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Stochastic Process Algebra

Models are constructed from components which engage in
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Benefits of integration

Properties of the underlying mathematical structure may be
deduced by the construction at the process algebra level.

Compositionality can be exploited both for model construction
and (in some cases) for model analysis.

Formal reasoning techniques such as equivalence relations and
model checking can be used to manipulate or interrogate
models.

For example the congruence Markovian bisimulation, allows
exact model reduction to be carried out compositionally.

Stochastic model checking based on the Continuous
Stochastic Logic (CSL) allows automatic evaluation of
quantified properties of the behaviour of the system.
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Stochastic process algebras

Over the last two decades stochastic process algebras (mostly with
Markovian semantics) have been applied to a wide range of
application domains.

In some cases there have been new languages developed to support
particular features of the application domain. These have included
stochastic process algebras for modelling hybrid systems
(e.g. HYPE, HyPA), spatial temporal collective adaptive systems
(e.g. PALOMA, CARMA) and ecological processes (e.g. PALPS,
MELA).

This is most noticeable in the arena of systems biology, which is
often focussed on biomolecular processing systems, for example
Bio-PEPA.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

A. Regev and E. Shapiro Cells as computation, Nature 419, 2002.
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The Bio-PEPA abstraction

Each “species” (biochemical component) i is described by a
species component Ci

Each reaction j is associated with an action type αj and its
dynamics is described by a specific function fαj

The species components are then composed together to describe
the behaviour of the system.
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Bio-PEPA modelling

The state of the system at any time consists of the local
states of each of its sequential/species components.

The local states of components are quantitative rather than
functional, i.e. biological changes to species are represented as
distinct components.

A component varying its state corresponds to it varying its
amount.

This is captured by an integer parameter associated with the
species and the effect of a reaction is to vary that parameter
by a number corresponding to the stoichiometry of this
species in the reaction.
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The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P ��
L
P | S(l)

Each action αj is associated with a rate fαj



Modelling Biological Processes Bio-PEPA St Andrews, 08/04/19

The semantics

The semantics is defined by two transition relations:

First, a capability relation — is a transition possible?

Second, a stochastic relation — gives rate of a transition,
derived from the parameters of the model.
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Example

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] ��
∗

S[5] ��
∗

R[0]
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Formal modelling in systems biology

Formal languages like Bio-PEPA provide a convenient
interface for describing complex systems, reflecting what is
known about the biological components and their behaviour.

High-level abstraction eases writing and manipulating models.

They are compiled into executable models which can be run
to deepen understanding of the model.

Formal nature lends itself to automatic, rigorous methods for
analysis and verification.

Executing the model generates data that can be compared
with biological data.

. . . but what if parts of the system are unknown?

Jasmin Fisher, Thomas A. Henzinger: Executable cell biology. Nature Biotechnology 2007
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Optimizing models

Usual process of parameterising a model is iterative and manual.

model

data

simulate/
analyse

update
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Alternative perspective

?

?

Model creation is data-driven
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Machine Learning: Bayesian statistics

prior

posterior

data

inference

Represent belief and uncertainty as probability distributions
(prior, posterior).

Treat parameters and unobserved variables similarly.

Bayes’ Theorem:

P(θ | D) =
P(θ) · P(D | θ)

P(D)

posterior ∝ prior · likelihood
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Bayesian statistics
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Modelling

Thus there are two approaches to model construction:

Machine Learning: extracting a model from the data generated by
the system, or refining a model based on system
behaviour using statistical techniques.

Mechanistic Modelling: starting from a description or hypothesis,
construct a formal model that algorithmically mimics
the behaviour of the system, validated against data.
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Comparing the techniques

Data-driven modelling:

+ rigorous handling of parameter uncertainty
- limited or no treatment of stochasticity
- in many cases bespoke solutions are required

which can limit the size of system which can be
handled

Mechanistic modelling:

+ general execution ”engine” (deterministic or
stochastic) can be reused for many models

+ models can be used speculatively to investigate
roles of parameters, or alternative hypotheses

- parameters are assumed to be known and fixed,
or costly approaches must be used to seek
appropriate parameterisation
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Developing a probabilistic programming approach

What if we could...

include information about uncertainty in the model?

automatically use observations to refine this uncertainty?

do all this in a formal context?

