Stochastic Process Algebras — From Individuals to Populations

Jane Hillston

Laboratory for Foundations of Computer Science University of Edinburgh

24th February 2011

Outline

1 Introduction

- Stochastic Process Algebra
- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous Approximation
 - Numerical illustration

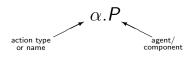
4 Example

- Model
- Model Evaluation

5 Conclusions

Alternative interpretations

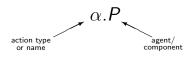
Outline


1 Introduction

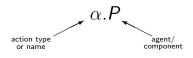
Stochastic Process Algebra

- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous ApproximationNumerical illustration
- 4 Example
 - Model
 - Model Evaluation
- 5 Conclusions
 - Alternative interpretations

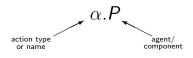
└─Stochastic Process Algebra


Process Algebra

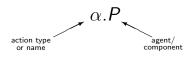
—Stochastic Process Algebra


Process Algebra

—Stochastic Process Algebra


Process Algebra

└─Stochastic Process Algebra


Process Algebra

└─Stochastic Process Algebra

Process Algebra

—Stochastic Process Algebra

Process Algebra

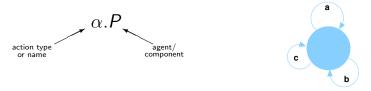
Models consist of agents which engage in actions.

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.


The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra model

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

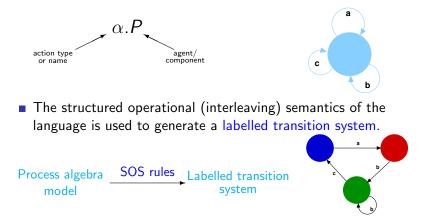

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra SOS rules model

—Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.

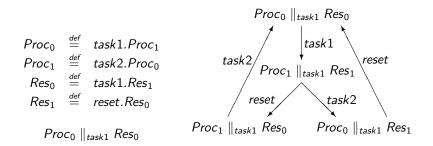


The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra SOS rules Labelled transition system

—Stochastic Process Algebra

Process Algebra


└─Stochastic Process Algebra

A simple example: processors and resources

 $Proc_0 \parallel_{task1} Res_0$

-Stochastic Process Algebra

A simple example: processors and resources

–Stochastic Process Algebra

Stochastic process algebras

Process algebras where models are decorated with quantitative information used to generate a stochastic process are stochastic process algebras (SPA).

–Stochastic Process Algebra

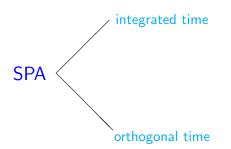
Stochastic process algebras

Process algebras where models are decorated with quantitative information used to generate a stochastic process are stochastic process algebras (SPA).

This extension was motivated by a desire to bring this formal and compositional approach to modelling to bear in performance analysis supporting the derivation of measures such as throughput, utlisation and response time.

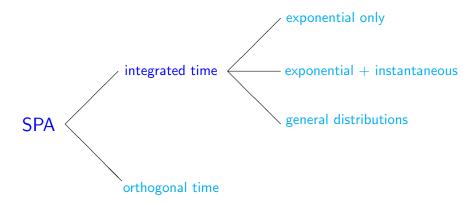
Introduction

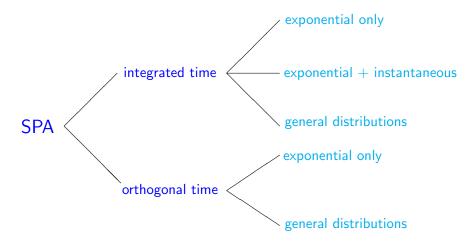
└─Stochastic Process Algebra



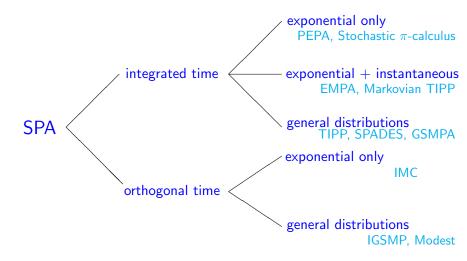
SPA

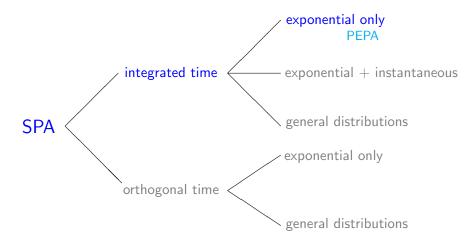
Introduction


└─Stochastic Process Algebra



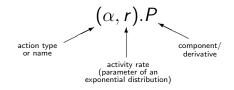
—Stochastic Process Algebra




—Stochastic Process Algebra

Stochastic Process Algebra

Stochastic Process Algebra

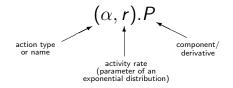

 $\mathsf{SPA} - \mathsf{From}$ Individuals to Populations

Introduction

Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

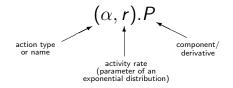


Introduction

-Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.



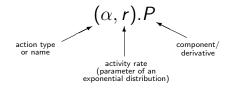
Introduction

-Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

The language is used to generate a Continuous Time Markov Chain (CTMC) for performance modelling.


PEPA MODEL

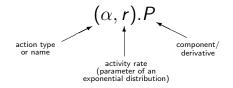
Introduction

-Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

The language is used to generate a Continuous Time Markov Chain (CTMC) for performance modelling.

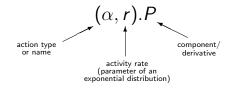

PEPA SOS rules

Introduction

-Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

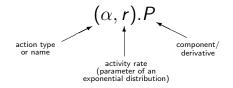


Introduction

-Stochastic Process Algebra

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.



Introduction

-Stochastic Process Algebra

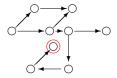
Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

└─Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative verification.

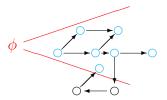

-Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative verification.

Reachability analysis

How long will it take for the system to arrive in a particular state?

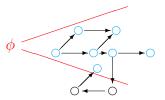

-Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative verification.

Model checking

Does a given property ϕ hold within the system with a given probability?


-Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative verification.

Model checking

For a given starting state how long is it until a given property ϕ holds?

-Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in co-operation with other components.

–Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in co-operation with other components.

$$\begin{array}{lll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \Join P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

-Stochastic Process Algebra

Performance Evaluation Process Algebra

$$\begin{array}{ll} (\alpha, f).P & \text{Prefix} \\ P_1 + P_2 & \text{Choice} \\ P_1 \Join P_2 & \text{Co-operation} \\ P/L & \text{Hiding} \\ C & \text{Constant} \end{array}$$

-Stochastic Process Algebra

Performance Evaluation Process Algebra

$$\begin{array}{lll} (\alpha, f).P & \operatorname{Prefix} \\ \hline P_1 + P_2 & \operatorname{Choice} \\ P_1 \Join P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

–Stochastic Process Algebra

Performance Evaluation Process Algebra

$$\begin{array}{lll} (\alpha,f).P & \operatorname{Prefix} \\ P_1+P_2 & \operatorname{Choice} \\ P_1 & \swarrow & P_2 \\ P_1 & \swarrow & P_2 \\ P_L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

–Stochastic Process Algebra

Performance Evaluation Process Algebra

$$\begin{array}{lll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \Join P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

–Stochastic Process Algebra

Performance Evaluation Process Algebra

$$\begin{array}{lll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \Join P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

–Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in co-operation with other components.

$$\begin{array}{ll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \bowtie P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

 $P_1 \parallel P_2$ is a derived form for $P_1 \bowtie_{\emptyset} P_2$.

–Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in co-operation with other components.

$$\begin{array}{ll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \bowtie_{L} P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

 $P_1 \parallel P_2$ is a derived form for $P_1 \bowtie P_2$.

When working with large numbers of entities, we write P[n] to denote an array of n copies of P executing in parallel.

–Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in co-operation with other components.

$$\begin{array}{ll} (\alpha, f).P & \operatorname{Prefix} \\ P_1 + P_2 & \operatorname{Choice} \\ P_1 \Join P_2 & \operatorname{Co-operation} \\ P/L & \operatorname{Hiding} \\ C & \operatorname{Constant} \end{array}$$

 $P_1 \parallel P_2$ is a derived form for $P_1 \bowtie P_2$.

When working with large numbers of entities, we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

–Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of synchronised actions. In PEPA cooperation between components gives rise to shared actions, the rate of which are governed by the assumption of bounded capacity.

–Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of synchronised actions. In PEPA cooperation between components gives rise to shared actions, the rate of which are governed by the assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation faster than its own defined rate for the action.

-Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of synchronised actions. In PEPA cooperation between components gives rise to shared actions, the rate of which are governed by the assumption of bounded capacity.

Bounded capacity

No component can be made to carry out an action in cooperation faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the participating components.

-Stochastic Process Algebra

Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of synchronised actions. In PEPA cooperation between components gives rise to shared actions, the rate of which are governed by the assumption of bounded capacity.

