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Collective Adaptive Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective
behaviour.
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Collective Adaptive Systems

Such systems are often embedded in our environment and need to
operate without centralised control or direction.

Moreover when conditions within the system change it may not be
feasible to have human intervention to adjust behaviour
appropriately.

Thus systems must be able to autonomously adapt.
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The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Various formalisms have been designed for capturing such
behaviour.
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

Capacity planning

How many buses do I need
to maintain service at peak
time in a smart urban
transport system?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Configuration

What capacity do I need at
bike stations to minimise the
movement of bikes by truck?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Modelling: Motivation

System Tuning

What strategy can I use to
maintain supply-demand
balance within a smart
electricity grid?
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic Process Algebras.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

Activities have a name and a rate.

The rate defines an exponential distribution which means that
the duration of an activity is a random variable.

A small set of language constructs determine how the model
will evolve.

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

J.Hillston, A Compositional Approach to Performance Modelling, CUP, 1995
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking
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in a particular state?
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Modelling collective behaviour

A key feature of collective systems is the existence of populations
of entities who share certain characteristics.

High-level modelling formalisms allow this repetition to be
captured at the high-level rather than explicitly.



Modelling CAS PLAS seminar 15/02/16

Modelling collective behaviour

A key feature of collective systems is the existence of populations
of entities who share certain characteristics.

High-level modelling formalisms allow this repetition to be
captured at the high-level rather than explicitly.



Modelling CAS PLAS seminar 15/02/16

The Fluid Approximation Alternative

We can shift attention to the populations rather than the
individual entities, and then consider the average behaviour within
a population.

Ceasing to distinguish between instances of components we form
an aggregation or counting abstraction to reduce the state space.
We now disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population models

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous or fluid approximation of how
the proportions vary over time.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Illustrative trajectories
Limit fluid ODE and single stochastic trajectory of a network epidemics example for
N = 100
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Example Applications

Large scale software systems

Issues of scalability are important for user satisfaction and resource
efficiency but such issues are difficult to investigate using discrete
state models.

Spread of viruses and malware

Improved modelling of networks under attack could lead to
improved detection and better security in computer systems.
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Example Applications

Biochemical signalling pathways

Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.

Crowd dynamics

Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.
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Challenges for modelling CAS

The work so far demonstrates provides a solid basic framework for
modelling systems with collective behaviour but there remain a
number of challenges:

Richer forms of interaction

The influence of space on behaviour

Capturing adaptivity
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Richer forms of interaction

If we consider real collective adaptive systems, especially those
with emergent behaviour, they embody rich forms of interaction,
often based on asynchronous communication.

For example, pheromone trails left by social insects.

Languages like SCEL offer these richer communication patterns,
with components which include a knowledge store which can be
manipulated by other components and attribute-based
communication.
R.De Nicola, G.Ferrari, M.Loreti, R.Pugliese. A Language-Based Approach to Autonomic Computing. FMCO 2011.

Developing scalable analysis techniques, such a fluid
approximation, for such languages remains an open problem.
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Modelling space

Location and movement play an important role within many CAS,
e.g. smart cities.

We can impose the effects of space by encoding it into the
behaviour of the actions of components and distinguishing the
same component in different location as distinct types, but this is
modelling space implicitly.

It would be preferable to model space explicitly but this poses
significant challenges both for model expression and model
solution.

Again this is difficult for scalable analysis which is often based on
an implicit assumption that all components are co-located.
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Capturing adaptivity

Existing process algebras, tend to work with a fixed set of
actions for each entity type.

Some stochastic process algebras allow the rate of activity to
be dependent on the state of the system.

But for truly adaptive systems there should also be some way
to identify the goal or objective of entity in addition to its
behaviour.



CARMA PLAS seminar 15/02/16

Outline

1 Introduction
Collective Adaptive Systems
Quantitative Analysis

2 Modelling CAS
Challenges for modelling CAS

3 CARMA
The CARMA Modelling Language
Smart Taxi System Example

4 Conclusions



CARMA The CARMA Modelling Language PLAS seminar 15/02/16

A new language for CAS

The QUANTICOL project seeks to develop a coherent, integrated
set of linguistic primitives, methods and tools to build systems that
can operate in open-ended, unpredictable environments.

This includes the language, carma (Collective Adaptive
Resource-sharing Markovian Agents), which handles:

1 The behaviours of agents and their interactions;

2 The global knowledge of the system and that of its agents;

3 The environment where agents operate. . .

taking into account open ended-ness and adaptation;
taking into account resources, locations and
visibility/reachability issues.