Starting from the existing process algebra (Bio-PEPA), we have
developed a new language ProPPA that addresses these issues.

A.Georgoulas, J.Hillston, D.Milios, G.Sanguinetti: Probabilistic Programming Process Algebra. QEST 2014.
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Probabilistic programming

A programming paradigm for describing incomplete knowledge
scenarios, and resolving the uncertainty.

Programs probabilistic models in a high level language, like
software code.

Offers automated inference without the need to write bespoke
solutions.

Platforms: IBAL, Church, Infer.NET, Fun, Anglican, Stan,
WebPPL,....

Key actions: specify a distribution, specify observations, infer
posterior distribution.
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Probabilistic programming workflow

Describe how the data is generated in syntax like a
conventional programming language, but leaving some
variables uncertain.

Specify observations, which impose constraints on acceptable
outputs of the program.

Run program forwards: Generate data consistent with
observations.

Run program backwards: Find values for the uncertain
variables which make the output match the observations.
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A Probabilistic Programming Process Algebra: ProPPA

The objective of ProPPA is to retain the features of the stochastic
process algebra:

simple model description in terms of components

rigorous semantics giving an executable version of the model...

... whilst also incorporating features of a probabilistic programming
language:

recording uncertainty in the parameters

ability to incorporate observations into models

access to inference to update uncertainty based on
observations
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Example Revisited

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] ��
∗

S[5] ��
∗

R[0]



ProPPA St Andrews, 08/04/19

Additions

Declaring uncertain parameters:

k s = Uniform(0,1);

k t = Uniform(0,1);

Providing observations:

observe(’trace’)

Specifying inference approach:

infer(’ABC’)
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kineticLawOf spread : k_s * I * S;
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observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Semantics

As with PEPA, a Bio-PEPA model can be interpreted as a
CTMC;

However, CTMCs cannot capture uncertainty in the rates
(every transition must have a concrete rate).

ProPPA models include uncertainty in the parameters, which
translates into uncertainty in the transition rates.

A ProPPA model should be mapped to something like a
distribution over CTMCs.
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parameter

model

k = 2

CTMC
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parameter

model

k ∈ [0,5]

set
 of CTMCs
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parameter

model

k ∼ p

distribution
over CTMCs

μ
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Constraint Markov Chains

Constraint Markov Chains (CMCs) are a generalization of DTMCs,
in which the transition probabilities are not concrete, but can take
any value satisfying some constraints.

Constraint Markov Chain

A CMC is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k.

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0, 1]k → {0, 1} is the constraint function.

Caillaud et al., Constraint Markov Chains, Theoretical Computer Science, 2011
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Constraint Markov Chains

In a CMC, arbitrary constraints are permitted, expressed through
the function φ: φ(s, ~p) = 1 iff ~p is an acceptable vector of
transition probabilities from state s.

However,

CMCs are defined only for the discrete-time case, and

this does not say anything about how likely a value is to be
chosen, only about whether it is acceptable.

To address these shortcomings, we define Probabilistic
Constraint Markov Chains.
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Probabilistic CMCs

A Probabilistic Constraint Markov Chain is a tuple 〈S , o,A,V , φ〉,
where:

S is the set of states, of cardinality k.

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0,∞)k → [0,∞) is the constraint function.

This is applicable to continuous-time systems.

φ(s, ·) is now a probability density function on the transition
rates from state s.
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Semantics of ProPPA

The semantics definition follows that of Bio-PEPA, which is
defined using two transition relations:

Capability relation — is a transition possible?

Stochastic relation — gives distribution of the rate of a
transition

The distribution over the parameter values induces a distribution
over transition rates.

This gives rise the underlying PCMC.
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Simulating Probabilistic Constraint Markov Chains

Probabilistic Constraint Markov Chains are open to two alternative
dynamic interpretations:

1 Uncertain Markov Chains: For each trajectory, for each
uncertain transition rate, sample once at the start of the run
and use that value throughout;

2 Imprecise Markov Chains: During each trajectory, each time a
transition with an uncertain rate is encountered, sample a
value but then discard it and re-sample whenever this
transition is visited again.

