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The Discrete World View

As computer scientists we generally take a discrete view of the
world.

This is particularly true when we want to reason about the
behaviour of systems, as most formalisms are built upon notions of
states and transitions.

Various formalisms have been designed for capturing such
behaviour.
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Process Algebra

Models consist of agents which engage in actions.

α.P
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules

b

c

a

b



Introduction Stochastic Process Algebra KCL Distinguished Lecture 2015

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0〈task1〉Res0
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the efficient and equitable
sharing of resources.

Availability and reliability modelling consider the dynamic
behaviour of systems with failures and breakdowns.

Markovian-based discrete event models have been applied to
computer and communication systems throughout 20th century.

These capture the behaviour of a system as a Continuous Time
Markov Chain (CTMC).

A CTMC is analogous to a labelled transition system or automaton
which has additional information about the timing and probability
associated with each action.
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Formal Approaches to Quantitative Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

So just as with automata models, formal modelling techniques,
now enhanced with information about timing and probability, are
used to automatically generate the CTMCs of interest.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.
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The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Quantitative Analysis KCL Distinguished Lecture 2015

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
�
��* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Quantitative Analysis KCL Distinguished Lecture 2015

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
�
��* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram



Introduction Quantitative Analysis KCL Distinguished Lecture 2015

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
�
��* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Quantitative Analysis KCL Distinguished Lecture 2015

Performance Evaluation Process Algebra

(α, f ).P Prefix — designated first action

P1 + P2 Choice — alternative behaviours

P1 ��
L
P2 Co-operation — shared/constrained action

P/L Hiding — abstraction

X Constant — naming of behaviours

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Processors and resources example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?
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- - -

?
����

���

-

���
Does a given property ϕ
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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State space explosion illustrated

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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State space explosion illustrated

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP +NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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The Fluid Approximation Alternative

Fortunately there is an alternative: fluid approximation.

For a large class of models, just as the size of the state space
becomes unmanageable, the models become amenable to an
efficient, scale-free approximation.

These are models which consist of populations.
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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

In these systems the entities within populations have limited or
only competing interactions but seek to cooperate with/use
entities in other populations.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

We have been developing stochastic process algebras and
associated theory, tailored to the construction and evaluation of
the collective dynamics of large systems of interacting entities.
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Process Algebra and Collective Dynamics

Process algebra are well-suited to constructing models of such
systems:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

The major challenge to analysing such models is the challenge of
state space explosion.
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Example Applications

Large scale software systems

Issues of scalability are important for user satisfaction and resource
efficiency but such issues are difficult to investigate using discrete
state models.

Spread of viruses and malware

Improved modelling of networks under attack could lead to
improved detection and better security in computer systems.
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Example Applications

Biochemical signalling pathways

Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.

Crowd dynamics

Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.
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Identity and Individuality

Population systems are constructed from many instances of a set
of components.

Ceasing to distinguish between instances of components we form
an aggregation or counting abstraction to reduce the state space.
We now disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population models

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous or fluid approximation of how
the proportions vary over time.
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Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d



Collective Dynamics Population models and fluid approximation KCL Distinguished Lecture 2015

Fluid Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d



Collective Dynamics Numerical illustration KCL Distinguished Lecture 2015

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
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= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1x1, r3x3) + r2x2

x1 = no. of Proc0

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1x1, r3x3) + r2x2

x1 = no. of Proc0

dx2
dt = min(r1x1, r3x3)− r2x2

x2 = no. of Proc1

dx3
dt = −min(r1x1, r3x3) + r4x4

x3 = no. of Res0

dx4
dt = min(r1x1, r3x3)− r4x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)



Collective Dynamics Numerical illustration KCL Distinguished Lecture 2015

100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (ODE solution)
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Pragmatism and Expediency

Through pragmatism and expediency the representation of
inherently discrete systems by collections of ordinary differential
equations has been adopted in many areas of science, e.g. cell
biology, ecology and epidemiology.

However we would like our approximation to be rigorous in the
sense of being

based on sound mathematical foundations, and

systematically derived from the system description

Fortunately, Kurtz’s Deterministic Approximation Theorem, tells
the circumstances under which it is valid to approximate a family
of population CTMC models by a set of ODEs when the
population grows to infinity.
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Population models — intuition

On Off

Y (t)

N copies: Y
(N)
i

2N states

(0,N) (1,N-1) (2,N-2) (N,0)...

X(N)(t)

N + 1 states

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}

Y (t), Y
(N)
i (t) and X(N)(t) are all CTMCs;

As N increases we get a sequence of CTMCs, X(N)(t)
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Population transitions

The dynamics of the population models is expressed in terms
of a set of possible transitions, T (N).

Transitions are stochastic, and take an exponentially
distributed time to happen.

Their rate may depend on the current global state of the
system.

Each transition is specified by a rate function r
(N)
τ , and by an

update vector vτ , specifying the impact of the event on the
population vector.

The infinitesimal generator matrix Q(N) of X(N)(t) is defined
as:

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.
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Population models — summary of notation

Individuals

We have N individuals Y
(N)
i ∈ S , S = {1, 2, . . . , n} in the system.

