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Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
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I Checking the system will behave correctly.

I Analysing the capacity of the system.
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Detailed view of Behaviour — State Machine
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Advancing Modelling Technology

The complexity and concurrency of a modern computer system
would make it infeasible to construct the state machine to model
its possible behaviours.

Instead language-based modelling techniques which focus on the
compositionality and interaction within a system were developed.

These are called process algebras and were first developed in the
1980s by Robin Milner and Tony Hoare.

Later version of the formalisms included information about the
timing and resource use associated with the represented processes:
these are stochastic process algebras.
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Disks revisited

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working
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Constructing models from simple components

Client

Client idle
def
= (request, λ).Clientwaiting

Clientwaiting
def
= (response,>).Client idle

Server

Server idle
def
= (request,>).Server computing

Server computing
def
= (compute, π).Server responding

Server responding
def
= (response, ρ).Server idle

System

System
def
= Client idle [3] BC

L
Server idle [2]

where L = {request, response}



Other applications

The compositional modelling style of process algebras has also
been applied to modelling other things as well as computers, most
notably biochemical pathways in systems biology.

There has been substantial work recognising that within a cell
there are many molecules interacting through reactions which may
be occurring simultaneously.

In general stochastic process algebras provide a good framework
for modelling systems in which the collective behaviour emerges as
the result of a large number of individuals, acting and interacting
in a predefined, but stochastic, manner.
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Mote scale

Smaller and smaller devices create the possibily of a network
around each person.



Challenges of modelling ubiquitous systems

Populations of computing entities will be a significant
part of our environment, performing tasks that support
us, and we shall be largely unaware of them.

Mark Weiser 1994

The technology is now available to make this vision a reality but as
we enter this new informatic era there is a greater need to model
computer systems to understand and predict their behaviour.

Unfortunately the scale of the systems is such that our existing
modelling techniques are severely challenged by ubiquitous systems.
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Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.
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