Current work on ProPPA is focused on the Uncertain Markov
Chain case.
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Inference

P(θ | D) ∝ P(θ)P(D | θ)

Exact inference is impossible, as we cannot calculate the
likelihood.

We must use approximate algorithms or approximations of the
system.

The ProPPA semantics does not define a single inference
algorithm, allowing for a modular approach.

Different algorithms can act on different input (time-series vs
properties), return different results or in different forms.
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Approximate Bayesian Computation is a simple
simulation-based solution:

Approximates posterior distribution over parameters as a set of
samples
Likelihood of parameters is hard to compute in CTMCs,
approximates that with a notion of distance.
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Approximate Bayesian Computation

ABC algorithm

1 Sample a parameter set from the prior distribution.

2 Simulate the system using these parameters.

3 Compare the simulation trace obtained with the observations.

4 If distance < ε, accept, otherwise reject.

This results in an approximate to the posterior distribution. As
ε→ 0, set of samples converges to true posterior.
We use a more elaborate version based on Markov Chain Monte
Carlo sampling.
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Example model

I RSI
S S

R

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] ��
∗

S[5] ��
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Results

Tested on the rumour-spreading example, with uniform priors for
the two parameters ks and kr .

Approximate Bayesian Computation

Returns posterior as a set of points (samples)

Observations: sparse time-series (single simulation)
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Results: ABC
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Genetic Toggle Switch

Two mutually-repressing genes: promoters (unobserved) and
their protein products

Bistable behaviour: switching induced by environmental
changes

Synthesised in E. coli
Gardner, Cantor & Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 2000

Stochastic variant where switching is induced by noise
Tian & Burrage, Stochastic models for regulatory networks of the genetic toggle switch, PNAS, 2006
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Genetic Toggle Switch
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∅
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Toggle switch model: species

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;

P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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θ 1 = Gamma(3,5); //etc...

kineticLawOf expr1 : θ 1 * G1;

kineticLawOf expr2 : θ 2 * G2;

kineticLawOf degr1 : θ 3 * P1;

kineticLawOf degr2 : θ 4 * P2;

kineticLawOf activ1 : θ 5 * (1 - G1);

kineticLawOf activ2 : θ 6 * (1 - G2);

kineticLawOf deact1 : θ 7 * exp(r ∗ P2) * G1;

kineticLawOf deact2 : θ 8 * exp(r ∗ P1) * G2;

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;
P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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Experiment

Simulated observations

Gamma priors on all parameters (required by algorithm)

Goal: learn posterior of 8 parameters

5000 samples taken using the Gibbs-like random truncation
algorithm
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Observations used
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Results
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ProPPA Workflow

model

inference 
algorithm

low-level 
description

inference 
results 

(samples)

statistics

plotting

prediction

...

infercompile

The ProPPA software framework contains a number of different
inference engines, suitable for models with different characteristics,
including infinite state space.

A.Georgoulas, J.Hillston and G.Sanguinetti, ProPPA: Probabilistic Programming for Stochastic Dynamical Systems,

in TOMACS 2018
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Summary

Integrating CTMCs with process algebras has brought a
wide-range of fruitful application domains for stochastic
process algebras.

ProPPA is a process algebra that incorporates uncertainty and
observations directly in the model, influenced by probabilistic
programming.

Syntax remains similar to Bio-PEPA whilst the semantics
defined in terms of an extension of Constraint Markov Chains.

Observations can be either time-series or logical properties.

Embedding inference within a formal language, in the style of
probabilistic programming brings many possibilities.
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Challenges and Future Directions

The value of observations

Can we reason about the “distance” between µ and µ∗?
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Challenges and Future Directions

Heterogeneous populations

What if we are seeking the “optimal mix” rather than the best
individual representative?
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Thanks!

Bio-PEPA was joint work with Federica Ciocchetta, funded by
EPSRC.

ProPPA was joint work with Anastasis Georgoulas and Guido
Sanguinetti, funded by Microsoft Research, ERC and CEC
FP7 FET Proactive programme FoCAS.
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