
Compositional dynamic modelling:
a Computer Science perspective

Jane Hillston
The University of Edinburgh



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Models of Computer Systems

Many disciplines recognise the benefits of modelling — in the
context of computer science models are generally constructed
during the design phase of systems.

Motivations include:

I Checking the system will behave correctly.

I Analysing the capacity of the system.

I Predicting the performance of the system.



Simple model of Disk Behaviour

W F

read

write

fail

correct



Simple model of Disk Behaviour

W F

read

write

fail

correct



Simple model of Disk Behaviour

W F

read

write

fail

correct



Detailed view of Behaviour — State Machine



Advancing Computer Technology

ENIAC c. 1946



Advancing Computer Technology

standard laptop c. 2006



Advancing Computer Technology

Intel dual core



Disks revisited

W F

read

write

fail

correct

W F

read

write

fail

correct

Constructing a model directly in terms of the possible states
rapidly becomes a daunting prospect



Disks revisited

W F

read

write

fail

correct

W F

read

write

fail

correct

Constructing a model directly in terms of the possible states
rapidly becomes a daunting prospect



Disks revisited

W F

read

write

fail

correct

W F

read

write

fail

correct

Constructing a model directly in terms of the possible states
rapidly becomes a daunting prospect



Disks revisited

W F

read

write

fail

correct

W F

read

write

fail

correct

Constructing a model directly in terms of the possible states
rapidly becomes a daunting prospect



Disks revisited

W F

read

write

fail

correct

W F

read

write

fail

correct

Constructing a model directly in terms of the possible states
rapidly becomes a daunting prospect



Advancing Modelling Technology

The complexity and concurrency of a modern computer system
would make it infeasible to construct the state machine to model
its possible behaviours.

Instead language-based modelling techniques which focus on the
compositionality and interaction within a system were developed.

These are called process algebras and were first developed in the
1980s by Robin Milner and Tony Hoare.

Later version of the formalisms included information about the
timing and resource use associated with the represented processes:
these are stochastic process algebras.



Advancing Modelling Technology

The complexity and concurrency of a modern computer system
would make it infeasible to construct the state machine to model
its possible behaviours.

Instead language-based modelling techniques which focus on the
compositionality and interaction within a system were developed.

These are called process algebras and were first developed in the
1980s by Robin Milner and Tony Hoare.

Later version of the formalisms included information about the
timing and resource use associated with the represented processes:
these are stochastic process algebras.



Advancing Modelling Technology

The complexity and concurrency of a modern computer system
would make it infeasible to construct the state machine to model
its possible behaviours.

Instead language-based modelling techniques which focus on the
compositionality and interaction within a system were developed.

These are called process algebras and were first developed in the
1980s by Robin Milner and Tony Hoare.

Later version of the formalisms included information about the
timing and resource use associated with the represented processes:
these are stochastic process algebras.



Advancing Modelling Technology

The complexity and concurrency of a modern computer system
would make it infeasible to construct the state machine to model
its possible behaviours.

Instead language-based modelling techniques which focus on the
compositionality and interaction within a system were developed.

These are called process algebras and were first developed in the
1980s by Robin Milner and Tony Hoare.

Later version of the formalisms included information about the
timing and resource use associated with the represented processes:
these are stochastic process algebras.



Disks revisited

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

W F

read

write

fail

correct

W F

read

write

fail

correct



Compositional View of Behaviour



Compositional View of Behaviour



Compositional View of Behaviour



Constructing models from simple components

Client

Client idle
def
= (request, λ).Clientwaiting

Clientwaiting
def
= (response,>).Client idle

Server

Server idle
def
= (request,>).Server computing

Server computing
def
= (compute, π).Server responding

Server responding
def
= (response, ρ).Server idle

System

System
def
= Client idle [3] BC

L
Server idle [2]

where L = {request, response}



Other applications

The compositional modelling style of process algebras has also
been applied to modelling other things as well as computers, most
notably biochemical pathways in systems biology.

There has been substantial work recognising that within a cell
there are many molecules interacting through reactions which may
be occurring simultaneously.

In general stochastic process algebras provide a good framework
for modelling systems in which the collective behaviour emerges as
the result of a large number of individuals, acting and interacting
in a predefined, but stochastic, manner.



Other applications

The compositional modelling style of process algebras has also
been applied to modelling other things as well as computers, most
notably biochemical pathways in systems biology.

There has been substantial work recognising that within a cell
there are many molecules interacting through reactions which may
be occurring simultaneously.

In general stochastic process algebras provide a good framework
for modelling systems in which the collective behaviour emerges as
the result of a large number of individuals, acting and interacting
in a predefined, but stochastic, manner.



Other applications

The compositional modelling style of process algebras has also
been applied to modelling other things as well as computers, most
notably biochemical pathways in systems biology.

There has been substantial work recognising that within a cell
there are many molecules interacting through reactions which may
be occurring simultaneously.

In general stochastic process algebras provide a good framework
for modelling systems in which the collective behaviour emerges as
the result of a large number of individuals, acting and interacting
in a predefined, but stochastic, manner.



