
Stochastic Process Algebras and Ordinary
Differential Equations

Jane Hillston

Laboratory for Foundations of Computer Science
and Centre for Systems Biology at Edinburgh

University of Edinburgh

5th September 2011



Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation
State variables

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Conclusions



Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation
State variables

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Conclusions



Process Algebra

• Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

• The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules



Process Algebra

• Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

• The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules



Process Algebra

• Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

• The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules



Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).



Stochastic Process Algebra

• Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

• The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



Stochastic Process Algebra

• Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

• The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



Stochastic Process Algebra

• Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

• The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity
No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity
No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity
No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity
No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.



A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4





Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.



Benefits of process algebra

Beyond the clear benefits for model construction to be derived
from using a high-level language with compositionality the formal
nature of the process algebra specification has been exploited in a
number of ways.



Benefits of process algebra

For example,

• The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

• Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

• Stochastic model checking based on the CSL family of
temporal logics allows evaluation of quantified properties of
the behaviour of the system



Benefits of process algebra

For example,

• The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

• Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

• Stochastic model checking based on the CSL family of
temporal logics allows evaluation of quantified properties of
the behaviour of the system



Benefits of process algebra

For example,

• The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

• Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

• Stochastic model checking based on the CSL family of
temporal logics allows evaluation of quantified properties of
the behaviour of the system



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.



Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Crowd dynamics
Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.



The CODA project

In the CODA project we have been developing stochastic process
algebras and associated theory, tailored to the construction and
evaluation of the collective dynamics of large systems of
interacting entities.

One approach to this is to keep the discrete state representation in
the model and to evaluate it algorithmically rather than
analytically, i.e. carry out a discrete event simulation of the model
to explore its possible behaviours.

However, our main approach has been to use a counting
abstraction in order to make a shift to population statistics and to
develop a fluid approximation.



The CODA project

In the CODA project we have been developing stochastic process
algebras and associated theory, tailored to the construction and
evaluation of the collective dynamics of large systems of
interacting entities.

One approach to this is to keep the discrete state representation in
the model and to evaluate it algorithmically rather than
analytically, i.e. carry out a discrete event simulation of the model
to explore its possible behaviours.

However, our main approach has been to use a counting
abstraction in order to make a shift to population statistics and to
develop a fluid approximation.



The CODA project

In the CODA project we have been developing stochastic process
algebras and associated theory, tailored to the construction and
evaluation of the collective dynamics of large systems of
interacting entities.

One approach to this is to keep the discrete state representation in
the model and to evaluate it algorithmically rather than
analytically, i.e. carry out a discrete event simulation of the model
to explore its possible behaviours.

However, our main approach has been to use a counting
abstraction in order to make a shift to population statistics and to
develop a fluid approximation.



Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Then we make a continuous approximation of how the counts vary
over time.



Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Then we make a continuous approximation of how the counts vary
over time.



Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Then we make a continuous approximation of how the counts vary
over time.



Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Then we make a continuous approximation of how the counts vary
over time.



Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models for
dynamic evaluation represents a paradigm shift in how such
formal models are analysed.

The prospect of formally-based quantified evaluation of dynamic
behaviour could have significant impact in application domains
which have traditionally worked directly at the level of fitting
differential equation models.



Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models for
dynamic evaluation represents a paradigm shift in how such
formal models are analysed.

The prospect of formally-based quantified evaluation of dynamic
behaviour could have significant impact in application domains
which have traditionally worked directly at the level of fitting
differential equation models.



Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation
State variables

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Conclusions



Alternative Representations

Continuous
Approximation

of CTMC
population view

explicit state
CTMC

explicit state
CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

-

-�
��

�
��
�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj



Alternative Representations

Continuous
Approximation

of CTMC

population view

explicit state
CTMC

explicit state
CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

-

-�
��
�
��
�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj



Alternative Representations

Continuous
Approximation

of CTMC
population view

explicit state
CTMC

explicit state
CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--

�
��
�
��
�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj



A new approach to SPA semantics

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



A new approach to SPA semantics

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



A new approach to SPA semantics

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



A new approach to SPA semantics

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.



Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is

• decrease by 1 if the component participates in the action
• increase by 1 if the component is the result of the action
• zero if the component is not involved in the action.



Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is

• decrease by 1 if the component participates in the action
• increase by 1 if the component is the result of the action
• zero if the component is not involved in the action.



Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is
• decrease by 1 if the component participates in the action

• increase by 1 if the component is the result of the action
• zero if the component is not involved in the action.



Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is
• decrease by 1 if the component participates in the action
• increase by 1 if the component is the result of the action

• zero if the component is not involved in the action.



Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is
• decrease by 1 if the component participates in the action
• increase by 1 if the component is the result of the action
• zero if the component is not involved in the action.