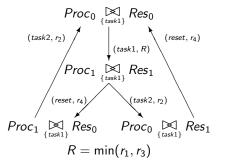
Bounded capacity

No component can be made to carry out an action in cooperation faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the participating components.

In contrast independent actions do not constrain each other and if there are multiple copies of a action enabled in independent concurrent components their rates are summed.

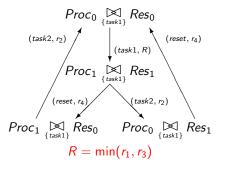
└─Stochastic Process Algebra


$$\begin{array}{lll} \textit{Proc}_{0} & \stackrel{\textit{def}}{=} & (task1, r_{1}).\textit{Proc}_{1} \\ \textit{Proc}_{1} & \stackrel{\textit{def}}{=} & (task2, r_{2}).\textit{Proc}_{0} \\ \textit{Res}_{0} & \stackrel{\textit{def}}{=} & (task1, r_{3}).\textit{Res}_{1} \\ \textit{Res}_{1} & \stackrel{\textit{def}}{=} & (reset, r_{4}).\textit{Res}_{0} \end{array}$$

$$Proc_0 \bigotimes_{\text{{task1}}} Res_0$$

–Stochastic Process Algebra

$$\begin{array}{lll} Proc_0 & \stackrel{def}{=} & (task1, r_1).Proc_1 \\ Proc_1 & \stackrel{def}{=} & (task2, r_2).Proc_0 \\ Res_0 & \stackrel{def}{=} & (task1, r_3).Res_1 \\ Res_1 & \stackrel{def}{=} & (reset, r_4).Res_0 \end{array}$$


$$Proc_0 \bigotimes_{\substack{\{task1\}}} Res_0$$

–Stochastic Process Algebra

$$\begin{array}{lll} Proc_0 & \stackrel{def}{=} & (task1, r_1).Proc_1 \\ Proc_1 & \stackrel{def}{=} & (task2, r_2).Proc_0 \\ Res_0 & \stackrel{def}{=} & (task1, r_3).Res_1 \\ Res_1 & \stackrel{def}{=} & (reset, r_4).Res_0 \end{array}$$

$$Proc_0 \bigotimes_{\substack{\{task1\}}} Res_0$$

└─Stochastic Process Algebra

$$\begin{array}{cccc} Proc_{0} & \stackrel{def}{=} & (task1, r_{1}).Proc_{1} \\ Proc_{1} & \stackrel{def}{=} & (task2, r_{2}).Proc_{0} \\ Res_{0} & \stackrel{def}{=} & (task1, r_{3}).Res_{1} \\ Res_{1} & \stackrel{def}{=} & (reset, r_{4}).Res_{0} \end{array}$$

$$\begin{array}{c} (task2, r_{2}) & \downarrow & \downarrow \\ (task1, R) & \downarrow & \downarrow \\ (task1, R) & \downarrow & \downarrow \\ (task1, R) & \downarrow & \downarrow \\ (task2, r_{2}) & \downarrow & \downarrow \\ (task1, Res_{1} & \downarrow \\ (task2, r_{2}) & \downarrow \\ (task2,$$

$$\mathbf{Q} = \begin{pmatrix} -R & R & 0 & 0 \\ 0 & -(r_2 + r_4) & r_4 & r_2 \\ r_2 & 0 & -r_2 & 0 \\ r_4 & 0 & 0 & -r_4 \end{pmatrix}$$

Outline

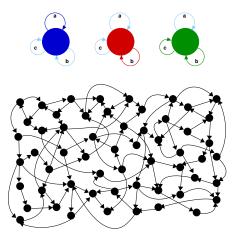
- Introduction
 Stochastic Process Algebra
- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous ApproximationNumerical illustration
- 4 Example
 - Model
 - Model Evaluation
- 5 Conclusions
 - Alternative interpretations

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

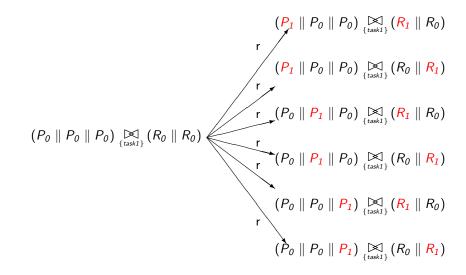
Under the SOS semantics a SPA model is mapped to a CTMC with global states determined by the local states of all the participating components.



Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models


Under the SOS semantics a SPA model is mapped to a CTMC with global states determined by the local states of all the participating components.

Interpreting SPA for performance modelling

Identity and Individuality

Modelling at the level of individuals

Lentity and Individuality

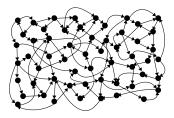
Modelling at the level of individuals

$$r = \frac{r_{1}}{3r_{1}} \frac{r_{3}}{2r_{3}} \min(3r_{1}, 2r_{3}) = \frac{1}{6} \min(3r_{1}, 2r_{3}) \qquad (P_{1} \parallel P_{0} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{1} \parallel R_{0})$$

$$r \qquad (P_{1} \parallel P_{0} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{0} \parallel R_{1})$$

$$r \qquad (P_{0} \parallel P_{0} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{0} \parallel R_{0}) \qquad r \qquad (P_{0} \parallel P_{1} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{1} \parallel R_{0})$$

$$r \qquad (P_{0} \parallel P_{0} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{0} \parallel R_{1})$$

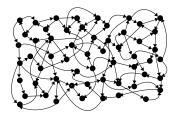

$$r \qquad (P_{0} \parallel P_{0} \parallel P_{0}) \underset{\{taskI\}}{\boxtimes} (R_{0} \parallel R_{1})$$

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state space is not too large they are amenable to numerical solution (linear algebra) to determine a steady state or transient probability distribution.

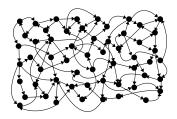


Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state space is not too large they are amenable to numerical solution (linear algebra) to determine a steady state or transient probability distribution.


$$Q = \begin{pmatrix} q_{1,1} & q_{1,2} & \cdots & q_{1,N} \\ q_{2,1} & q_{2,2} & \cdots & q_{2,N} \\ \vdots & \vdots & & \vdots \\ q_{N,1} & q_{N,2} & \cdots & q_{N,N} \end{pmatrix}$$

Interpreting SPA for performance modelling

Identity and Individuality

Solving discrete state models

When the size of the state space is not too large they are amenable to numerical solution (linear algebra) to determine a steady state or transient probability distribution.

$$Q = \begin{pmatrix} q_{1,1} & q_{1,2} & \cdots & q_{1,N} \\ q_{2,1} & q_{2,2} & \cdots & q_{2,N} \\ \vdots & \vdots & & \vdots \\ q_{N,1} & q_{N,2} & \cdots & q_{N,N} \end{pmatrix}$$

$$\pi(t)=(\pi_1(t),\pi_2(t),\ldots,\pi_N(t))$$

Identity and Individuality

State space explosion

As the number of components, or the complexity of behaviour within components, grows the state space may become so large that it is infeasible to solve the underlying CTMC.

$$\begin{array}{lll} Proc_0 & \stackrel{def}{=} & (task1, r_1).Proc_1 \\ Proc_1 & \stackrel{def}{=} & (task2, r_2).Proc_0 \\ Res_0 & \stackrel{def}{=} & (task1, r_3).Res_1 \\ Res_1 & \stackrel{def}{=} & (reset, r_4).Res_0 \end{array}$$

 $Proc_0[N_P] \bigotimes_{\{task1\}} Res_0[N_R]$

-Identity and Individuality

State space explosion

As the number of components, or the complexity of behaviour within components, grows the state space may become so large that it is infeasible to solve the underlying CTMC.

$$\begin{array}{l} Proc_{0} \stackrel{def}{=} (task1, r_{1}).Proc_{1} \\ Proc_{1} \stackrel{def}{=} (task2, r_{2}).Proc_{0} \end{array}$$

$$Res_0 = (Lask1, r_3).Res_1$$

 $Res_1 \stackrel{def}{=} (reset r_1) Res_2$

$$Res_1 \cong (reset, r_4).Res_0$$

$$Proc_0[N_P] \bigotimes_{\{task1\}} Res_0[N_R]$$

Processors (N_P)	Resources (N_R)	States (2 ^{N_P+N_R)}
1	1	4
2	1	8
2	2	16
3	2	32
3	3	64
4	3	128
4	4	256
5	4	512
5	5	1024
6	5	2048
6	6	4096
7	6	8192
7	7	16384
8	7	32768
8	8	65536
9	8	131072
9	9	262144
10	9	524288
10	10	1048576

CTMC interpretation

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

If we sacrifice looking at the identity of each component we can often achieve substantial state space reduction by aggregation.

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

- If we sacrifice looking at the identity of each component we can often achieve substantial state space reduction by aggregation.
- This is supported by a shift in how we view the state of a model, based on a counting abstraction.

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

- If we sacrifice looking at the identity of each component we can often achieve substantial state space reduction by aggregation.
- This is supported by a shift in how we view the state of a model, based on a counting abstraction.
- The syntactic nature of PEPA (and other SPAs) makes models easily understood by humans, but not so convenient for computers to directly apply these tools and approaches.

