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Collective Systems

We are surrounded by examples of collective systems:

Most of these systems are also adaptive to their environment
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective
behaviour.
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The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.
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Collective Adaptive Systems

Such systems are often embedded in our environment and need to
operate without centralised control or direction.

Moreover when conditions within the system change it may not be
feasible to have human intervention to adjust behaviour
appropriately.

Thus systems must be able to autonomously adapt.
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The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.



Introduction Collective Adaptive Systems St Andrews, 08/04/19

The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.



Introduction Collective Adaptive Systems St Andrews, 08/04/19

The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.



Introduction Quantitative Analysis St Andrews, 08/04/19

Performance Modelling for Smart Cities

Capacity planning

How many buses do I need
to maintain service at peak
time in a smart urban
transport system?
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Performance Modelling for Smart Cities

System Configuration

What capacity do I need at
bike stations to minimise the
movement of bikes by truck?
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Performance Modelling for Smart Cities

System Tuning

What strategy can I use to
maintain supply-demand
balance within a smart
electricity grid?
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Quantitative Modelling

Markovian-based discrete event models have been applied to
performance analysis of computer systems since the mid-1960s and
communication systems since the early 20th century.
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

In the previous lecture we saw that the Stochastic Process Algebra,
PEPA has been designed for this purpose.
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Challenges for modelling CAS

The compositional framework provided by stochastic process
algebras are well suited to modelling collective behaviour but leave
a number of challenges:

Open-ness and richer forms of interaction

The influence of space on behaviour

Capturing adaptivity
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Open-ness

SPAs such as PEPA are conservative meaning that agents are
neither created nor destroyed during the operation of the system.

In CAS agents may enter and leave the system at random times,
either through faults (either within the agent or within the
communication network) or choice (e.g. disconnect from a
peer-to-peer network).

Thus the communication structure needs to be robust to missing
partners, e.g. non-blocking



Introduction Challenges for modelling CAS St Andrews, 08/04/19

Richer forms of interaction

If we consider real collective adaptive systems, especially those
with emergent behaviour, they embody rich forms of interaction,
often based on asynchronous communication.

For example, pheromone trails left by social insects.

Languages like SCEL offer these richer communication patterns,
with components which include a knowledge store which can be
manipulated by other components and attribute-based
communication.
R.De Nicola, G.Ferrari, M.Loreti, R.Pugliese. A Language-Based Approach to Autonomic Computing. FMCO 2011.

For quantitative modelling there is a tension between keeping state
spaces tractable and capturing local knowledge in agents.
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Modelling space

Location and movement play an important role within many CAS,
e.g. smart cities.

We can impose the effects of space by encoding it into the
behaviour of the actions of components and distinguishing the
same component in different location as distinct types, but this is
modelling space implicitly.

It would be preferable to model space explicitly but this poses
significant challenges both for model expression and model
solution.
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Capturing adaptivity

Existing process algebras tend to work with a fixed set of actions
for each entity type.

Some stochastic process algebras allow the rate of activity to be
dependent on the state of the system.

But for truly adaptive systems there should also be some way to
identify the goal or objective of an entity in addition to its
behaviour.
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A new language for CAS

carma (Collective Adaptive Resource-sharing Markovian Agents),
is a novel stochastic process algebra-style language which handles:

1 The behaviours of agents and their interactions;

2 The global knowledge of the system and that of its agents;

3 The environment where agents operate. . .

taking into account open ended-ness and adaptation;
taking into account resources, locations and
visibility/reachability issues.

M.Loreti & J.Hillston, Modelling and Analysis of CAS with CARMA and its Tools. SFM 2016, LNCS 9700.
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Interaction patterns in CAS

Typically, CAS exhibit two kinds of interaction pattern:

1 Spreading: one agent spreads relevant information to a given
group of other agents

2 Collecting: one agent changes its behaviour according to
data collected from one agent belonging to a given group of
agents.

Spreading: 1-to-many Collecting: 1-to-1
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CAS: Carma perspective

Collective

Environment Attributes

Processes are referenced via their attributes!
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Collective Adaptive Resource-sharing Markovian Agents

A Carma system consists of

a collective (N). . .

. . . operating in an environment (E).

Collective. . .

is composed by a set of components, i.e. the Markovian agents
that concur and cooperate to achieve a set of given tasks

models the behavioural part of a system

Environment. . .

models the rules intrinsic to the context where agents operate;

mediates and regulates agent interactions.
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Agents in CARMA

Process

Store
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Store
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Components

Agents in Carma are defined as components C of the form (P, γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

The participants of an interaction are identified via predicates. . .

the counterpart of a communication is selected according its
properties
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Collective
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Interaction primitives

Processes interact via attribute based communications. . .