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

• task1 decreases Proc0 and Res0

• task1 increases Proc1 and Res1

• task2 decreases Proc1

• task2 increases Proc0

• reset decreases Res1

• reset increases Res0



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

• task1 decreases Proc0

• task1 is performed by Proc0

and Res0

• task2 increases Proc0

• task2 is performed by Proc1



Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1



Alternative Representations

Continuous
Approximation

of CTMC
population viewset of ODEs

full generator matrix

(implicit)

explicit state
CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

-

-�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC

population viewset of ODEs

full generator matrix

(implicit)

explicit state
CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

-

-�
��
�
��
�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC
population view

set of ODEs

full generator matrix

(implicit)

explicit state
CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--

�
��
�
��
�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC
population viewset of ODEs

full generator matrix

(implicit)

explicit state
CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC
population viewset of ODEs

full generator matrix

(implicit)

explicit state

CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC

population view

set of ODEs

full generator matrix

(implicit)

explicit state

CTMC

explicit state
CTMC

Aggregatedreduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Alternative Representations

Continuous
Approximation

of CTMC

population view

set of ODEs

full generator matrix

(implicit)

explicit state

CTMC

explicit state
CTMC

Aggregated

reduced generator
matrix

generator functions abstract CTMC

Stochastic
Simulation
of CTMC

individual view

Large
PEPA model

--�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj

6

6

fluid approximation

counting abstraction



Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation
State variables

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Conclusions



Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC

ODEs
FM(x)- - -SOS rules generator

functions

fluid
approx



Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC

ODEs
FM(x)- - -SOS rules generator

functions

fluid
approx



Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC

ODEs
FM(x)- - -SOS rules generator

functions

fluid
approx



Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC

ODEs
FM(x)- - -SOS rules generator

functions

fluid
approx



Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC

ODEs
FM(x)- - -SOS rules generator

functions

fluid
approx



Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.



Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.



Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.



Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.



Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.



Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)



Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)



Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)



Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)



Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)



Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)



Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1ξ1−−−−−−−→∗ Proc1



Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3ξ3−−−−−−−→∗ Res1



Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1



Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ)=min
(
r1ξ1, r3ξ4

)



Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ)=min
(
r1ξ1, r3ξ4

)



f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw

(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)



Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0



Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0



Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4



Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4



Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4



Extraction of the ODE from f

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4



Extraction of the ODE from f

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx1
dt

= −min (r1x1, r3x3) + r2x2

dx2
dt

= min (r1x1, r3x3)− r2x2

dx3
dt

= −min (r1x1, r3x3) + r4x4

dx4
dt

= min (r1x1, r3x3)− r4x4



Consistency results

• The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

• The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

• We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

• Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.



Consistency results

• The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

• The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

• We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

• Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.



Consistency results

• The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

• The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

• We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

• Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.



Consistency results

• The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

• The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

• We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

• Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.



Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation
State variables

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Conclusions



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.



Conclusions

• Many interesting and important systems can be studied as a
result of the link between stochastic process algebras and
ODEs.

• Particularly, we can now consider examples of collective
dynamics and emergent behaviour.

• Stochastic process algebras, are well-suited to modelling the
behaviour of such systems in terms of the individuals and their
interactions.

• Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.



Conclusions

• Many interesting and important systems can be studied as a
result of the link between stochastic process algebras and
ODEs.

• Particularly, we can now consider examples of collective
dynamics and emergent behaviour.

• Stochastic process algebras, are well-suited to modelling the
behaviour of such systems in terms of the individuals and their
interactions.

• Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.



Conclusions

• Many interesting and important systems can be studied as a
result of the link between stochastic process algebras and
ODEs.

• Particularly, we can now consider examples of collective
dynamics and emergent behaviour.

• Stochastic process algebras, are well-suited to modelling the
behaviour of such systems in terms of the individuals and their
interactions.

• Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.



Conclusions

• Many interesting and important systems can be studied as a
result of the link between stochastic process algebras and
ODEs.

• Particularly, we can now consider examples of collective
dynamics and emergent behaviour.

• Stochastic process algebras, are well-suited to modelling the
behaviour of such systems in terms of the individuals and their
interactions.

• Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.



On-going work

• Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessarily the information we require.

• Recent work has established the validity of performance
measures such as throughput, and average response time
derived from the ODE solutions [TDGH 2012, IEEE TSE].

• On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

• Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.



On-going work

• Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessarily the information we require.

• Recent work has established the validity of performance
measures such as throughput, and average response time
derived from the ODE solutions [TDGH 2012, IEEE TSE].

• On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

• Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.



On-going work

• Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessarily the information we require.

• Recent work has established the validity of performance
measures such as throughput, and average response time
derived from the ODE solutions [TDGH 2012, IEEE TSE].

• On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

• Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.



On-going work

• Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessarily the information we require.

• Recent work has established the validity of performance
measures such as throughput, and average response time
derived from the ODE solutions [TDGH 2012, IEEE TSE].

• On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

• Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.



Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Andrea Bracciali,
Jeremy Bradley, Luca Bortolussi, Federica Ciocchetta, Allan Clark,
Jie Ding, Adam Duguid, Vashti Galpin, Stephen Gilmore, Diego
Latella, Mieke Massink, Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa



Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Andrea Bracciali,
Jeremy Bradley, Luca Bortolussi, Federica Ciocchetta, Allan Clark,
Jie Ding, Adam Duguid, Vashti Galpin, Stephen Gilmore, Diego
Latella, Mieke Massink, Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa



Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Andrea Bracciali,
Jeremy Bradley, Luca Bortolussi, Federica Ciocchetta, Allan Clark,
Jie Ding, Adam Duguid, Vashti Galpin, Stephen Gilmore, Diego
Latella, Mieke Massink, Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa



Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Andrea Bracciali,
Jeremy Bradley, Luca Bortolussi, Federica Ciocchetta, Allan Clark,
Jie Ding, Adam Duguid, Vashti Galpin, Stephen Gilmore, Diego
Latella, Mieke Massink, Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa



Alternative Representations

ODEs population view

TDSHA (hybrid
automaton)

hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-

�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj



Alternative Representations

ODEs population view

TDSHA (hybrid
automaton)

hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-�
��
�
��

�
��

�
��

�
��*

HH
HHH

HHH
HHH

HHHHj


	Introduction
	Stochastic Process Algebra

	Continuous Approximation
	State variables

	Fluid-Flow Semantics
	Fluid Structured Operational Semantics

	Conclusions

