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Collective Systems

We are surrounded by examples of collective systems:

Most of these systems are also adaptive to their environment.
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective
behaviour.
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The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.
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Collective Adaptive Systems

Such systems are often embedded in our environment and need to
operate without centralised control or direction.

Moreover when conditions within the system change it may not be
feasible to have human intervention to adjust behaviour
appropriately.

Thus systems must be able to autonomously adapt.
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The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.
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The Informatic Environment

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.

Their transparency to the end-user means that it is paramount
that the designers of such systems seek to ensure that their
behaviour in terms of both qualitative and quantitative properties
will be as anticipated.
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Dependability modelling aims to predict the availability and
reliability of systems in use from the users’ perspective.

Markovian-based discrete event models have been applied to
computer and communication systems for these purposes since the
early 20th century.

Unfortunately like all discrete state modelling techniques,
Markovian models are prone to the problem of state space
explosion.
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Does timeliness matter...?

There is sometimes a perception in software development that
performance does not matter much, or that it is easily fixed later
by buying a faster machine.

On the contrary — studies have shown that response time is a key
feature in user satisfaction and trust in systems.

In a 2009 study by Amazon they artificially delayed page loading
times in increments of 100 milliseconds. Even such very small
delays were observed to result in substantial and costly drops in
revenue.

Gary Linden, Amazon, quoted on http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency

AOL, Bing and Google report similar findings.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency
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Quantitative Analysis in a Smart City Scenario

Capacity planning

How many buses do I need
to maintain service at peak
time in a smart urban
transport system?
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Quantitative Analysis in a Smart City Scenario

System Configuration

What capacity do I need at
bike stations to minimise the
movement of bikes by truck
and/or the dissatisfaction of
users?
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Quantitative Analysis in a Smart City Scenario

System Tuning

What strategy can I use to
maintain supply-demand
balance within a smart
electricity grid?
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Quantitative Analysis of CAS

To support the development of CAS which meet quantitative
objectives we need an innovative formal design framework:

an unambiguous way of describing the behaviour of the
systems we are interested in;

a process algebra-based language

a logic or requirements language which allows us to express
the behaviours we wish our designed system to have;

a logic

automatic ways to check the description against the
requirements, captured in software tools;

model checking

rules that help us construct systems to meet commonly
occurring requirements

a design methodology.

Such a framework is being developed in the EU-funded
QUANTICOL project.
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

For this purpose we use a Stochastic/Markovian Process Algebra.
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
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action type
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a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.
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The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking
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Modelling collective behaviour

A key feature of collective systems is the existence of populations
of entities who share certain characteristics.

High-level modelling formalisms allow this repetition to be
captured at the high-level rather than explicitly.
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Process Algebra for CAS

Process algebra are well-suited for constructing models of CAS:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

State-dependent functional rates allow adaptation to be
captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

Recent advances in analysis techniques for process algebras have
made it possible to study such systems even when the number of
entities and activities become huge.
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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probability distribution.
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.



Quantitative Analysis of CAS Mathematical analysis: fluid approximation 76/ 136

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Our approach to analysing collective behaviour is to make a
counting abstraction and view the system not in terms of the
individual components but in terms of proportions within the
subpopulations.

This constitutes a continuous, fluid or mean field approximation.
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Analysing collective behaviour

Process algebra models typically give rise to discrete state
mathematical representations, where a state of the whole system is
defined in terms of the state of each of the individual entities in
the system.

This rapidly leads to enormous numbers of states which are
computationally expensive, or even prohibitive, to explore.

Our approach to analysing collective behaviour is to make a
counting abstraction and view the system not in terms of the
individual components but in terms of proportions within the
subpopulations.
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Identity and Individuality

Collective systems are constructed from many instances of a set of
components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
proportions vary over time.
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Deriving a Fluid Approximation of a SPA model

The approach is based on a semantics which represents the CTMC
implicitly (avoiding state space explosion), and which generates the
set of ODEs which are the fluid limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
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M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs: this family forms a sequence as the initial
populations are scaled by a variable n.

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.
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Deriving properties: fluid model checking

Just as with Markovian-based quantitative analysis, the direct
study of the behaviour of the model in terms of the exhibited
behaviour, whilst valuable, is sometimes not sufficient to assess the
system properties which we wish to ensure.

Thus we seek the analogy of the stochastic model checking as
supported by tools such as PRISM or MRMC, but without the
dependence on an explicit discrete state space of the whole system.
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Fluid model checking

Since the vector field records only deterministic behaviour, LTL
model checking can be used over a trace to give boolean results.