Broadcast output: a message is sent to all the components
satisfying a predicate π;

Broadcast input: a process is willing to receive a broadcast
message from a component satisfying a predicate π;

Unicast output: a message is sent to one of the components
satisfying a predicate π;

Unicast input: a process is willing to receive a message from
a component satisfying a predicate π.

The execution of an action takes an exponentially distributed time;
the rate of each action is determined by the environment.
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α[π]〈−→e 〉σ Unicast output

| α[π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Updating the store

After the execution of an action, a process can update the
component store:

σ denotes a function mapping each γ to a probability
distribution over possible stores.

move?[π]〈v〉{x := x + U(−1,+1)}

Remark:

Processes running in the same component can implicitly
interact via the local store;

Updates are instantaneous.
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More on synchronisation

Predicates regulating broadcast/unicast inputs can refer also to the
received values.

Example:

A value greater than 0 is expected from a component with a
trust level less than 3:

α?[(x > 0) ∧ (trust level < 3)](x)σ.P
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Examples of interactions. . .

Broadcast synchronisation:

( stop?[bl < 5%]〈v〉σ1.P , {role = “master”}) ‖
( stop?[role = “master”](x)σ2 .Q1 , {bl = 4%}) ‖

( stop?[role = “super”](x)σ3.Q2 , {bl = 2%}) ‖
( stop?[>](x)σ4.Q3 , {bl = 2%})

⇓

(P, σ1({role = “master”})) ‖
(Q1[v/x ], σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(Q3[v/x ], σ4({bl = 2%}))
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Modelling the environment

Interactions between components can be affected by the
environment:

a wall can inhibit wireless interactions;

two components are too distant to interact;

. . .

The environment. . .

is used to model the intrinsic rules that govern the physical
context;

consists of a pair (γ, ρ):

a global store γ, that captures knowledge at the system level;
an evolution rule ρ that regulates component interactions
(receiving probabilities, action rates,. . . ).
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Example: Smart Taxi System

System description:

We consider a set of taxis operating in a city, providing service
to users;

Both taxis and users are modelled as components.

The city is subdivided into a number of patches arranged in a
grid over the geography of the city.

The users arrive randomly in different patches, at a rate that
depends on the specific time of day.

After arrival, a user makes a call for a taxi and then waits in
that patch until they successfully engage a taxi and move to
another randomly chosen patch.

Unengaged taxis move about the city, influenced by the calls
made by users.

J.Hillston and M.Loreti. Specification and analysis of open-ended systems with Carma. In LNCS 9068, 2015.
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Taxis and Users: stores

Both kinds of component use the local store to publish the
relevant data that will be used to represent the state of the agent.

Taxis

loc: identifies current taxi location;

occupancy : ranging in {0, 1} describes if a taxi is free
(occupancy = 0) or engaged (occupancy = 1);

dest: if occupied, this attribute indicates the destination of
the taxi journey.

Users

loc: identifies user location;

dest: indicates user destination.
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User processes

Users

process User =
Wait : call?[>]〈my.loc.x ,my.loc.y〉.Wait

+
take[loc.x == my.loc.x ∧ loc.y == my.loc.y ]

〈my.dest.x ,my.dest.y〉.kill
endprocess
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Taxi processes

Taxis

process Taxi =
F : call?[(my.loc.x 6= posx) ∧ my.loc.y 6= posy](posx , posy)

{dest := [x := posx , y := posy ]}.G
+
take[>](posx , posy)

{dest := [x := posx , y := posy ], occupancy := 1}.G
G : move?[⊥]〈◦〉

{loc := dest, dest := [x := 3, y := 3], occupancy := 0}.F
endprocess
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Modelling arrivals

The Arrivals process has a single attribute loc.

Arrivals process for users

process Arrivals =
A : arrival?[⊥]〈◦〉.A

endprocess

This process is executed in a separate component where attribute
loc indicates the location where the user arrives.

The precise role of this process will be clear when the environment
is described.
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The environment

It is assumed that all actions in Carma take some time complete
and that this duration is governed by an exponential distribution.

However the action descriptions do not include any information
about the timing (unlike many other stochastic process algebras).

We also do not assume perfect communication, i.e. there may be a
probability that an interaction will fail to complete even between
components with appropriately match attributes.