Interpreting SPA for performance modelling

Identity and Individuality

Achieving aggregration

- If we sacrifice looking at the identity of each component we can often achieve substantial state space reduction by aggregation.
- This is supported by a shift in how we view the state of a model, based on a counting abstraction.
- The syntactic nature of PEPA (and other SPAs) makes models easily understood by humans, but not so convenient for computers to directly apply these tools and approaches.
- By shifting to a numerical state representation we can more readily exploit results such as aggregation and access to alternative mathematical interpretations (i.e. fluid approximation).

Identity and Individuality

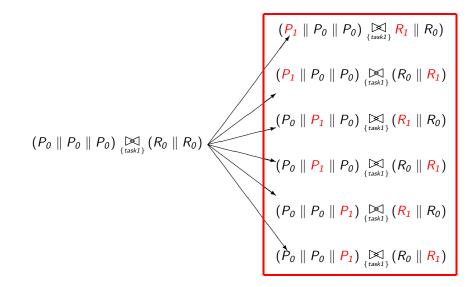
Counting abstraction to generate the Lumped CTMC

$$(P_{1} || P_{0} || P_{0}) \bigotimes_{\{\text{task1}\}} R_{I} || R_{0})$$

$$(P_{1} || P_{0} || P_{0}) \bigotimes_{\{\text{task1}\}} (R_{0} || R_{1})$$

$$(P_{0} || P_{0} || P_{0}) \bigotimes_{\{\text{task1}\}} (R_{0} || R_{0})$$

$$(P_{0} || P_{1} || P_{0}) \bigotimes_{\{\text{task1}\}} (R_{0} || R_{1})$$


$$(P_{0} || P_{1} || P_{0}) \bigotimes_{\{\text{task1}\}} (R_{0} || R_{1})$$

$$(P_{0} || P_{0} || P_{1}) \bigotimes_{\{\text{task1}\}} (R_{1} || R_{0})$$

$$(P_{0} || P_{0} || P_{1}) \bigotimes_{\{\text{task1}\}} (R_{0} || R_{1})$$

Identity and Individuality

Counting abstraction to generate the Lumped CTMC

Identity and Individuality

Counting abstraction to generate the Lumped CTMC

$$(3,0,2,0) \xrightarrow{\min(3r_{1},2r_{3})} (2,1,1,1) (P_{0} || P_{0} || P_{0$$

LINTERPRETING SPA for performance modelling

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for finding the maximal partition of a graph according to some equivalence.

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for finding the maximal partition of a graph according to some equivalence.

However in practice we would much rather construct the aggregated state space directly.

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for finding the maximal partition of a graph according to some equivalence.

However in practice we would much rather construct the aggregated state space directly.

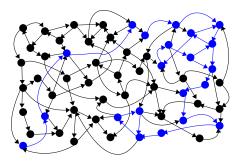
The first approach to this used canonical forms but still worked syntactically to identify states. [Gilmore, Hillston and Ribaudo, IEEE TSE 2001].

Identity and Individuality

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for finding the maximal partition of a graph according to some equivalence.

However in practice we would much rather construct the aggregated state space directly.


The first approach to this used canonical forms but still worked syntactically to identify states. [Gilmore, Hillston and Ribaudo, IEEE TSE 2001].

A more recent approaches shift to a counting abstraction and a numerical representation of states and transitions.

Identity and Individuality

Solving discrete state models

Even with aggregation models may become too large to solve the underlying CTMC. As an alternative they may be studied using stochastic simulation. Each run generates a single trajectory through the state space. Many runs are needed in order to obtain average behaviours.

LINTERPRETING SPA for performance modelling

Identity and Individuality

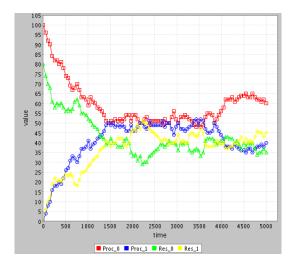
Discrete Event Simulation

The numerical solution of the CTMC is seen as being the exact result.

Interpreting SPA for performance modelling

Identity and Individuality

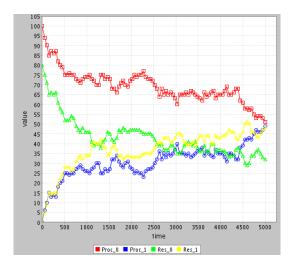
Discrete Event Simulation


The numerical solution of the CTMC is seen as being the exact result.

Analysing a model via discrete event simulation can also produce useful results, often with some measure of confidence in the results. This is achieved by repeatedly taking random walks through the state space and observing the results, which can be very computationally intensive.

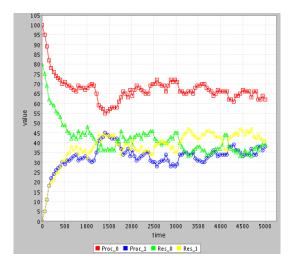
Interpreting SPA for performance modelling

Identity and Individuality


100 processors and 80 resources (simulation run A)

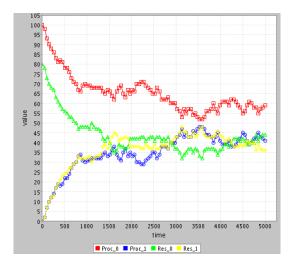
Interpreting SPA for performance modelling

Identity and Individuality


100 processors and 80 resources (simulation run B)

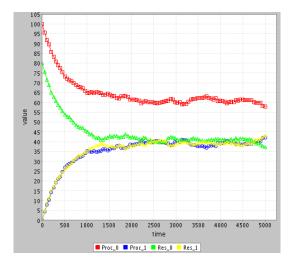
Interpreting SPA for performance modelling

Identity and Individuality


100 processors and 80 resources (simulation run C)

Interpreting SPA for performance modelling

Identity and Individuality


100 processors and 80 resources (simulation run D)

Interpreting SPA for performance modelling

Identity and Individuality

100 processors and 80 resources (average of 10 runs)

LINTERPRETING SPA for performance modelling

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency when solving the model if we take a collective dynamics view of the system.

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency when solving the model if we take a collective dynamics view of the system.

Collective dynamics considers the behaviour of populations of similar entities which can interactive with each other in seemingly simple ways to produce phenomena at the population level.

Identity and Individuality

Collective dynamics

For some SPA models we can make considerable gains in efficiency when solving the model if we take a collective dynamics view of the system.

Collective dynamics considers the behaviour of populations of similar entities which can interactive with each other in seemingly simple ways to produce phenomena at the population level.

In this case we lose the identity of components and even individuality, but for many models this is an approximation we are willing to make for the efficiency, or even tractability, of the models.

Collective Dynamics

Collective Behaviour

In the natural world there are many instances of collective behaviour and its consequences:

Collective Dynamics

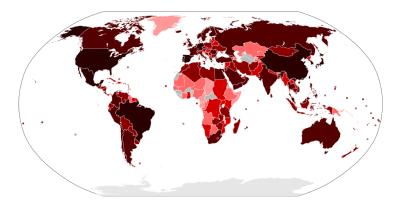
Collective Behaviour

In the natural world there are many instances of collective behaviour and its consequences:

Collective Dynamics

Collective Behaviour

In the natural world there are many instances of collective behaviour and its consequences:



Interpreting SPA for performance modelling

Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:

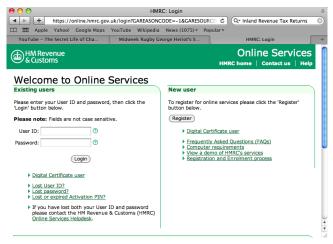
Spread of H1N1 virus in 2009

Interpreting SPA for performance modelling

– Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:


Love Parade, Germany 2006

Interpreting SPA for performance modelling

Collective Dynamics

Collective Dynamics

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year

LINTERPRETING SPA for performance modelling

Collective Dynamics

Process Algebra and Collective Dynamics

Collective Dynamics

Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit collective dynamics

 Each component type captures the behaviour of one type of individual;

Collective Dynamics

Process Algebra and Collective Dynamics

- Each component type captures the behaviour of one type of individual;
- The compositional structure of the model makes explicit interaction between component types;

Collective Dynamics

Process Algebra and Collective Dynamics

- Each component type captures the behaviour of one type of individual;
- The compositional structure of the model makes explicit interaction between component types;
- When there are many instances of the individual component types these may be regarded as a population;

Collective Dynamics

Process Algebra and Collective Dynamics

- Each component type captures the behaviour of one type of individual;
- The compositional structure of the model makes explicit interaction between component types;
- When there are many instances of the individual component types these may be regarded as a population;
- Through the interactions of these populations group or complex behaviours may emerge at the population level.

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between individual components but then only consider the system as a whole as an interaction of populations.

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between individual components but then only consider the system as a whole as an interaction of populations.

This allows us to model much larger systems than previously possible but in making the shift we are no longer able to collect any information about individuals in the system.

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between individual components but then only consider the system as a whole as an interaction of populations.

This allows us to model much larger systems than previously possible but in making the shift we are no longer able to collect any information about individuals in the system.