M.Loreti et al. CARMA: Collective Adaptive Resource-sharing Markovian Agents. QAPL 2015.
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Interaction patterns in CAS

Typically, CAS exhibit two kinds of interaction pattern:

1 Spreading: one agent spreads relevant information to a given
group of other agents

2 Collecting: one agent changes its behaviour according to
data collected from one agent belonging to a given group of
agents.

Spreading: 1-to-many Collecting: 1-to-1
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Collective Adaptive Resource-sharing Markovian Agents

A Carma system consists of

a collective (N). . .

. . . operating in an environment (E).

Collective. . .

is composed by a set of components, i.e. the Markovian agents
that concur and cooperate to achieve a set of given tasks

models the behavioural part of a system

Environment. . .

models the rules intrinsic to the context where agents operate;

mediates and regulates agent interactions.
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Components

Agents in Carma are defined as components C of the form (P, γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

The participants of an interaction are identified via predicates. . .

the counterpart of a communication is selected according its
properties
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Interaction primitives

Processes interact via attribute based communications. . .

Broadcast output: a message is sent to all the components
satisfying a predicate π;

Broadcast input: a process is willing to receive a broadcast
message from a component satisfying a predicate π;

Unicast output: a message is sent to one of the components
satisfying a predicate π;

Unicast input: a process is willing to receive a message from
a component satisfying a predicate π.

The execution of an action takes an exponentially distributed time;
the rate of each action is determined by the environment.
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α[π]〈−→e 〉σ Unicast output

| α[π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Updating the store

After the execution of an action, a process can update the
component store:

σ denotes a function mapping each γ to a probability
distribution over possible stores.

move?[π]〈v〉{x := x + U(−1,+1)}

Remark:

Processes running in the same component can implicitly
interact via the local store;

Updates are instantaneous.
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More on synchronisation

Predicates regulating broadcast/unicast inputs can refer also to the
received values.

Example:

A value greater than 0 is expected from a component with a
trust level less than 3:

α?[(x > 0) ∧ (trust level < 3)](x)σ.P

Pattern matching can be encoded in Carma.
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Examples of interactions. . .

Broadcast synchronisation:

( stop?[bl < 5%]〈v〉σ1.P , {role = “master”}) ‖
( stop?[role = “master”](x)σ2 .Q1 , {bl = 4%}) ‖

( stop?[role = “super”](x)σ3.Q2 , {bl = 2%}) ‖
( stop?[>](x)σ4.Q3 , {bl = 2%})

⇓

(P, σ1({role = “master”})) ‖
(Q1[v/x ], σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(Q3[v/x ], σ4({bl = 2%}))
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⇓

(P, σ1({role = “master”})) ‖
(stop?[role = “master”](x)σ2.Q1, {bl = 45%}) ‖

(stop?[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
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Modelling the environment

Interactions between components can be affected by the
environment:

a wall can inhibit wireless interactions;

two components are too distant to interact;

. . .

The environment. . .

is used to model the intrinsic rules that govern the physical
context;

consists of a pair (γ, ρ):

a global store γ, that models the overall state of the system;
an evolution rule ρ that regulates component interactions
(receiving probabilities, action rates,. . . ).
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Example: Smart Taxi System

System description:

We consider a set of taxis operating in a city, providing service
to users;

Both taxis and users are modelled as components.

The city is subdivided into a number of patches arranged in a
grid over the geography of the city.

The users arrive randomly in different patches, at a rate that
depends on the specific time of day.

After arrival, a user makes a call for a taxi and then waits in
that patch until they successfully engage a taxi and move to
another randomly chosen patch.

Unengaged taxis move about the city, influenced by the calls
made by users.

J.Hillston and M.Loreti. Specification and analysis of open-ended systems with Carma. In LNCS 9068, 2015.
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Taxis and Users: stores

Both kinds of component use the local store to publish the
relevant data that will be used to represent the state of the agent.

Taxis

loc: identifies current taxi location;

occupancy : ranging in {0, 1} describes if a taxi is free
(occupancy = 0) or engaged (occupancy = 1);

dest: if occupied, this attribute indicates the destination of
the taxi journey.

