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Performance Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

This often involves a trade-off between the interests of the users,
who want more resource, and the interests of system operators,
who want to minimise the resource.
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Modelling using CTMC
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Performance Modelling using CTMC
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A negative exponentially distributed duration is associated with each transition.
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these parameters form the entries of the infinitesimal generator matrix Q
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In steady state the probability flux out of a state is balanced by the flux in.

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3
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Performance Modelling using CTMC
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Performance Modelling using CTMC
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e.g. throughput, response time, utilisation

e.g. queueing networks and
stochastic Petri nets

= EQUILIBRIUM PROBABILITY
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N21 3

PERFORMANCE MEASURES

HIGH−LEVEL
MODELLING FORMALISM
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Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures
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Process Algebra

Models consist of agents which engage in actions.
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The structured operational (interleaving) semantics of the
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A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0
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A
A
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A
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

This extension was motivated by a desire to bring this formal and
compositional approach to modelling to bear in performance
analysis supporting the derivation of measures such as throughput,
utlisation and response time.
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Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation
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−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))
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Cooperation

What should be the impact of cooperation on rate? There are
many possibilities.

Restrict synchronisations to have one active partner and one
passive partner.

Choose a function which satisfies a small number of algebraic
properties.

Have the rate limited by the slowest participant in terms of
apparent rate. This is the approach adopted by PEPA.

PEPA assumes bounded capacity: a component cannot be made to
perform an activity faster in cooperation than its own recorded
capacity.
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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Interplay with Performance Modelling

Model Construction: Compositionality leads to

ease of construction
reusable submodels
easy to understand models

Model Manipulation: Equivalence relations lead to

term rewriting/state space reduction techniques
aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

automatic identification of classes of models
susceptible to efficient solution
use of logics to express performance measures
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Modelling at the level of individuals

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
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�
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r = r1
3r1

r3
2r3

min(3r1, 2r3) = 1
6 min(3r1, 2r3)
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

State space explosion

As the number of components, or the complexity of behaviour
within components, grows the state space may become so large
that it is infeasible to solve the underlying CTMC.

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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State space explosion

As the number of components, or the complexity of behaviour
within components, grows the state space may become so large
that it is infeasible to solve the underlying CTMC.

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Achieving aggregration

If we sacrifice looking at the identity of each component we
can often achieve substantial state space reduction by
aggregation.

This is supported by a shift in how we view the state of a
model, based on a counting abstraction.

The syntactic nature of PEPA (and other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access to
alternative mathematical interpretations (i.e. fluid
approximation).
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Counting abstraction to generate the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

Counting abstraction to generate the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

Counting abstraction to generate the Lumped CTMC
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(2, 1, 1, 1)(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)
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Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

The more recent approach uses the counting abstraction and a
numerical representation of states and transitions.
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Solving discrete state models

Even with aggregation, the
underlying CTMC may
become too large to solve.

Such models may be studied
using stochastic simulation.

Each run generates a single
trajectory through the state
space.

Many runs are needed in
order to obtain average
behaviours.
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)



Semantics for the modelling language Identity and Individuality St Andrews, 08/04/19

100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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Collective dynamics

For some SPA models we can make considerable gains in efficiency
when solving the model if we take a collective dynamics view of
the system.

Collective dynamics considers the behaviour of populations of
similar entities which can interactive with each other in seemingly
simple ways to produce phenomena at the population level.