To characterise the behaviour of a population we count the number of individuals within the population that are exhibiting certain behaviours rather than tracking individuals directly.

Collective Dynamics

Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between individual components but then only consider the system as a whole as an interaction of populations.

This allows us to model much larger systems than previously possible but in making the shift we are no longer able to collect any information about individuals in the system.

To characterise the behaviour of a population we count the number of individuals within the population that are exhibiting certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the counts vary over time.

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a system from the collective point of view. Service providers often want to do this in any case. For example making contracts in terms of service level agreements.

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a system from the collective point of view. Service providers often want to do this in any case. For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Collective Dynamics

Performance as an emergent behaviour

In this framework we must think about the performance of a system from the collective point of view. Service providers often want to do this in any case. For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read "System is overloaded, try again later".

Outline

- 1 Introduction
 - Stochastic Process Algebra
- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous Approximation

 Numerical illustration
- 4 Example
 - Model
 - Model Evaluation
- 5 Conclusions
 - Alternative interpretations

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

0 0 0

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

0 0 0 0 0

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

0	0	0	0	0	0	0	0	0
---	---	---	---	---	---	---	---	---

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Continuous Approximation

Use continuous state variables to approximate the discrete state space.

Use ordinary differential equations to represent the evolution of those variables over time.

New mathematical structures: differential equations

Use a counting abstraction rather than the CTMC complete state space.

New mathematical structures: differential equations

- Use a counting abstraction rather than the CTMC complete state space.
- 2 Assume that these state variables are subject to continuous rather than discrete change.

New mathematical structures: differential equations

- Use a counting abstraction rather than the CTMC complete state space.
- 2 Assume that these state variables are subject to continuous rather than discrete change.
- 3 No longer aim to calculate the probability distribution over the entire state space of the model.

New mathematical structures: differential equations

- Use a counting abstraction rather than the CTMC complete state space.
- 2 Assume that these state variables are subject to continuous rather than discrete change.
- 3 No longer aim to calculate the probability distribution over the entire state space of the model.
- Instead the trajectory of the ODEs estimates the expected behaviour of the CTMC.

Models suitable for counting abstraction

In the PEPA language multiple instances of components are represented explicitly — we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

Models suitable for counting abstraction

In the PEPA language multiple instances of components are represented explicitly — we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

The impact of an action on a counting variable is

Models suitable for counting abstraction

In the PEPA language multiple instances of components are represented explicitly — we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

The impact of an action on a counting variable is
 decrease by 1 if the component participates in the action

Models suitable for counting abstraction

In the PEPA language multiple instances of components are represented explicitly — we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

The impact of an action on a counting variable is
 decrease by 1 if the component participates in the action
 increase by 1 if the component is the result of the action

Models suitable for counting abstraction

In the PEPA language multiple instances of components are represented explicitly — we write P[n] to denote an array of n copies of P executing in parallel.

$$P[5] \equiv (P \parallel P \parallel P \parallel P \parallel P)$$

The impact of an action on a counting variable is
 decrease by 1 if the component participates in the action
 increase by 1 if the component is the result of the action
 zero if the component is not involved in the action.

SPA — From Individuals to Populations

Continuous Approximation

-Numerical illustration

Simple example revisited

$$\begin{array}{lll} Proc_{0} & \stackrel{def}{=} & (task1, r_{1}).Proc_{1} \\ Proc_{1} & \stackrel{def}{=} & (task2, r_{2}).Proc_{0} \\ Res_{0} & \stackrel{def}{=} & (task1, r_{3}).Res_{1} \\ Res_{1} & \stackrel{def}{=} & (reset, r_{4}).Res_{0} \end{array}$$

 $Proc_0[N_P] \underset{{}_{\{task1\}}}{\bowtie} Res_0[N_R]$

Numerical illustration

Simple example revisited

$$\begin{array}{lll} Proc_{0} & \stackrel{def}{=} & (task1, r_{1}).Proc_{1} \\ Proc_{1} & \stackrel{def}{=} & (task2, r_{2}).Proc_{0} \\ Res_{0} & \stackrel{def}{=} & (task1, r_{3}).Res_{1} \\ Res_{1} & \stackrel{def}{=} & (reset, r_{4}).Res_{0} \end{array}$$

 $Proc_0[N_P] \bigotimes_{_{\{task1\}}} Res_0[N_R]$

CTIMC interpretation							
Processors (N_P)	Resources (N_R)	States (2 ^{N_P+N_R)}					
1	1	4					
2	1	8					
2	2	16					
3	2	32					
3	3	64					
4	3	128					
4	4	256					
5	4	512					
5	5	1024					
6	5	2048					
6	6	4096					
7	6	8192					
7	7	16384					
8	7	32768					
8	8	65536					
9	8	131072					
9	9	262144					
10	9	524288					
10	10	1048576					

CTN/C interpretation

- Continuous Approximation
 - Numerical illustration

Simple example revisited

$$Res_{1} \stackrel{def}{=} (reset, r_{4}).Res_{0}$$

 $Proc_0[N_P] \bigotimes_{_{\{task1\}}} Res_0[N_R]$

- *task*1 decreases *Proc*₀ and *Res*₀
- *task*1 increases *Proc*₁ and *Res*₁
- task2 decreases Proc1
- task2 increases Proc0
- reset decreases Res1
- reset increases Res₀

Numerical illustration

Simple example revisited

$$Proc_0 \stackrel{def}{=} (task1, r_1).Proc_1$$

$$Proc_1 \equiv (lask_2, r_2).Proc_0$$

 $Pos_1 \equiv (task_1, r_2).Proc_0$

- $Res_0 = (task_1, r_3).Res_1$
- $Res_1 \stackrel{def}{=} (reset, r_4).Res_0$

 $Proc_0[N_P] \underset{{task1}}{\bowtie} Res_0[N_R]$

$$\frac{|x_1|}{dt} = -\min(r_1 x_1, r_3 x_3) + r_2 x_2$$

x₁ = no. of *Proc*₁

- *task*1 decreases *Proc*₀
- task1 is performed by Proc₀ and Res₀
- task2 increases Proc₀
- *task*2 is performed by *Proc*₁

-Numerical illustration

Simple example revisited

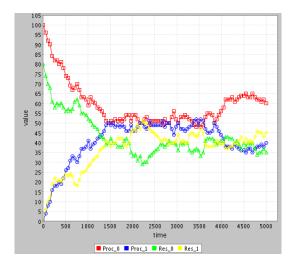
$$\begin{array}{lll} Proc_0 & \stackrel{def}{=} & (task1, r_1).Proc_1 \\ Proc_1 & \stackrel{def}{=} & (task2, r_2).Proc_0 \\ Res_0 & \stackrel{def}{=} & (task1, r_3).Res_1 \\ Res_1 & \stackrel{def}{=} & (reset, r_4).Res_0 \end{array}$$

$$Proc_0[N_P] \bigotimes_{\text{{task1}}} Res_0[N_R]$$

ODE interpretation

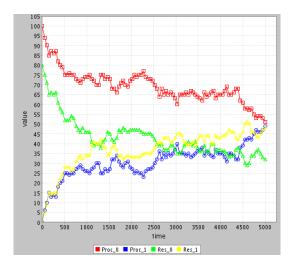
$$\frac{dx_1}{dt} = -\min(r_1 x_1, r_3 x_3) + r_2 x_2 x_1 = \text{no. of } Proc_1 \frac{dx_2}{dt} = \min(r_1 x_1, r_3 x_3) - r_2 x_2$$

$$\frac{x_2}{t} = \min(r_1 x_1, r_3 x_3) - r_2 x_2 x_2 = \text{no. of } Proc_2$$

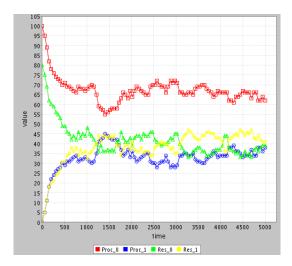

 $\frac{d}{d}$

$$\frac{x_3}{t} = -\min(r_1 x_1, r_3 x_3) + r_4 x_4 x_3 = \text{no. of } Res_0$$

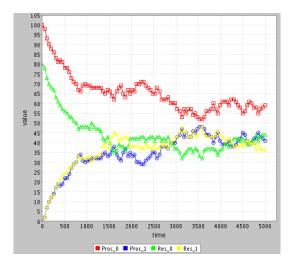
$$\frac{dx_4}{dt} = \min(r_1 x_1, r_3 x_3) - r_4 x_4 x_4 = \text{no. of } Res_1$$


Numerical illustratior

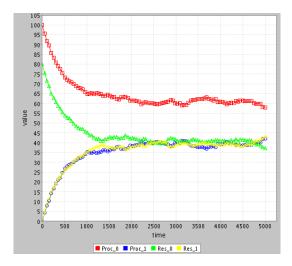
100 processors and 80 resources (simulation run A)


Numerical illustratior

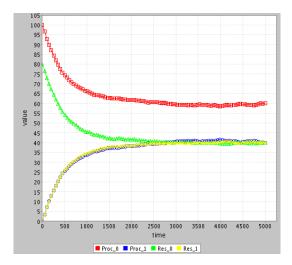
100 processors and 80 resources (simulation run B)


