result in an increase in state
space size by a factor of ten.

NS NP ND NL NPS NPD Size

1 any any any 1 any 48
1 any any any ≥ 2 any 49
2 1 1 1 1 1 230
3 1 1 1 1 1 680
3 2 2 2 2 2 5540

10 2 2 2 2 2 512116
10 3 2 2 2 2 5075026



SPA — From Individuals to Populations

Example

Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for
example, adding one portal thread can result in an increase in state
space size by a factor of ten.

Analysis based on the explicit representation of the state space is
nevertheless a valuable tool for validating the correctness of the
model.

When there is only one student the state space is fairly small
regardless of the multiplicity levels of threads and processors
because at most only one of them will be used.

Another form of qualitative analysis can be based on visual
inspection of the reachability graph, which can be walked through
to generate possible trajectories of the system.



SPA — From Individuals to Populations

Example

Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for
example, adding one portal thread can result in an increase in state
space size by a factor of ten.

Analysis based on the explicit representation of the state space is
nevertheless a valuable tool for validating the correctness of the
model.

When there is only one student the state space is fairly small
regardless of the multiplicity levels of threads and processors
because at most only one of them will be used.

Another form of qualitative analysis can be based on visual
inspection of the reachability graph, which can be walked through
to generate possible trajectories of the system.



SPA — From Individuals to Populations

Example

Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for
example, adding one portal thread can result in an increase in state
space size by a factor of ten.

Analysis based on the explicit representation of the state space is
nevertheless a valuable tool for validating the correctness of the
model.

When there is only one student the state space is fairly small
regardless of the multiplicity levels of threads and processors
because at most only one of them will be used.

Another form of qualitative analysis can be based on visual
inspection of the reachability graph, which can be walked through
to generate possible trajectories of the system.



SPA — From Individuals to Populations

Example

Model Evaluation

Model Verification

We may verify that the model respects policies of exclusive access
to threads and processors by direct inspection of the state space.

Student Portal Portal PS
Action type cache

(replystudent,browse , ν).StdSelect Cache Portal PS2
(replystudent,browse , ν).StdSelect Portal Cache PS2

Action type prepare
(replystudent,select , ν).StdConfirm Portal (prepare, rprep).ForkPrepare PS2
(replystudent,select , ν).StdConfirm (prepare, rprep).ForkPrepare Portal PS2

Action type confirm
(replystudent,confirm, ν).StdRegister Portal (confirm, rcon).LogStudent PS2
(replystudent,confirm, ν).StdRegister (confirm, rcon).LogStudent Portal PS2

Action type register
(replystudent,register , ν).StdThink (register , rreg ).Store Portal PS2
(replystudent,register , ν).StdThink Portal (register , rreg ).Store PS2

This fragment of the state space when there are two threads for
the portal and one instance of all other components.

A necessary condition for correctness is that if one thread is
engaged in an activity the other is idle.



SPA — From Individuals to Populations

Example

Model Evaluation

Model Verification

We may verify that the model respects policies of exclusive access
to threads and processors by direct inspection of the state space.

Student Portal Portal PS
Action type cache

(replystudent,browse , ν).StdSelect Cache Portal PS2
(replystudent,browse , ν).StdSelect Portal Cache PS2

Action type prepare
(replystudent,select , ν).StdConfirm Portal (prepare, rprep).ForkPrepare PS2
(replystudent,select , ν).StdConfirm (prepare, rprep).ForkPrepare Portal PS2

Action type confirm
(replystudent,confirm, ν).StdRegister Portal (confirm, rcon).LogStudent PS2
(replystudent,confirm, ν).StdRegister (confirm, rcon).LogStudent Portal PS2

Action type register
(replystudent,register , ν).StdThink (register , rreg ).Store Portal PS2
(replystudent,register , ν).StdThink Portal (register , rreg ).Store PS2

This fragment of the state space when there are two threads for
the portal and one instance of all other components.

A necessary condition for correctness is that if one thread is
engaged in an activity the other is idle.



SPA — From Individuals to Populations

Example

Model Evaluation

Model Verification

In general we do not wish to conduct such verification by hand but
it may be readily undertaken using automatic tools such as the
probabilistic model checker, PRISM.

Indeed PRISM supports PEPA as one of its input languages.



SPA — From Individuals to Populations

Example

Model Evaluation

Model Verification

In general we do not wish to conduct such verification by hand but
it may be readily undertaken using automatic tools such as the
probabilistic model checker, PRISM.

Indeed PRISM supports PEPA as one of its input languages.



SPA — From Individuals to Populations

Example

Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of
the state space it is limited to relatively small-scale systems.

But performance analysis of even these small scale systems can
offer valuable insight into the behaviour of the system — for the
e-University system it may be used to derive performance bound
estimates.

If we consider the system with only one student, the performance
in terms of response time perceived by the user will be optimal
because there is no contention for resources — the response time
for larger populations of students can only get worse.



SPA — From Individuals to Populations

Example

Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of
the state space it is limited to relatively small-scale systems.