Users

loc: identifies user location;

dest: indicates user destination.
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User processes

Users

process User =
Wait : call?[>]〈my.loc.x ,my.loc.y〉.Wait

+
take[loc.x == my.loc.x ∧ loc.y == my.loc.y ]

〈my.dest.x ,my.dest.y〉.kill
endprocess
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Taxi processes

Taxis

process Taxi =
F : call?[(my.loc.x 6= posx) ∧ my.loc.y 6= posy](posx , posy)

{dest := [x := posx , y := posy ]}.G
+
take[>](posx , posy)

{dest := [x := posx , y := posy ], occupancy := 1}.G
G : move?[⊥]〈◦〉

{loc := dest, dest := [x := 3, y := 3], occupancy := 0}.F
endprocess
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Modelling arrivals

The Arrivals process has a single attribute loc.

Arrivals process for users

process Arrivals =
A : arrival?[⊥]〈◦〉.A

endprocess

This process is executed in a separated component where attribute
loc indicates the location where the user arrives.

The precise role of this process will be clear when the environment
is described.
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The Environment

The environment consists of a global store and an evolution rule,
and provides the context in which the components operate.

In this model, the global store just contains constants related to
the rates of the key actions in the system, take and call.

The evolution rule consist of three functions:

µp: determines the probability of an action, capturing
how the current state of the system influences the
communication within the system;

µr : defines the rates of actions in the system; again this
may depend on the current state of the system,
capturing adaptivity;

µu: allows the global store and/or the collective to be
updated after an action, again capturing adaptivity.
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Evolution rule: µp

Defining the probabilities of actions

prob{
>, take : Takeprob(real(#{Taxi [F ] |

(my.loc.x == sender.loc.x) ∧
(my.loc.y == sender.loc.y)}));

>, call? : global.plost

default 1
}

Each taxi receives a user request (take) with a probability that
depends on the number of taxis in the patch.

call? can be missed with a probability plost defined in the
global store.

All the other interactions occur with probability 1.
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Evolution rule: µr

Defining the rates of actions

rate{
>, take : global.rt

>, call? : global.rc

>,move? : Mtime(now, sender.loc, sender.dest, 6)
>, arrival? : Atime(now, sender.loc, 1)
default 0

}

While take and call have constant rates, the rates of the actions
move and arrival are functions that depend on time, reflecting
shifting traffic patterns within the city over the course of a day.
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Evolution rule: µu

In the taxi example, the arrival of a new user is achieved via the
update rule:

Update rule

update{
>, arrival? : new User(sender.loc,DestLoc(now, sender.loc),Wait) {loc = sender.loc, dest = destLoc(now, sender.loc))

}
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Measures

To extract data from a system, a Carma specifications also
contains a set of measures.

The number of waiting users at a location

measure WaitingUser00[i := 0] = #{User[Wait] |
my.loc.x == 0 ∧ my.loc.y == 0};

The number of taxis relocating

measure Taxi Relocating[i := 1] = #{Taxi[G ] | my.occupancy == 0};
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Two Scenarios

We consider a grid of 3× 3 patches, i.e., a set of locations (i , j)
where 0 ≤ i , j ≤ 2, and two different scenarios:

Scenario 1: Users arrive in all the patches at the same rate;

Scenario 2: At the beginning users arrive with a higher
probability to the patches at the border of the grid;
subsequently, users arrive with higher probability in
the centre of the grid.

These are investigated by placing the same collective in different
environments.
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Smart Taxi System Collective

collective {
new : Arrival(0 : 2, 0 : 2);
new Taxi(0 : 2, 0 : 2, 3, 3, 0,F );

}
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Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov
Chain (CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).

Here we show the results of stochastic simulation.
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Scenario 1 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 1 results
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Comments: Scenario 1

In Scenario 1 after an initial startup period, around 2.5 users
are waiting for a taxi in the peripheral location while only 1.5
users are waiting for a taxi in location (1, 1).

In this scenario a larger fraction of users are delivered to
location (1, 1) so soon a larger fraction of taxis are available
to collect users at the centre.

A large fraction of taxis (around 50%) are continually moving
between the different patches.
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Scenario 2 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 2 results
Proportion of free taxis at (1, 1) and (0, 0) and in transit
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Comments: Scenario 2

In Scenario 2 the location of new arrivals depends on the
current time:

[0, 200): 3/4 of users arrive on the border and only 1/4 in
the centre;

[200, 400): 1/4 of users arrive on the border and 3/4 in the
centre.

Results in the first phase are similar to Scenario 1.

After time 200, the number of users waiting for a taxi in the
border decreases below 1 whilst the average waiting for a taxi
in the centre increases to just over 1 and the fraction of taxis
continually moving is reduced to 20%.
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Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but further work is needed to
make this applicable to a wider class of CAS.
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