Numerical illustratior

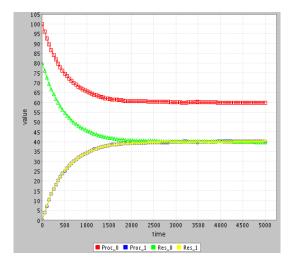
100 processors and 80 resources (simulation run C)


Numerical illustratior

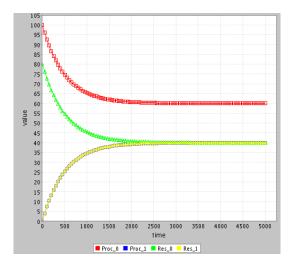
100 processors and 80 resources (simulation run D)


Numerical illustratior

100 processors and 80 resources (average of 10 runs)


Numerical illustration

100 Processors and 80 resources (average of 100 runs)


Numerical illustratior

100 processors and 80 resources (average of 1000 runs)

Numerical illustratior

100 processors and 80 resources (ODE solution)

Outline

- Introduction
 - Stochastic Process Algebra
- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous ApproximationNumerical illustration

4 Example

- Model
- Model Evaluation

5 Conclusions

Alternative interpretations

Case study: A Virtual University

Location, Time, and Size

Case study: e-University Course Selection

The e-University was one of the case studies considered in the recently completed SENSORIA project, an EU project focussed on service-oriented computing.

Case study: e-University Course Selection

The e-University was one of the case studies considered in the recently completed SENSORIA project, an EU project focussed on service-oriented computing.

In the Course Selection scenario students obtain information about the courses available at their education establishment and may enrol in those for which specific requirements are satisfied.

Case study: e-University Course Selection

The e-University was one of the case studies considered in the recently completed SENSORIA project, an EU project focussed on service-oriented computing.

In the Course Selection scenario students obtain information about the courses available at their education establishment and may enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed in an actual application (e.g. authentication services) because their impact on performance is assumed to be negligible.

Case study: e-University Course Selection

The e-University was one of the case studies considered in the recently completed SENSORIA project, an EU project focussed on service-oriented computing.

In the Course Selection scenario students obtain information about the courses available at their education establishment and may enrol in those for which specific requirements are satisfied.

The model will not consider other services which may be deployed in an actual application (e.g. authentication services) because their impact on performance is assumed to be negligible.

We assume a constant population of students e.g. the application is only accessible after the university's matriculation process is complete.

The model: services

Access to the system is through the University Portal. There are four services in this model:

Course Browsing allows the user to navigate through the University's course offerings;

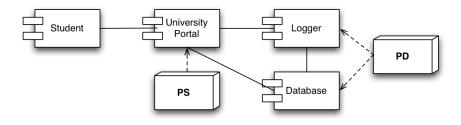
- Course Selection allows the user to submit a tentative course plan which will be validated against the University's requirements and the student's curriculum;
- Student Confirmation will enforce the student to check relevant personal details;

Course Registration will confirm the student's selection.

The model: services

Access to the system is through the University Portal. There are four services in this model:

Course Browsing allows the user to navigate through the University's course offerings;


- Course Selection allows the user to submit a tentative course plan which will be validated against the University's requirements and the student's curriculum;
- Student Confirmation will enforce the student to check relevant personal details;

Course Registration will confirm the student's selection.

These components make use of a Database service, which in turn maintains an event log through a Logger service.

– Model

The model: deployment diagram

Solid lines show request/response pairings whilst dashed lines show deployment on processors.

The model: multi-threading

- The University Portal instantiates a pool of threads.
- Each thread deals with one request from one student for one of the services offered.
- During processing the thread is locked in the sense that it cannot be acquired by further incoming requests.
- When the request is fulfilled the thread clears its state and becomes available again.

The model: multi-threading

- The University Portal instantiates a pool of threads.
- Each thread deals with one request from one student for one of the services offered.
- During processing the thread is locked in the sense that it cannot be acquired by further incoming requests.
- When the request is fulfilled the thread clears its state and becomes available again.

Analogous multi-threaded behaviour will be given to Database and Logger.

The model: multi-threading

- The University Portal instantiates a pool of threads.
- Each thread deals with one request from one student for one of the services offered.
- During processing the thread is locked in the sense that it cannot be acquired by further incoming requests.
- When the request is fulfilled the thread clears its state and becomes available again.

Analogous multi-threaded behaviour will be given to Database and Logger.

If all threads are busy requests are queued. There will also be contention with many threads running on the same processor.

L_Model

The model: modelling processors and services

$$\begin{array}{rcl} Processor_{1} & \stackrel{\text{def}}{=} & (acq, r_{acq}).Processor_{2} \\ Processor_{2} & \stackrel{\text{def}}{=} & (type_{1}, r_{1}).Processor_{1} \\ & + & (type_{2}, r_{2}).Processor_{1} \\ & + & \dots \\ & + & (type_{n}, r_{n}).Processor_{1} \end{array}$$

L_Model

The model: modelling processors and services

$$A \stackrel{\text{\tiny def}}{=} (req_{A,B}, r_{reqA}).(reply_{A,B}, r_{repA}).A'$$
$$B \stackrel{\text{\tiny def}}{=} (req_{A,B}, r_{reqB}).(execute, r).(reply_{A,B}, r_{repB}).B'$$

- Model

The model: modelling processors and services

$$A \stackrel{\text{\tiny def}}{=} (req_{A,B}, r_{reqA}).(reply_{A,B}, r_{repA}).A'$$
$$B \stackrel{\text{\tiny def}}{=} (req_{A,B}, r_{reqB}).(execute, r).(reply_{A,B}, r_{repB}).B'$$

The communication between A and B will be expressed by means of the cooperation operator $A \bowtie_{l}^{i} B, L = \{req_{A,B}, reply_{A,B}\}.$

The model: University Portal

A single thread of execution for the application layer University Portal is implemented as a sequential component which initially accepts requests for any of the services provided:

The rate ν is used throughout this model in all the request/reply activities.

The model: Course Browsing (example service)

The action type acq_{ps} is used to obtain exclusive access to processor *PS*.

$$\begin{array}{l} \textit{Browse} \stackrel{\textit{def}}{=} (\textit{acq}_{\textit{ps}}, \nu).\textit{Cache} \\ \textit{Cache} \stackrel{\textit{def}}{=} (\textit{cache}, 0.95r_{\textit{cache}}).\textit{Internal} \\ + (\textit{cache}, 0.05r_{\textit{cache}}).\textit{External} \\ \textit{Internal} \stackrel{\textit{def}}{=} (\textit{acq}_{\textit{ps}}, \nu).(\textit{internal}, r_{\textit{int}}).\textit{BrowseRep} \\ \textit{External} \stackrel{\textit{def}}{=} (\textit{req}_{\textit{external}, \textit{read}}, \nu).(\textit{reply}_{\textit{external}, \textit{read}}, \nu). \\ (\textit{acq}_{\textit{ps}}, \nu).(\textit{external}, r_{\textit{ext}}).\textit{BrowseRep} \\ \textit{BrowseRep} \stackrel{\textit{def}}{=} (\textit{reply}_{\textit{student}, \textit{browse}}, \nu).\textit{Portal} \end{array}$$

The model: Course Browsing (example service)

The action type acq_{ps} is used to obtain exclusive access to processor *PS*.

$$\begin{array}{l} \textit{Browse} \stackrel{\textit{def}}{=} (acq_{ps}, \nu).\textit{Cache} \\ \textit{Cache} \stackrel{\textit{def}}{=} (cache, 0.95r_{cache}).\textit{Internal} \\ + (cache, 0.05r_{cache}).\textit{External} \\ \textit{Internal} \stackrel{\textit{def}}{=} (acq_{ps}, \nu).(\textit{internal}, r_{int}).\textit{BrowseRep} \\ \textit{External} \stackrel{\textit{def}}{=} (req_{external,read}, \nu).(reply_{external,read}, \nu). \\ (acq_{ps}, \nu).(external, r_{ext}).\textit{BrowseRep} \\ \textit{BrowseRep} \stackrel{\textit{def}}{=} (reply_{student,browse}, \nu).\textit{Portal} \end{array}$$

The other services, Course Selection, Student Confirmation and Course Registration are modelled analogously.

The model: the database

The Database offers two functions: reading and writing.

۱

Example

The model: the database

The Database offers two functions: reading and writing.

The model: the database

The Database offers two functions: reading and writing.

Reading is a purely local computation. Writing additionally uses the Logger service.