The environment manages these aspects of system behaviour, and
others in the evolution rule.
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The evolution rule ρ

ρ is a function, dependent on current time, the global store and
the current state of the collective, returns a tuple of functions
ε = 〈µp, µw , µr , µu〉 known as the evaluation context

µp(γs , γr , α): the probability that a component with store γr
can receive a broadcast message α from a component with
store γs ;

µw (γs , γr , α): the weight to be used to compute the
probability that a component with store γr can receive a
unicast message α from a component with store γs ;

µr (γs , α) computes the execution rate of action α executed at
a component with store γs ;

µu(γs , α) determines the updates to the environment (global
store and collective) induced by the execution of action α at a
component with store γs .
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Evolution rule: µp

Defining the probabilities of broadcast actions

prob{
>, call? : global.plost

default 1
}

call? can be missed with a probability plost defined in the
global store.

All the other interactions occur with probability 1.
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Evolution rule: µw

Defining the weights of unicast actions

prob{
>, take : Takeprob(real(#{Taxi [F ] |

(my.loc.x == sender.loc.x) ∧
(my.loc.y == sender.loc.y)}));

}

Each taxi receives a user request (take) with a weight that
depends on the number of taxis in the patch.



CARMA Smart Taxi System Example St Andrews, 08/04/19

Evolution rule: µr

Defining the rates of actions

rate{
>, take : global.rt

>, call? : global.rc

>,move? : Mtime(now, sender.loc, sender.dest, 6)
>, arrival? : Atime(now, sender.loc, 1)
default 0

}

While take and call have constant rates, the rates of the actions
move and arrival are functions that depend on time, reflecting
shifting traffic patterns within the city over the course of a day.
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Evolution rule: µu

In the taxi example, the arrival of a new user is achieved via the
update rule:

Update rule

update{
>, arrival? : new User(sender.loc,DestLoc(now, sender.loc),Wait) {loc = sender.loc, dest = destLoc(now, sender.loc))

}
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Measures

To extract data from a system, a Carma specification also
contains a set of measures.

The number of waiting users at a location

measure WaitingUser00[i := 0] = #{User[Wait] |
my.loc.x == 0 ∧ my.loc.y == 0};

The number of taxis relocating

measure Taxi Relocating[i := 1] = #{Taxi[G ] | my.occupancy == 0};
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Two Scenarios

We consider a grid of 3× 3 patches, i.e., a set of locations (i , j)
where 0 ≤ i , j ≤ 2, and two different scenarios:

Scenario 1: Users arrive in all the patches at the same rate;

Scenario 2: At the beginning users arrive with a higher
probability to the patches at the border of the grid;
subsequently, users arrive with higher probability in
the centre of the grid.

These are investigated by placing the same collective in different
environments.
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Smart Taxi System Collective

collective {
new : Arrival(0 : 2, 0 : 2);
new Taxi(0 : 2, 0 : 2, 3, 3, 0,F );

}
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Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov
Chain (CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).

Here we show the results of stochastic simulation.
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Scenario 1 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 1 results
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Comments: Scenario 1

In Scenario 1 after an initial startup period, around 2.5 users
are waiting for a taxi in the peripheral location while only 1.5
users are waiting for a taxi in location (1, 1).

In this scenario a larger fraction of users are delivered to
location (1, 1) so soon a larger fraction of taxis are available
to collect users at the centre.

A large fraction of taxis (around 50%) are continually moving
between the different patches.
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Scenario 2 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 2 results
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Comments: Scenario 2

In Scenario 2 the location of new arrivals depends on the
current time:

[0, 200): 3/4 of users arrive on the border and only 1/4 in
the centre;

[200, 400): 1/4 of users arrive on the border and 3/4 in the
centre.

Results in the first phase are similar to Scenario 1.

After time 200, the number of users waiting for a taxi in the
border decreases below 1 whilst the average number waiting
for a taxi in the centre increases to just over 1 and the
fraction of taxis continually moving is reduced to 20%.
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Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but this is yet to included in
the tool.



Conclusions St Andrews, 08/04/19

Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but this is yet to included in
the tool.



Conclusions St Andrews, 08/04/19

Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but this is yet to included in
the tool.



Conclusions St Andrews, 08/04/19

Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but this is yet to included in
the tool.



Conclusions St Andrews, 08/04/19

Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but this is yet to included in
the tool.



Conclusions St Andrews, 08/04/19

Thanks!

Thanks to my collaborators and colleagues on the QUANTICOL
project, especially Michele Loreti.

This work has been funded by the CEC through the FET-Proactive
QUANTICOL project

www.quanticol.eu



Conclusions St Andrews, 08/04/19

Thanks!

Thanks to my collaborators and colleagues on the QUANTICOL
project, especially Michele Loreti.

This work has been funded by the CEC through the FET-Proactive
QUANTICOL project

www.quanticol.eu


	Introduction
	Collective Adaptive Systems
	Quantitative Analysis
	Challenges for modelling CAS

	CARMA
	The CARMA Modelling Language
	Smart Taxi System Example

	Conclusions

