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Modelling

There are two approaches to model construction:

Machine Learning: extracting a model from the data generated by the
system, or refining a model based on system behaviour using
statistical techniques.

Mechanistic Modelling: starting from a description or hypothesis,
construct a model that algorithmically mimics the behaviour
of the system, validated against data.
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Machine Learning

prior

posterior

data

inference

Bayes’ Theorem

For the distribution of a parameter θ and observed data D,

P(θ | D) ∝ P(θ)P(D | θ)
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Bayesian statistics

Represent belief and uncertainty as probability distributions (prior,
posterior).

Treat parameters and unobserved variables similarly.

Bayes’ Theorem:

P(θ | D) =
P(θ) · P(D | θ)

P(D)

posterior ∝ prior · likelihood
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Bayesian statistics
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Bayesian statistics
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Mechanistic modelling

Models are constructed reflecting what is known about the components of
the biological system and their behaviour.

Several approaches originating in theoretical computer science have been
proposed to capture the system behaviour in a high-level way.

These are then compiled into executable models1 which can be run to
deepen understanding of the model.

Executing the model generates data that can be compared with biological
data.

1Jasmin Fisher, Thomas A. Henzinger: Executable cell biology. Nature
Biotechnology 2007
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Comparing the techniques

Data-driven modelling:

+ rigorous handling of parameter uncertainty
- limited or no treatment of stochasticity
- in many cases bespoke solutions are required which can

limit the size of system which can be handled

Mechanistic modelling:

+ general execution ”engine” (deterministic or stochastic)
can be reused for many models

+ models can be used speculatively to investigate roles of
parameters, or alternative hypotheses

- parameters are assumed to be known and fixed

Probabilistic Programming seeks to bring elements of both forms of
modelling together.
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Introduction

Uncertainty is pervasive in biology: noise, parameter uncertainty,
stochasticity...

...hence the need for probabilistic models and machine learning

Large models remain intractable and hard to manage

We need a general way of dealing with them, rather than
reimplementing algorithms every time:

We don’t want to tell the compiler what to do, but write in high-level
languages; similarly, we want a higher-level framework that does the
inference for us
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Probabilistic programming

A way to express probabilistic models in a high level language, like
software code.

Offers automated inference without the need to write bespoke
solutions.

Platforms: IBAL, Church, Infer.NET, Fun, ...

Key actions: specify a distribution, specify observations, infer
posterior distribution.
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Probabilistic Process Algebra

What if we could...

include information about uncertainty in the model?

automatically use observations to refine this uncertainty?

do all this in a formal context?

Starting from an existing process algebra (Bio-PEPA), we have developed
a new language ProPPA that addresses these issues.2

2Anastasis Georgoulas, Jane Hillston, Dimitrios Milios, Guido Sanguinetti:
Probabilistic Programming Process Algebra. QEST 2014: 249-264.
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Process Algebra

Models consist of agents which engage in actions.

α.P
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�*
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HY

action type
or name

agent/
component

c

b

a

The structured operational (interleaving) semantics of the language is
used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules
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Using Process Algebras in Biology

Process algebras have several attractive features which could be useful for
modelling and understanding biological systems:

Process algebraic formulations are compositional and make
interactions/constraints explicit.

Structure can also be apparent.

Equivalence relations allow formal comparison of high-level
descriptions.

There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software. These
include qualitative and quantitative analysis, and model checking.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

A. Regev and E. Shapiro Cells as computation, Nature 419, 2002.
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Stochastic Process Algebra

In a stochastic process algebra actions (reactions) not only have a name or
type, but also a stochastic duration or rate.
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State representation

The state of the system at any time consists of the local states of
each of its sequential/species components.

The local states of components are quantitative rather than
functional, i.e. biological changes to species are represented as
distinct components.

A component varying its state corresponds to it varying its amount.

This is captured by an integer parameter associated with the species
and the effect of a reaction is to vary that parameter by a number
corresponding to the stoichiometry of this species in the reaction.
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The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P BC
L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations
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The abstraction

Each species i is described by a species component Ci

Each reaction j is associated with an action type αj and its dynamics
is described by a specific function fαj

Compartments or locations are considered static and not represented
explicitly.

The species components are then composed together to describe the
behaviour of the system.
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The semantics

The semantics is defined by two transition relations:

First, a capability relation — is a transition possible?;

Second, a stochastic relation — gives rate of a transition, derived
from the parameters of the model.
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Example

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]
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A Probabilistic Programming Process Algebra: ProPPA

The objective of ProPPA is to retain the features of the stochastic process
algebra:

simple model description in terms of components

rigorous semantics giving an executable version of the model...

... whilst also incorporating features of a probabilistic programming
language:

recording uncertainty in the parameters

ability to incorporate observations into models

accss to inference to update uncertainty based on observations
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Example Revisited

I RSI
S S

R
spread

stop1
stop2
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I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]
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Additions

Declaring uncertain parameters:

k s = Uniform(0,1);

k t = Gaussian(0,1);

Providing observations:

observe(’trace’)

Specifying inference approach:

infer(’ABC’)
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Additions

I RSI
S S

R
spread

stop1
stop2

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Semantics

A Bio-PEPA model can be interpreted as a CTMC; however, CTMCs
cannot capture uncertainty in the rates (every transition must have a
concrete rate).