The model: the Logger

The Logger service accepts requests from Student Confirmation and Database respectively. It is deployed on the same processor as Database, (processor *PD*) so one thread execution may be modelled as:

def =	$(req_{confirm,log}, \nu)$.LogConfirm
+	$(req_{database,log}, \nu)$.LogDatabase
def =	$(acq_{pd}, \nu).$
	(log _{conf} , r _{lgc}).ReplyConfirm
def =	$(reply_{confirm,log}, \nu).Logger$
def =	$(acq_{pd}, \nu).$
	(log _{db} , r _{lgd}).ReplyDatabase
def =	$(reply_{database,log}, \nu).Logger$
	$\begin{array}{c} + \\ def \\ = \\ def \\ = \\ def \\ = \\ \end{array}$

Model

The model: The processor PD

$$\begin{array}{lll} \mathsf{PD}_{1} & \stackrel{\text{def}}{=} & (\mathsf{acq}_{\mathsf{pd}}, \nu).\mathsf{PD}_{2} \\ \mathsf{PD}_{2} & \stackrel{\text{def}}{=} & (\mathsf{read}, \mathsf{r_{read}}).\mathsf{PD}_{1} + (\mathsf{write}, \mathsf{r_{write}}).\mathsf{PD}_{1} \\ & + & (\mathsf{log}_{conf}, \mathsf{r}_{\mathsf{lgc}}).\mathsf{PD}_{1} + (\mathsf{log}_{db}, \mathsf{r}_{\mathsf{lgd}}).\mathsf{PD}_{1} \end{array}$$

The model: Student Workload

A student is modelled as a sequential component which interacts with the university portal and accesses all of the services available. The behaviour is cyclic and the student interposes some think time between successive requests.

The model: Student Workload

A student is modelled as a sequential component which interacts with the university portal and accesses all of the services available. The behaviour is cyclic and the student interposes some think time between successive requests.

$$\begin{aligned} & StdThink \stackrel{\text{def}}{=} (think, r_{think}).StdBrowse \\ & StdBrowse \stackrel{\text{def}}{=} (req_{student, browse}, \nu).(reply_{student, browse}, \nu).StdSelect \\ & StdSelect \stackrel{\text{def}}{=} (req_{student, select}, \nu).(reply_{student, select}, \nu).StdConfirm \\ & StdConfirm \stackrel{\text{def}}{=} (req_{student, confirm}, \nu).(reply_{student, confirm}, \nu).StdRegister \\ & StdRegister \stackrel{\text{def}}{=} (req_{student, register}, \nu).(reply_{student, register}, \nu).StdThink \end{aligned}$$

The model: System Equation

The system equation captures the multiplicity of threads and processors.

$$\begin{aligned} & StdThink[N_{S}] \bowtie_{*} \left(\left(Portal[N_{P}] \bowtie_{M_{1}} ValUni[N_{P}] \bowtie_{M_{1}} ValCur[N_{P}] \right) \\ & \underset{M_{2}}{\boxtimes} Database[N_{D}] \bowtie_{M_{3}} Logger[N_{L}] \right) \bowtie_{*} \left(PS_{1}[N_{PS}] \bowtie_{\emptyset} PD_{1}[N_{PD}] \right) \end{aligned}$$

where

$$\begin{split} M_1 &= \{\textit{fork},\textit{join}\} \\ M_2 &= \{\textit{req}_{external,read},\textit{reply}_{external,read},\textit{req}_{register,write},\textit{reply}_{register,write}\} \\ M_3 &= \{\textit{req}_{confirm,log},\textit{reply}_{confirm,log},\textit{req}_{database,log},\textit{reply}_{database,log}\} \end{split}$$

The separate validating threads *ValUni* and *ValCur* inherit the multiplicity levels of the thread *Portal* which spawns them.

Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for example, adding one portal thread can result in an increase in state space size by a factor of ten.

N_S	N_P	N_D	N_L	N_{PS}	N _{PD}	Size
1	any	any	any	1	any	48
1	any	any	any	≥ 2	any	49
2	1	1	1	1	1	230
3	1	1	1	1	1	680
3	2	2	2	2	2	5540
10	2	2	2	2	2	512116
10	3	2	2	2	2	5075026

- Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for example, adding one portal thread can result in an increase in state space size by a factor of ten.

Analysis based on the explicit representation of the state space is nevertheless a valuable tool for validating the correctness of the model.

Qualitative Analysis

The state space size for this model grows very rapidly — for example, adding one portal thread can result in an increase in state space size by a factor of ten.

Analysis based on the explicit representation of the state space is nevertheless a valuable tool for validating the correctness of the model.

When there is only one student the state space is fairly small regardless of the multiplicity levels of threads and processors because at most only one of them will be used.

- Model Evaluation

Qualitative Analysis

The state space size for this model grows very rapidly — for example, adding one portal thread can result in an increase in state space size by a factor of ten.

Analysis based on the explicit representation of the state space is nevertheless a valuable tool for validating the correctness of the model.

When there is only one student the state space is fairly small regardless of the multiplicity levels of threads and processors because at most only one of them will be used.

Another form of qualitative analysis can be based on visual inspection of the reachability graph, which can be walked through to generate possible trajectories of the system.

Model Evaluation

Model Verification

We may verify that the model respects policies of exclusive access to threads and processors by direct inspection of the state space.

Student	Portal	Portal	PS					
Action type cache								
$(reply_{student, browse}, \nu).StdSelect$	Cache	Portal	PS_2					
$(reply_{student, browse}, \nu).StdSelect$	Portal	Cache	PS_2					
	Action type prepare							
$(reply_{student, select}, \nu)$.StdConfirm	Portal	(prepare, r _{prep}).ForkPrepare	PS_2					
$(reply_{student, select}, \nu)$. StdConfirm	(prepare, r _{prep}).ForkPrepare	Portal	PS_2					
· · · · · ·	Action type confirm							
$(reply_{student, confirm}, \nu)$. StdRegister	Portal	(confirm, r _{con}).LogStudent	PS_2					
$(reply_{student, confirm}, \nu)$. StdRegister	(confirm, r _{con}).LogStudent	Portal	PS_2					
Action type register								
$(reply_{student, register}, \nu)$. StdThink	(register, r _{reg}).Store	Portal	PS_2					
$(reply_{student, register}, \nu).StdThink (reply_{student, register}, \nu).StdThink$	Portal	(register, r _{reg}).Store	PS_2					

This fragment of the state space when there are two threads for the portal and one instance of all other components.

Model Evaluation

Model Verification

We may verify that the model respects policies of exclusive access to threads and processors by direct inspection of the state space.

Student	Portal	Portal	PS				
Action type cache							
$(reply_{student, browse}, \nu).StdSelect$	Cache	Portal	PS_2				
$(reply_{student, browse}, \nu).StdSelect$	Portal	Cache	PS_2				
	Action type prepare						
$(reply_{student, select}, \nu)$.StdConfirm	Portal	(prepare, r _{prep}).ForkPrepare	PS_2				
$(reply_{student, select}, \nu)$. StdConfirm	(prepare, r _{prep}).ForkPrepare	Portal	PS_2				
· · · · · · · · · · · · · · · · · · ·	Action type confirm						
$(reply_{student, confirm}, \nu)$. StdRegister	Portal	(confirm, r _{con}).LogStudent	PS_2				
$(reply_{student, confirm}, \nu)$. StdRegister	(confirm, r _{con}).LogStudent	Portal	PS_2				
Action type register							
$(reply_{student, register}, \nu)$. StdThink	(register, r _{reg}).Store	Portal	PS_2				
$(reply_{student, register}, \nu).StdThink$ $(reply_{student, register}, \nu).StdThink$	Portal	(register, r _{reg}).Store	PS_2				

This fragment of the state space when there are two threads for the portal and one instance of all other components.

A necessary condition for correctness is that if one thread is engaged in an activity the other is idle.

Model Evaluation

Model Verification

In general we do not wish to conduct such verification by hand but it may be readily undertaken using automatic tools such as the probabilistic model checker, PRISM.

Model Evaluation

Model Verification

In general we do not wish to conduct such verification by hand but it may be readily undertaken using automatic tools such as the probabilistic model checker, PRISM.

Indeed PRISM supports PEPA as one of its input languages.

Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of the state space it is limited to relatively small-scale systems.

Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of the state space it is limited to relatively small-scale systems.

But performance analysis of even these small scale systems can offer valuable insight into the behaviour of the system — for the e-University system it may be used to derive performance bound estimates.

-Model Evaluation

Markovian Analysis: Performance Bounds

Since exact Markovian analysis relies on an explicit enumeration of the state space it is limited to relatively small-scale systems.

But performance analysis of even these small scale systems can offer valuable insight into the behaviour of the system — for the e-University system it may be used to derive performance bound estimates.

If we consider the system with only one student, the performance in terms of response time perceived by the user will be optimal because there is no contention for resources — the response time for larger populations of students can only get worse.

Model Evaluation

Average response times

With only one student the state space is kept manageable and bounds can be computed quickly and accurately.