But performance analysis of even these small scale systems can
offer valuable insight into the behaviour of the system — for the
e-University system it may be used to derive performance bound
estimates.

If we consider the system with only one student, the performance
in terms of response time perceived by the user will be optimal
because there is no contention for resources — the response time
for larger populations of students can only get worse.



SPA — From Individuals to Populations

Example

Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of
the state space it is limited to relatively small-scale systems.

But performance analysis of even these small scale systems can
offer valuable insight into the behaviour of the system — for the
e-University system it may be used to derive performance bound
estimates.

If we consider the system with only one student, the performance
in terms of response time perceived by the user will be optimal
because there is no contention for resources — the response time
for larger populations of students can only get worse.



SPA — From Individuals to Populations

Example

Model Evaluation

Average response times

With only one student the state space is kept manageable and
bounds can be computed quickly and accurately.

System Configuration
NP ND NL NPD NPS NS =1 NS =2 NS =3 NS = 4

1 1 1 1 1 3.195 3.694 4.390 5.357
1 1 1 1 2 3.064 3.522 4.155 5.032
3 3 3 3 3 3.064 3.065 3.066 3.074



SPA — From Individuals to Populations

Example

Model Evaluation

Calculating average response time



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many
more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the
size that can be handled via explicit state space techniques such as
Markovian analysis.

Fortunately, as multiple instances of components are involved we
can consider this as a system exhibiting collective behaviour and
resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be
solved, for example using a fifth-order Runge-Kutta numerical
integrator.

Of course an alternative would be to use stochastic simulation.



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many
more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the
size that can be handled via explicit state space techniques such as
Markovian analysis.

Fortunately, as multiple instances of components are involved we
can consider this as a system exhibiting collective behaviour and
resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be
solved, for example using a fifth-order Runge-Kutta numerical
integrator.

Of course an alternative would be to use stochastic simulation.



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many
more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the
size that can be handled via explicit state space techniques such as
Markovian analysis.

Fortunately, as multiple instances of components are involved we
can consider this as a system exhibiting collective behaviour and
resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be
solved, for example using a fifth-order Runge-Kutta numerical
integrator.

Of course an alternative would be to use stochastic simulation.



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many
more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the
size that can be handled via explicit state space techniques such as
Markovian analysis.

Fortunately, as multiple instances of components are involved we
can consider this as a system exhibiting collective behaviour and
resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be
solved, for example using a fifth-order Runge-Kutta numerical
integrator.

Of course an alternative would be to use stochastic simulation.



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many
more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the
size that can be handled via explicit state space techniques such as
Markovian analysis.

Fortunately, as multiple instances of components are involved we
can consider this as a system exhibiting collective behaviour and
resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be
solved, for example using a fifth-order Runge-Kutta numerical
integrator.

Of course an alternative would be to use stochastic simulation.



SPA — From Individuals to Populations

Example

Model Evaluation

Scalability analysis

NP = ND = NL = 80,NPD = 40,NPS = 40.

NS ODE Runtime CTMC Runtime Error

1 2.975 2.7 s 3.091 436 s 3.74%
300 2.975 2.7 s 3.105 2656 s 4.17%
325 2.975 2.6 s 3.329 3017 s 10.62%
350 3.686 2.9 s 3.863 6505 s 4.57%
400 5.999 7.3 s 5.993 4465 s 0.10%
500 10.623 6.6 s 10.534 3845 s 0.84%
600 15.248 6.6 s 15.233 2985 s 0.10%

Stochastic simulation was conducted using the method of batch
means, terminated when the 95% confidence interval was ≤ 1% of
the average.



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

In addition to the workload parameter NS there are 20 other
parameters in the model: 15 rate parameters and 5 concurrency
levels for threads and processors.

A typical scenario may be that the rate parameters are
hardware-dependent and cannot be revised, and the workload is
fixed, determined by the student population.

The modeller’s role is then to determine an optimal configuration
for the concurrency levels of the system with respect to
user-perceived performance, e.g. average response time.

Let us assume a workload population of 350 students and assume
that the response time previously found for this workload is
acceptable.



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

In addition to the workload parameter NS there are 20 other
parameters in the model: 15 rate parameters and 5 concurrency
levels for threads and processors.

A typical scenario may be that the rate parameters are
hardware-dependent and cannot be revised, and the workload is
fixed, determined by the student population.

The modeller’s role is then to determine an optimal configuration
for the concurrency levels of the system with respect to
user-perceived performance, e.g. average response time.

Let us assume a workload population of 350 students and assume
that the response time previously found for this workload is
acceptable.



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

In addition to the workload parameter NS there are 20 other
parameters in the model: 15 rate parameters and 5 concurrency
levels for threads and processors.

A typical scenario may be that the rate parameters are
hardware-dependent and cannot be revised, and the workload is
fixed, determined by the student population.

The modeller’s role is then to determine an optimal configuration
for the concurrency levels of the system with respect to
user-perceived performance, e.g. average response time.