ProPPA models include uncertainty in the parameters, which
translates into uncertainty in the transition rates.

A ProPPA model should be mapped to something like a distribution
over CTMCs.
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parameter

model

k = 2

CTMC
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parameter

model

k ∼ p

distribution
over CTMCs

μ
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Constraint Markov Chains

Constraint Markov Chains3 (CMCs) are a generalization of DTMCs, in
which the transition probabilities are not concrete, but can take any value
satisfying some constraints.

Constraint Markov Chain

A CMC is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k .

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0, 1]k → {0, 1} is the constraint function.

3Caillaud et al., Constraint Markov Chains, Theoretical Computer Science, 2011
Hillston 29/10/14 34 / 56



Constraint Markov Chains

In a CMC, arbitrary constraints are permitted, expressed through the
function φ: φ(s, ~p) = 1 iff ~p is an acceptable vector of transition
probabilities from state s.

However,

CMCs are defined only for the discrete-time case, and

this does not say anything about how likely a value is to be chosen,
only about whether it is acceptable.

To address these shortcomings, we define Probabilistic Constraint
Markov Chains.
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Probabilistic CMCs

A Probabilistic Constraint Markov Chain is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k .

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0,∞)k → [0,∞) is the constraint function.

This is applicable to continuous-time systems.

φ(s, ·) is now a probability density function on the transition rates
from state s.
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Semantics of ProPPA

The semantics definition follows that of Bio-PEPA, which is defined using
two transition relations:

Capability relation — is a transition possible?

Stochastic relation — gives rate of a transition

The distribution over the parameter values induces a distribution over
transition rates.

Rules are expressed as state-to-function transition systems (FuTS).
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Semantics of ProPPA

The semantics definition follows that of Bio-PEPA, which is defined using
two transition relations:

Capability relation — is a transition possible?

Stochastic relation — gives distribution of the rate of a transition

The distribution over the parameter values induces a distribution over
transition rates.

Rules are expressed as state-to-function transition systems (FuTS4).

4De Nicola et al., A Uniform Definition of Stochastic Process Calculi, ACM
Computing Surveys, 2013
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Inference

parameter

model

k ∼ p

distribution
over CTMCs

μ
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Inference

P(θ | D) ∝ P(θ)P(D | θ)

Exact inference is impossible, as we cannot calculate the likelihood.

We must use approximate algorithms or approximations of the
system.

The ProPPA semantics does not define a single inference algorithm,
allowing for a modular approach.

Different algorithms can act on different input (time-series vs
properties), return different results or in different forms.
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Example model

I RSI
S S

R

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Results

Tested on the rumour-spreading example, giving the two parameters
uniform priors.

Method 1:

Approximate Bayesian Computation

Returns posterior as a set of points (samples)

Observations: time-series (single simulation)
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Inference

Approximate Bayesian Computation is a simple simulation-based
solution:

I Approximates posterior distribution over parameters as a set of samples
I Likelihood of parameters is hard to compute in CTMCs, approximates

that with a notion of distance.
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Inference

Approximate Bayesian Computation is a simple simulation-based
solution:

I Approximates posterior distribution over parameters as a set of samples
I Likelihood of parameters is hard to compute in CTMCs, approximates

that with a notion of distance.
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Inference

Approximate Bayesian Computation is a simple simulation-based
solution:

I Approximates posterior distribution over parameters as a set of samples
I Likelihood of parameters is hard to compute in CTMCs, approximates

that with a notion of distance.

x

x
x x

t

X
Σ(xi-yi)

2 < ε
accepted
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Approximate Bayesian Computation

ABC algorithm

1 Sample a parameter set from the prior distribution.

2 Simulate the system using these parameters.

3 Compare the simulation trace obtained with the observations.

4 If distance < ε, accept, otherwise reject.

This results in an approximate to the posterior distribution. As ε→ 0, set
of samples converges to true posterior.
We use a more elaborate version based on Markov Chain Monte Carlo
sampling.
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Results: ABC
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Results: Gaussian Process-based Optimization

Method 2:

Gaussian Process-based optimization5

Approximate the posterior as a Gaussian distribution (Laplace
approximation)

Observations: MiTL properties observed over a number of simulation
runs

5Bortolussi and Sanguinetti, Learning and Designing Stochastic Processes from
Logical Constraints, QEST 2013.
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Results: Gaussian Process-based Optimization
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Summary

ProPPA is a process algebra that incorporates uncertainty and
observations directly in the model, influenced by probabilistic
programming.

Syntax remains similar to Bio-PEPA.

Semantics defined in terms of an extension of Constraint Markov
Chains.

Observations can be either time-series or logical properties.

Tested the language with small model, employing two different
inference algorithms.

Parameter inference results consistent with expectations.
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Future work

Approximations that will allow for more efficient inference: fluid,
Linear Noise Approximation, System Size Expansion

Other inference algorithms

Equivalence relations

Larger examples

parameter

model

k ∼ p

distribution
over CTMCs

μ
observations

inference

posterior
distribution 

μ*
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