Sys	stem	Сог	nfigura	ation				
N_P	N_D	N_L	N_{PD}	N_{PS}	$N_S = 1$	$N_S = 2$	$N_S = 3$	$N_S = 4$
1	1	1	1	1	3.195	3.694	4.390	5.357
1	1	1	1	2	3.064	3.522	4.155	5.357 5.032
	3		3	3	3.064	3.065	3.066	3.074

— Model Evaluation

Calculating average response time

O PEPA - test/euniversity [□] • □] • □] • □] • □] • □] • □] • □] •	Average response	Average respons	se time	
# euniversity.pepa & mrtte = (ucu_pu, nu).(wrtte, n_wrtte).togmrtd		time		
es Logwrite = (req_database_log, hu).				
(reply_database_log, nu).WriteR			Steady state	
WriteReply = (reply_register_write, nu).Datab	IS Start time		0.0	
/* Logger Service */	Stop time		300.0	
Logger = (req_confirm_log, nu).LogConfirm + (req_database_log, nu).LogDatabase;	Time points		100	
LogConfirm = (acq_pd, nu).(log_conf, r_lgc).	Absolute tolerance		1.0E-4	
ReplyConfirm = (reply_confirm_log, nu).Logger; LogDatabase = (aca_pd, nu).(log_db, r_lad).Re	Relative tolerance		1.0E-4	
ReplyDatabase= (reply_database_log, nu).Logger		gence tolerance	1.0E-6	
/* Logger and Database processor */	Select local state in	the passage		
<pre>PD_19ge= (acq_ad, nu)=PD_2; PD_2 = (read, r=cad)=PD_1 + (log_tonf, r_lgc)=PD_1 + (log_conf, r_lgc)=PD_1 + (log_db, r_lgd /* University Portal Processor */ PS_1 = (acq_pS, nu)=PS_2; PS_2 = (cache, r_cache)=PS_1 + (internal, r_l external, r_ext)=PS_1 + (validate_un + (display, r_disp)=PS_1 + (validate_un + (register, r_reg)=PS_1;</pre>	♥ (reply_student_contrm, su.0.)stategister ♥ (reply_student_contrm, su.0.)stategister ♥ (reply_student_stategister ♥ StdRegister ♥ StdSelect ♥ StdSelect ♥ StdSelect			
StdThink[ns] <>> ((Portal[np] <fork,join> ValUn <req_external_read, reply_external_read,<br="">req_register_write,reply_register_write> Database[nd] <req_confirm_log, reply_cota<br="">req_database_log,reply_databa <*> (PS_l[nps] <> PD_l[npd]</req_confirm_log,></req_external_read,></fork,join>	firm_log, e_log> Logger[nl]			

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many more instances of the components need to be considered.

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the size that can be handled via explicit state space techniques such as Markovian analysis.

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the size that can be handled via explicit state space techniques such as Markovian analysis.

Fortunately, as multiple instances of components are involved we can consider this as a system exhibiting collective behaviour and resort to fluid approximation.

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the size that can be handled via explicit state space techniques such as Markovian analysis.

Fortunately, as multiple instances of components are involved we can consider this as a system exhibiting collective behaviour and resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be solved, for example using a fifth-order Runge-Kutta numerical integrator.

Example

Model Evaluation

Scalability and Optimisation

To study the system under realistically sized user workloads many more instances of the components need to be considered.

This gives rise to a model whose state space would far exceed the size that can be handled via explicit state space techniques such as Markovian analysis.

Fortunately, as multiple instances of components are involved we can consider this as a system exhibiting collective behaviour and resort to fluid approximation.

The model gives rise to a set of 63 coupled ODEs which can be solved, for example using a fifth-order Runge-Kutta numerical integrator.

Of course an alternative would be to use stochastic simulation.

Example

Model Evaluation

Scalability analysis

$$N_P = N_D = N_L = 80, N_{PD} = 40, N_{PS} = 40.$$

N_S	ODE	Runtime	СТМС	Runtime	Error
1	2.975	2.7 s	3.091	436 s	3.74%
300	2.975	2.7 s	3.105	2656 s	4.17%
325	2.975	2.6 s	3.329	3017 s	10.62%
350	3.686	2.9 s	3.863	6505 s	4.57%
400	5.999	7.3 s	5.993	4465 s	0.10%
500	10.623	6.6 s	10.534	3845 s	0.84%
600	15.248	6.6s	15.233	2985 s	0.10%

Stochastic simulation was conducted using the method of batch means, terminated when the 95% confidence interval was \leq 1% of the average.

In addition to the workload parameter N_S there are 20 other parameters in the model: 15 rate parameters and 5 concurrency levels for threads and processors.

In addition to the workload parameter N_S there are 20 other parameters in the model: 15 rate parameters and 5 concurrency levels for threads and processors.

A typical scenario may be that the rate parameters are hardware-dependent and cannot be revised, and the workload is fixed, determined by the student population.

In addition to the workload parameter N_S there are 20 other parameters in the model: 15 rate parameters and 5 concurrency levels for threads and processors.

A typical scenario may be that the rate parameters are hardware-dependent and cannot be revised, and the workload is fixed, determined by the student population.

The modeller's role is then to determine an optimal configuration for the concurrency levels of the system with respect to user-perceived performance, e.g. average response time.

In addition to the workload parameter N_5 there are 20 other parameters in the model: 15 rate parameters and 5 concurrency levels for threads and processors.

A typical scenario may be that the rate parameters are hardware-dependent and cannot be revised, and the workload is fixed, determined by the student population.

The modeller's role is then to determine an optimal configuration for the concurrency levels of the system with respect to user-perceived performance, e.g. average response time.

Let us assume a workload population of 350 students and assume that the response time previously found for this workload is acceptable.

The table shows the response times calculated with different system configurations of similar size.

Conf.	N_P	N_D	N_L	N_{PS}	N _{PD}	Response time
A	80	80	80	40	40	3.686
В	70	70	70	40	40	3.686
С	60	60	60	40	40	4.506
D	70	70	70	35	35	5.998
Ε	70	50	50	40	40	3.686
F	70	20	20	40	40	3.686
G	70	20	15	40	40	4.278
Н	70	15	20	40	40	5.024

The table shows the response times calculated with different system configurations of similar size.

Conf.	N_P	N_D	N_L	N_{PS}	N _{PD}	Response time
A	80	80	80	40	40	3.686
В	70	70	70	40	40	3.686
С	60	60	60	40	40	4.506
D	70	70	70	35	35	5.998
Ε	70	50	50	40	40	3.686
F	70	20	20	40	40	3.686
G	70	20	15	40	40	4.278
Н	70	15	20	40	40	5.024

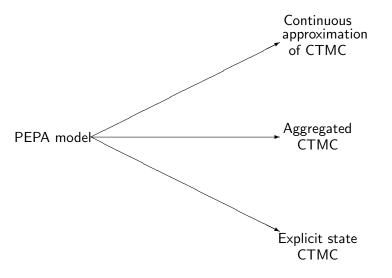
The table shows the response times calculated with different system configurations of similar size.

Conf.	N_P	N_D	N_L	N_{PS}	N _{PD}	Response time
A	80	80	80	40	40	3.686
В	70	70	70	40	40	3.686
С	60	60	60	40	40	4.506
D	70	70	70	35	35	5.998
Ε	70	50	50	40	40	3.686
F	70	20	20	40	40	3.686
G	70	20	15	40	40	4.278
Н	70	15	20	40	40	5.024

Outline

- Introduction
 - Stochastic Process Algebra
- 2 Interpreting SPA for performance modelling
 - Identity and Individuality
 - Collective Dynamics
- 3 Continuous ApproximationNumerical illustration
- 4 Example
 - Model
 - Model Evaluation

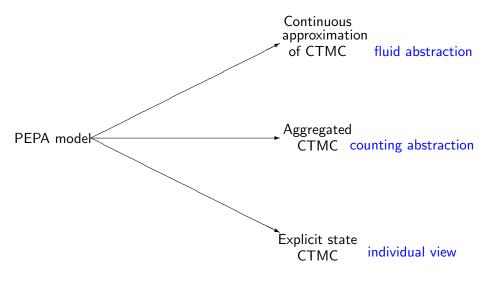
5 Conclusions


Alternative interpretations


SPA — From Individuals to Populations

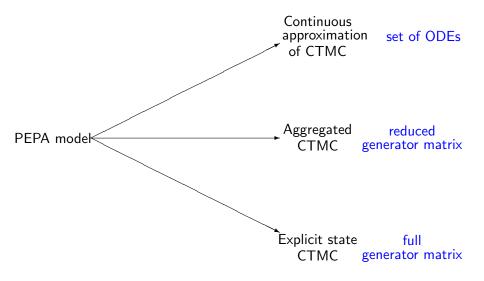
- Conclusions

Alternative interpretation:


Scalable Representations

Alternative interpretation

Scalable Representations



SPA — From Individuals to Populations

- Conclusions

Alternative interpretation:

Scalable Representations

SPA - From Individuals to Populations

Conclusions

Alternative interpretations

Eclipse Plug-in for PEPA

) ()				PEPA	A – test/euniversity.	LaTeXif	y					
. 🗆	n as I o .	. 0.	181.		• d> -		CTMC			> 1	Aggreg	ate arra	ays
		• • • •	1 1 1 1	v			Scalabl	e Analys	is	•	🐁 Deri	ve	
Me	euniversit	y.pepa	×				Time Se	eries Ana	alysis Wizar	d !	Steady	State A	nalysis.
ŀ	/* Logge	r Serv	rice 📍	(-					nentati	
i						LogConfirm				-			
						.LogDatabase;							1.1
L	LogConfi	- nm	(ac	_pd, nu)	.(log	_conf, r_lgc).R	eplyConfir	n;					
						g, nu).Logger;							
						<pre>_db, r_lgd).Rep og, nu).Logger;</pre>	Lybatabase	;					
11	ReplyDut	abase=	(re	ory_aacaba	use_t	og, nu).Logger;							
١,	/* Logge	r and	Datab	se proces	ssor	*/							
	PD_1 =												-
					+(wr	ite, r_write).P	0_1						
	-	(100	1 m m	1		(log_db, r_lgd)	PD 1.						
	_	(rog	cont,	r_lgc).Pl	J_I +	(log_ab, r_lga)					•	1	- T
1 1 1						Model Chec 🗖 St		• c	raph View	Progre	ss 🖸 I	Console	- 0
	Problems					*****		G	raph View	Progre	ss 🖾 I	Console	_
						*****		• c	raph View 🤇	Progre) 55 🖾 (Console	- 0
48 s	Problems	AST			on M	*****			raph View	Progre		Console	- 0
48 s 1	Problems	AST			on Ø	Model Chec 🗖 Si	ate Space 🛛	ValCur		Logger	P5_1	Console	- 0
48 s 1 2	Problems states StdThinl StdBrow	AST	View	Abstracti	on Ø	Model Chec SI	ate Space 🕅 ValUni	ValCur ValCur	Database	Logger	P5_1	Console	- 0
48 s 1 2 3	Problems states StdThinl StdBrow (reply_st	AST	View		on Ø	Model Chec 🗔 Si Portal Portal Browse	ate Space ⊠ ValUni ValUni	ValCur ValCur ValCur	Database Database	Logger Logger Logger	PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4	Problems states StdThinl StdBrow (reply_st (reply_st	AST	View .	Abstracti	on Ø	Model Chec St Portal Portal Browse Cache	ate Space 🛱 ValUni ValUni ValUni ValUni	ValCur ValCur ValCur ValCur	Database Database Database	Logger Logger Logger Logger	PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5	Problems states StdThinl StdBrow (reply_st (reply_st (reply_st	AST	View .	Abstracti 50.0).StdS 50.0).StdS	on Ø	Model Chec St Portal Portal Browse Cache Internal	vate Space ⊠ ValUni ValUni ValUni ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database	Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_2 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6	Problems states StdThinl StdBrow (reply_st (reply_st (reply_st (reply_st	AST	View .	Abstracti 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS	on Ø	Model Chec St Portal Portal Browse Cache Internal	vate Space № ValUni ValUni ValUni ValUni ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database	Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6 7	Problems states StdThinl StdBrow (reply_st (reply_st (reply_st (reply_st) (reply_st)	AST k tudent_ tudent_ tudent_ tudent_	View browse browse browse browse browse	Abstracti 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS	on Ø	Model Chec C Si Portal Portal Browse Cache Internal External	ate Space ⊠ ValUni ValUni ValUni ValUni ValUni SeRe ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Database Database	Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1 PS_2	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6 7 8	States StdThinl StdBrow (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st)	AST k tudent_ tudent_ tudent_ tudent_ tudent_	View browse browse browse browse browse browse	Abstracti 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS	elect elect elect elect elect elect elect	Model Chec Si Portal Portal Browse Gache Internal External (internal, 3.0).Brow	ate Space ⊠ ValUni ValUni ValUni ValUni ValUni SeRe ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Database Database	Logger Logger Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1 PS_2	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6 7 8 9	States StdThinl StdBrows (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st	AST	View browse browse browse browse browse browse browse	Abstracti 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS	elect elect elect elect elect elect elect elect	Model Chec Si Portal Portal Portal Rowse Cache Internal External (internal, 3.0).Brow	valUni ValUni ValUni ValUni ValUni ValUni seRe ValUni d, SC ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Database Read	Logger Logger Logger Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_2 PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6 7 8 9 10	States StdThinl StdBrows (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st	AST	View browse browse browse browse browse browse browse	Abstracti 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS 50.0).5tdS	elect elect elect elect elect elect elect elect elect	Model Chec State Portal Portal Portal Browse Cache Internal External (internal, 3.0).Brow (reply_external_rea BrowseRep BrowseRep BrowseRep Portsetternal_rea BrowseRep Bro	valUni ValUni ValUni ValUni ValUni ValUni seRe ValUni d, SC ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Read Database (read, 5.0).	Logger Logger Logger Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_2 PS_1 PS_1 PS_2 PS_1 PS_2 PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
48 s 1 2 3 4 5 6 7 8 9 10 11	StdThinl StdBrow (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st (reply_st StdSelec	AST k tudent_ tudent_ tudent_ tudent_ tudent_ tudent_ tudent_	browse browse browse browse browse browse browse browse	Abstracti 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS	elect elect elect elect elect elect elect elect	Model Chec St Portal Portal Portal Rrowse Cache Internal External (internal, 3.0.Brow (reply_external_rea BrowseRep (reply_external_rea	ValUni ValUni ValUni ValUni ValUni ValUni seRe ValUni d, SC ValUni ValUni d, SC ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Database Read Database (read, 5.0). Database	Logger Logger Logger Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1 PS_1 PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0
	StdThinl StdThinl StdThinl StdThinl StdBrow (reply_st (reply_st (reply_st (reply_st (reply_st StdSelec (reply_st	AST k se tudent_ tudent_ tudent_ tudent_ tudent_ tudent_ tudent_ t	browse browse browse browse browse browse browse browse browse	Abstracti 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS 50.0).StdS	elect elect elect elect elect elect elect elect elect elect	Model Chec St Portal Portal Portal Browse Cache Internal External External BrowseRp (repl_external_rea Portal Porta Portal Portal Portal Portal Portal Portal Porta Portal Portal Porta	ValUni ValUni ValUni ValUni ValUni ValUni seRe ValUni d, SC ValUni ValUni d, SC ValUni ValUni	ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur ValCur	Database Database Database Database Database Database Database Read Database (read, 5.0). Database	Logger Logger Logger Logger Logger Logger Logger Logger Logger Logger	PS_1 PS_1 PS_1 PS_2 PS_1 PS_1 PS_1 PS_1 PS_1 PS_1 PS_1 PS_1	PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1 PD_1	- 0

Robust tool support is essential to make develop techniques practical.

-Alternative interpretations

Other applications

PEPA, and the associated analysis techniques, were originally developed with the objective of studying computer systems.

However, it has also be adopted by modelling a wide-range of other types of system:

- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Automotive on-board diagnostics expert systems (Console, Picardi and Ribaudo)
- Biological cell signalling pathways (Calder, Duguid, Gilmore and Hillston)
- Crowd dynamics in informatic environments (Harrison, Latella and Massink)

SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Conclusions

Many interesting and important systems can be regarded as examples of collective dynamics and emergent behaviour.

Alternative interpretations

Conclusions

- Many interesting and important systems can be regarded as examples of collective dynamics and emergent behaviour.
- Process algebras, such as PEPA, are well-suited to modelling the behaviour of such systems in terms of the individuals and their interactions.

Alternative interpretations

Conclusions

- Many interesting and important systems can be regarded as examples of collective dynamics and emergent behaviour.
- Process algebras, such as PEPA, are well-suited to modelling the behaviour of such systems in terms of the individuals and their interactions.
- Continuous approximation allows a rigorous mathematical analysis of the average behaviour of such systems.

Alternative interpretations

Conclusions

- Many interesting and important systems can be regarded as examples of collective dynamics and emergent behaviour.
- Process algebras, such as PEPA, are well-suited to modelling the behaviour of such systems in terms of the individuals and their interactions.
- Continuous approximation allows a rigorous mathematical analysis of the average behaviour of such systems.
- This alternative view of systems has opened up many and exciting new research directions.

SPA — From Individuals to Populations

Conclusions

Alternative interpretations

Thanks!

Alternative interpretations

Thanks!

Acknowledgements: collaborators

Thanks to many co-authors and collaborators: Jeremy Bradley, Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti Galpin, Nil Gesweiller, **Stephen Gilmore**, Marco Stenico, Nigel Thomas, **Mirco Tribastone**, and others.

Alternative interpretations

Thanks!

Acknowledgements: collaborators

Thanks to many co-authors and collaborators: Jeremy Bradley, Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti Galpin, Nil Gesweiller, **Stephen Gilmore**, Marco Stenico, Nigel Thomas, **Mirco Tribastone**, and others.

Acknowledgements: funding

The PEPA project has received funding from the EPRSC, BBSRC, the Royal Society and the CEC IST-FET programme.

Alternative interpretations

Thanks!

Acknowledgements: collaborators

Thanks to many co-authors and collaborators: Jeremy Bradley, Luca Bortolussi, Allan Clark, Graham Clark, Adam Duguid, Vashti Galpin, Nil Gesweiller, **Stephen Gilmore**, Marco Stenico, Nigel Thomas, **Mirco Tribastone**, and others.

Acknowledgements: funding

The PEPA project has received funding from the EPRSC, BBSRC, the Royal Society and the CEC IST-FET programme.

More information:

http://www.dcs.ed.ac.uk/pepa