Internet scale



Mote scale

Smaller and smaller devices create the possibily of a network
around each person.



Challenges of modelling ubiquitous systems

Populations of computing entities will be a significant
part of our environment, performing tasks that support
us, and we shall be largely unaware of them.

Mark Weiser 1994

The technology is now available to make this vision a reality but as
we enter this new informatic era there is a greater need to model
computer systems to understand and predict their behaviour.

Unfortunately the scale of the systems is such that our existing
modelling techniques are severely challenged by ubiquitous systems.



Challenges of modelling ubiquitous systems

Populations of computing entities will be a significant
part of our environment, performing tasks that support
us, and we shall be largely unaware of them.

Mark Weiser 1994

The technology is now available to make this vision a reality but as
we enter this new informatic era there is a greater need to model
computer systems to understand and predict their behaviour.

Unfortunately the scale of the systems is such that our existing
modelling techniques are severely challenged by ubiquitous systems.



Challenges of modelling ubiquitous systems

Populations of computing entities will be a significant
part of our environment, performing tasks that support
us, and we shall be largely unaware of them.

Mark Weiser 1994

The technology is now available to make this vision a reality but as
we enter this new informatic era there is a greater need to model
computer systems to understand and predict their behaviour.

Unfortunately the scale of the systems is such that our existing
modelling techniques are severely challenged by ubiquitous systems.



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states

= 2152 bytes = 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes

= 282 × 270 bytes = 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes

= 282 zettabytes



State-space explosion

Disks States

1 2

2 4

6 64

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

150 1427247692705959881058285969449495136382746624

2150 states = 2152 bytes = 282 × 270 bytes = 282 zettabytes



Compositionality and Abstraction

One approach is to make use of the compositional structure and
abstract away detail of the internal behaviour of components.



Compositionality and Abstraction

One approach is to make use of the compositional structure and
abstract away detail of the internal behaviour of components.



Compositionality and Abstraction

One approach is to make use of the compositional structure and
abstract away detail of the internal behaviour of components.



Compositionality and Abstraction

One approach is to make use of the compositional structure and
abstract away detail of the internal behaviour of components.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

W F

read

write

fail

correct

W F

read

write

fail

correct

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

W F

read

write

fail

correct

W F

read

write

fail

correct

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

2W 1W 0W

read

write

fail

correct

read

write

fail

correct

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Identity and Individuality

Many of the systems we consider are constructed from many
instances of the a set of components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

2W 1W 0W

read

write

fail

correct

read

write

fail

correct

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.



Collective Behaviour
In the natural world there are many instances of collective
behaviour and its consequences:



Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:



Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:



Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.



Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.



Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.



Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.



Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

I We have W working disks
and F failed (W + F = N).

I Working disks fail at rate
f ×W .

I Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F



Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

I We have W working disks
and F failed (W + F = N).

I Working disks fail at rate
f ×W .

I Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F



Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

I We have W working disks
and F failed (W + F = N).

I Working disks fail at rate
f ×W .

I Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F



Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

I We have W working disks
and F failed (W + F = N).

I Working disks fail at rate
f ×W .

I Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F



Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

I We have W working disks
and F failed (W + F = N).

I Working disks fail at rate
f ×W .

I Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F



Conclusions

Over the last decade stochastic process algebra have been
successful in modelling a wide range of computer systems and their
performance.

The compositional style supports representation of large systems.

The shift to the collective dynamic view supports analysis of very
large systems.

Nevertheless there are significant challenges ahead as ubiquitous
systems become a reality.



Conclusions

Over the last decade stochastic process algebra have been
successful in modelling a wide range of computer systems and their
performance.

The compositional style supports representation of large systems.

The shift to the collective dynamic view supports analysis of very
large systems.

Nevertheless there are significant challenges ahead as ubiquitous
systems become a reality.



Conclusions

Over the last decade stochastic process algebra have been
successful in modelling a wide range of computer systems and their
performance.

The compositional style supports representation of large systems.

The shift to the collective dynamic view supports analysis of very
large systems.

Nevertheless there are significant challenges ahead as ubiquitous
systems become a reality.



Conclusions

Over the last decade stochastic process algebra have been
successful in modelling a wide range of computer systems and their
performance.

The compositional style supports representation of large systems.

The shift to the collective dynamic view supports analysis of very
large systems.

Nevertheless there are significant challenges ahead as ubiquitous
systems become a reality.



Acknowledgements

Stochastic process algebra group and collaborators at Edinburgh

Allan Clark, Jie Ding, Adam Duguid, Vashti Galpin, Stephen Gilmore,

Maria Luisa Guerriero, Jane Hillston, Michael Smith, Mirco Tribastone.

Stochastic process algebra community and collaborators elsewhere

Soufiene Benkrine, Jeremy Bradley, Federica Ciocchetta, Nick Dingle,

Peter Harrison, Richard Hayden, William Knottenbelt, Carron Shankland,

Nigel Thomas, Yishi Zhao.