In this case we lose the identity of components and even
individuality, but for many models this is an approximation we are
willing to make for the efficiency, or even tractability, of the
models.
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Process Algebra and Collective Dynamics

Some large process algebra models can be considered to exhibit
collective dynamics

Each component type captures the behaviour of one type of
individual;

The compositional structure of the model makes explicit
interaction between component types;

When there are many instances of the individual component
types these may be regarded as a population;

Through the interactions of these populations group or
complex behaviours may emerge at the population level.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.
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Use continuous state variables to approximate the discrete state
space.
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Use ordinary differential equations to represent the evolution of
those variables over time.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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Simple example revisited
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def
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def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc0

task1 decreases Proc0

task1 is performed by Proc0
and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (average of 10 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (ODE solution)



Case study: smart building and active badges St Andrews, 08/04/19

Outline

1 Introduction
Performance Evaluation
Stochastic Process Algebra
SOS rules

2 Semantics for the modelling language
Identity and Individuality
Collective Dynamics
Numerical illustration

3 Case study: smart building and active badges

4 Conclusions
Alternative interpretations



Case study: smart building and active badges St Andrews, 08/04/19

Case study: active badges

We have used the PEPA modelling language to analyse the
configuration of a location tracking system based on active badges.

Active badges transmit unique infra-red signals which are detected
by networked sensors. These report locations back to a central
database.
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Case study: active badges

The badges are battery-powered and the tradeoff in the system is
between the conservation of battery power and the accuracy of the
information harvested from the sensors.

When transmissions from badges collide, the badges sleep for a
randomly determined time before retrying.
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Active badges: the PEPA model

The PEPA model of this system tracks the progress of one
badge-wearer around three connected corridors (numbered 14, 15
and 16).

The activities which are performed in the system include the badge
registering with a sensor (at rate r), the person moving to another
corridor (at rate m) and a sensor reporting back to the central
database (at rate s).
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Active badges: the PEPA model

Person

P14
def
= (reg14, r).P14 + (move15,m).P15

P15
def
= (reg15, r).P15 + (move14,m).P14 + (move16,m).P16

P16
def
= (reg16, r).P16 + (move15,m).P15

Sensor

S14
def
= (reg14,>).(rep14, s).S14

S15
def
= (reg15,>).(rep15, s).S15

S16
def
= (reg16,>).(rep16, s).S16



Case study: smart building and active badges St Andrews, 08/04/19

Active badges: the PEPA model

Person

P14
def
= (reg14, r).P14 + (move15,m).P15

P15
def
= (reg15, r).P15 + (move14,m).P14 + (move16,m).P16

P16
def
= (reg16, r).P16 + (move15,m).P15

Sensor

S14
def
= (reg14,>).(rep14, s).S14

S15
def
= (reg15,>).(rep15, s).S15

S16
def
= (reg16,>).(rep16, s).S16



Case study: smart building and active badges St Andrews, 08/04/19

Active badges: the PEPA model

Database

DB14
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

DB15
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

DB16
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

System

P14 ��
L

(S14 ‖ S15 ‖ S16) ��
M

DB14

where L = { reg14, reg15, reg16 }
M = { rep14, rep15, rep16 }
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Probability that the database holds inaccurate information
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Scalable Representations
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Eclipse Plug-in for PEPA

Robust tool support is essential to make develop techniques
practical.
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Other applications

PEPA, and the associated analysis techniques, were originally
developed with the objective of studying computer systems.

However, it has also be adopted by modelling a wide-range of
other types of system:

Locks and movable bridges in inland shipping in Belgium
(Knapen, Hasselt)

Automotive on-board diagnostics expert systems (Console,
Picardi and Ribaudo)

Biological cell signalling pathways (Calder, Duguid, Gilmore
and Hillston)

Crowd dynamics in informatic environments (Harrison, Latella
and Massink)
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Conclusions

Stochastic Process Algebras like PEPA, provide a high-level
modelling language for performance modelling with many
benefits.

The semantics are encoded in software, so the underlying
CTMC (or ODE) is generated automatically.

Similarly various model reduction techniques can be
characterised by the syntax of the language, meaning that the
validity of the reduction is proven for the language rather than
on a model-by-model basis.

PEPA has been used for a wide variety of applications, most
recently to detect information leakage for secure
computations.
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Thanks!

More information:
http://www.dcs.ed.ac.uk/pepa
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