Let us assume a workload population of 350 students and assume
that the response time previously found for this workload is
acceptable.



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

In addition to the workload parameter NS there are 20 other
parameters in the model: 15 rate parameters and 5 concurrency
levels for threads and processors.

A typical scenario may be that the rate parameters are
hardware-dependent and cannot be revised, and the workload is
fixed, determined by the student population.

The modeller’s role is then to determine an optimal configuration
for the concurrency levels of the system with respect to
user-perceived performance, e.g. average response time.

Let us assume a workload population of 350 students and assume
that the response time previously found for this workload is
acceptable.



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

The table shows the response times calculated with different
system configurations of similar size.

Conf. NP ND NL NPS NPD Response time

A 80 80 80 40 40 3.686
B 70 70 70 40 40 3.686
C 60 60 60 40 40 4.506
D 70 70 70 35 35 5.998
E 70 50 50 40 40 3.686
F 70 20 20 40 40 3.686
G 70 20 15 40 40 4.278
H 70 15 20 40 40 5.024



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

The table shows the response times calculated with different
system configurations of similar size.

Conf. NP ND NL NPS NPD Response time

A 80 80 80 40 40 3.686
B 70 70 70 40 40 3.686
C 60 60 60 40 40 4.506
D 70 70 70 35 35 5.998
E 70 50 50 40 40 3.686
F 70 20 20 40 40 3.686
G 70 20 15 40 40 4.278
H 70 15 20 40 40 5.024



SPA — From Individuals to Populations

Example

Model Evaluation

Optimisation

The table shows the response times calculated with different
system configurations of similar size.

Conf. NP ND NL NPS NPD Response time

A 80 80 80 40 40 3.686
B 70 70 70 40 40 3.686
C 60 60 60 40 40 4.506
D 70 70 70 35 35 5.998
E 70 50 50 40 40 3.686
F 70 20 20 40 40 3.686
G 70 20 15 40 40 4.278
H 70 15 20 40 40 5.024



SPA — From Individuals to Populations

Conclusions

Outline

1 Introduction
Stochastic Process Algebra

2 Interpreting SPA for performance modelling
Identity and Individuality
Collective Dynamics

3 Continuous Approximation
Numerical illustration

4 Example
Model
Model Evaluation

5 Conclusions
Alternative interpretations



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Scalable Representations

Continuous
approximation
of CTMC

set of ODEs
fluid abstraction

Aggregated
CTMC

reduced
generator matrixcounting abstraction

Explicit state
CTMC

full
generator matrixindividual view

PEPA model -��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Scalable Representations

Continuous
approximation
of CTMC

set of ODEs

fluid abstraction

Aggregated
CTMC

reduced
generator matrix

counting abstraction

Explicit state
CTMC

full
generator matrix

individual view

PEPA model -��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Scalable Representations

Continuous
approximation
of CTMC

set of ODEs

fluid abstraction

Aggregated
CTMC

reduced
generator matrix

counting abstraction

Explicit state
CTMC

full
generator matrix

individual view

PEPA model -��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Eclipse Plug-in for PEPA

Robust tool support is essential to make develop techniques
practical.



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Other applications

PEPA, and the associated analysis techniques, were originally
developed with the objective of studying computer systems.

However, it has also be adopted by modelling a wide-range of
other types of system:

Locks and movable bridges in inland shipping in Belgium
(Knapen, Hasselt)

Automotive on-board diagnostics expert systems (Console,
Picardi and Ribaudo)

Biological cell signalling pathways (Calder, Duguid, Gilmore
and Hillston)

Crowd dynamics in informatic environments (Harrison, Latella
and Massink)



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti
Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico, Nigel
Thomas, Mirco Tribastone, and others.

Acknowledgements: funding
The PEPA project has received funding from the EPRSC,
BBSRC, the Royal Society and the CEC IST-FET programme.

More information:
http://www.dcs.ed.ac.uk/pepa



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti
Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico, Nigel
Thomas, Mirco Tribastone, and others.

Acknowledgements: funding
The PEPA project has received funding from the EPRSC,
BBSRC, the Royal Society and the CEC IST-FET programme.

More information:
http://www.dcs.ed.ac.uk/pepa



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti
Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico, Nigel
Thomas, Mirco Tribastone, and others.

Acknowledgements: funding
The PEPA project has received funding from the EPRSC,
BBSRC, the Royal Society and the CEC IST-FET programme.

More information:
http://www.dcs.ed.ac.uk/pepa



SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti
Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico, Nigel
Thomas, Mirco Tribastone, and others.

Acknowledgements: funding
The PEPA project has received funding from the EPRSC,
BBSRC, the Royal Society and the CEC IST-FET programme.

More information:
http://www.dcs.ed.ac.uk/pepa


	Introduction
	Stochastic Process Algebra

	Interpreting SPA for performance modelling
	Identity and Individuality
	Collective Dynamics

	Continuous Approximation
	Numerical illustration

	Example
	Model
	Model Evaluation

	Conclusions
	Alternative interpretations