System variables

X
(N)
j =

∑N
i=1 1{Y

(N)
i = j}, and X(N) = (X

(N)
1 , . . . ,X

(N)
n )

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r
(N)
τ (X)
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Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMCs.

We normalise such models, dividing variables by N:

X̂ =
X

N

occupancy measures

for each τ ∈ T (N)

the normalised update is v̂ = v/N
there is a normalised rate function r̂τ (X̂)

∀τ assume there exists a bounded and Lipschitz continuous
function fτ (X̂), the limit rate function on normalised variables,

independent of N, such that
1

N
r̂ (N)
τ (x)→ fτ (x) uniformly as

N −→∞.
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Normalised process — intuition
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Normalised process — intuition

The whole population is represented as a single process.

Even when the number of individuals varies (N −→∞) the
processes remain comparable.
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Dynamics

Drift

The drift F (N)(X̂) — the mean instantaneous increment of model
variables in state X̂ — is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂)

Limit Drift

Let fτ be the limit rate functions.

The limit drift of the model X̂ (N) is

F (x) =
∑
τ∈T̂

vτ fτ (x),

and F (N)(x)→ F (x) uniformly as N −→∞.
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Fluid approximation theorem and fluid ODEs

Deterministic Approximation Theorem (Kurtz)

Assume that ∃ x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T <∞, it holds that as
N −→∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.

Fluid ODE

The fluid ODE is

dx

dt
= F (x), with x(0) = x0 ∈ S .

Since F is Lipschitz (all fτ are), this ODE has a unique solution
x(t) starting from x0.
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Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.
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Illustrative trajectories
Limit fluid ODE and single stochastic trajectory of a network epidemics example for
N = 100
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Illustrative trajectories
Limit fluid ODE and single stochastic trajectory of a network epidemics example for
N = 1000
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Fluid semantics for Stochastic Process Algebras

Incorporating fluid approximation into a formal high-level
language used for constructing CTMC models offers
quantitative scalable analysis which is immune to state space
explosion.

Indeed, accuracy increases as the size of the model grows.

Embedding the approach in a formal language offers the
possibility to establish the conditions for convergence at the
language level via the semantics,

This removes the requirement to fulfil the proof obligation on
a model-by-model basis.

Moreover the derivation of the ODEs can be automated in the
implementation of the language.
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Defining agents

Kurtz’s Theorem is based on the notion of a single agent class —
many instances of one sequential component.

But in a process algebra model we typically work with multiple
components composed to evolve concurrently.

We construct a single agent class in the population CTMC but
partition the state space S into subsets, each of which represents
the states of a distinct component, and such that there are no
transitions between subsets.

The agents whose initial state is in each subset correspond to that
component.
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Definition transitions

The existing SOS semantics defines all the possible transitions by
constructing the state space of the CTMC explicitly.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

We define a structured operational semantics which defines the
rates and updates associated with all possible transitions in terms
of an arbitrary abstract state:

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components to identify the counting
abstraction of the process (Context Reduction)

2 Collect the transitions of the reduced context as symbolic
updates on the state representation (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset, under the assumption that the population size
tends to infinity.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Fluid Structured Operational Semantics by Example
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Fluid Structured Operational Semantics by Example
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Apparent Rate Calculation
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Jump Multiset
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Extraction of the ODE from f

Differential Equation
dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4

Differential Equation
dx1

dt
= −min (r1x1, r3x3) + r2x2

dx2

dt
= min (r1x1, r3x3)− r2x2

dx3

dt
= −min (r1x1, r3x3) + r4x4

dx4

dt
= min (r1x1, r3x3)− r4x4
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

Thus the hypotheses of the Deterministic Approximation
Theorem are satisfied.

The generated ODEs are the fluid limit of the family of
CTMCs and so approximate the discrete behaviour as the size
of the system grows.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.



Fluid Approximation Embedding in a Stochastic Process Algebra KCL Distinguished Lecture 2015

Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.



Fluid Approximation Embedding in a Stochastic Process Algebra KCL Distinguished Lecture 2015

Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.



Fluid Approximation Embedding in a Stochastic Process Algebra KCL Distinguished Lecture 2015

Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.



Conclusions KCL Distinguished Lecture 2015

Outline

1 Introduction
Discrete World
Stochastic Process Algebra
Quantitative Analysis

2 Collective Dynamics
Population models and fluid approximation
Numerical illustration

3 Fluid Approximation
Theoretical Foundations
Implications
Embedding in a Stochastic Process Algebra

4 Conclusions



Conclusions KCL Distinguished Lecture 2015

Conclusions

Collective systems of interacting populations are an interesting
and challenging class of systems to design and construct.

Their role within infrastructure, such as smart cities, make it
essential that quantitive aspects of behaviour are taken into
consideration, as well as functional correctness.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques.

Nevertheless there remain many interesting and challenging
problems to be solved: populations that do not scale
proportionally, systems with entities in distinct locations,...
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