We would like more quantified answers, as in stochastic model
checking — work on this is on-going but there are initial results:

CSL properties of a single agent within a population.

L.Bortolussi and J.Hillston. Fluid model checking. CONCUR 2012.

The fraction of a population that satisfies a property
expressed as a one-clock deterministic timed automaton.

L.Bortolussi and R.Lanciani. Central Limit Approximation for Stochastic Model Checking. QEST 2013.

Approximating the probability that a given set of states in the
population state space will be reached.

L.Bortolussi and R.Lanciani.

Stochastic Approximation of Global Reachability Probabilities of Markov Population Models. EPEW 2014.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

This agent is kept discrete, making transitions between its discrete
states, but all other agents are treated as a mean-field influencing
the behaviour of this agent.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

Essentially we keep a detailed discrete-event representation of the
one agent and make a fluid approximation of the rest of the
population.
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Inhomogeneous CTMC

The transition rates within the discrete-event representation will
depend on the rest of the population.

i.e. it will depend on the vector field capturing the behaviour of the
residual population.
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where fi = f
( )

It is an inhomogeneous continuous time Markov chain.
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Model checking the ICTMC

Care is needed to model check the ICTMC, which proceeds by
explicitly calculating the reachability probability probabilities for
states of interest (analogously to CSL model checking on CTMCs).

The inhomogeneous time within the model means that truth values
may change with respect to time.
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Challenges for modelling CAS

The work so far has demonstrated the potential power of the fluid
approximation approach and its validity as an approach to the
quantitative analysis of (some) CAS.

Whilst this provides a solid basic framework for modelling systems
with collective behaviour there remain a number of challenges:

Spatial aspects

Richer forms of interaction and adaptation

Extending model checking capabilities
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Modelling space

Whilst fluid approximation of stochastic process algebra models can
be used to model collective systems there is an implicit assumption
that the system is well-mixed, i.e. all components are co-located.

We can impose the effects of space by encoding it into the
behaviour of the actions of components and distinguishing the
same component in different location as distinct types, but this is
modelling space implicitly.

Given the important role that location and movement play within
many CAS, e.g. smart cities, it would be preferable to model space
explicitly.

This poses significant challenges both of model expression and
model solution.
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Fluid approximation and space

There is a danger that as we distinguish subpopulations by their
location, we no longer have a large enough population to justify
the fluid approximation.
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Richer forms of interaction

If we consider real collective adaptive systems, especially those
with emergent behaviour, they embody rich forms of interaction,
often based on asynchronous communication.

For example, pheromone trails left by social insects.

Languages like SCEL (and CASPA) offer these richer
communication patterns, with components which include a
knowledge store which can be manipulated by other components
and attribute-based communication.
R.De Nicola, G.Ferrari, M.Loreti, R.Pugliese. A Language-Based Approach to Autonomic Computing. FMCO 2011.

Developing scalable analysis techniques, such a fluid approximation,
for such languages is challenging as again the individuals within
the population are being differentiated by their attributes.
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knowledge store which can be manipulated by other components
and attribute-based communication.
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Adaptation

Current stochastic process algebras model adaptation in the sense
of allowing functional rates which depend on the current state of
the system.

In this case the possible states of the system remain the same, but
the dynamics may change how likely some of those states are.

Is this enough?

Do we need more radical adaptation and if so, how do we
capture it during model construction and evaluate it during
model analysis?



Challenges and future prospects 131/ 136

Adaptation

Current stochastic process algebras model adaptation in the sense
of allowing functional rates which depend on the current state of
the system.

In this case the possible states of the system remain the same, but
the dynamics may change how likely some of those states are.

Is this enough?

Do we need more radical adaptation and if so, how do we
capture it during model construction and evaluate it during
model analysis?



Challenges and future prospects 132/ 136

Adaptation

Current stochastic process algebras model adaptation in the sense
of allowing functional rates which depend on the current state of
the system.

In this case the possible states of the system remain the same, but
the dynamics may change how likely some of those states are.

Is this enough?

Do we need more radical adaptation and if so, how do we
capture it during model construction and evaluate it during
model analysis?



Challenges and future prospects 133/ 136

Extending model checking capabilities

Model checking offers the possibility of detailed interrogation of
models via sophisticated properties rigorously expressed in logic.

This can be used to used to check to satisfaction of regulatory
requirements are as well as user requirements.

But the scale of CAS remains a challenge, and the incorporation of
space into models necessitates the definition of spatial-temporal
logics for the expression of properties.
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