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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).



Stochastic Process Algebra

• Models are constructed from components which engage in
activities.
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Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.
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P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions. In PEPA cooperation between components
gives rise to shared actions, the rate of which are governed by the
assumption of bounded capacity.

Bounded capacity
No component can be made to carry out an action in cooperation
faster than its own defined rate for the action.

Thus shared actions proceed at the minimum of the rates in the
participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.
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A simple example: processors and resources
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Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =
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π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

As we have seen the SOS
semantics of a SPA model is
mapped to a CTMC with
global states determined by
the local states of the
participating components.

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))



Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.



Benefits of process algebra

Beyond the clear benefits for model construction to be derived
from using a high-level language with compositionality the formal
nature of the process algebra specification has been exploited in a
number of ways.
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For example,

• The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

• Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

• Stochastic model checking based on the CSL family of
temporal logics allows evaluation of quantified properties of
the behaviour of the system
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Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.
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CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
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4 3 128
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5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
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Disadvantages of process algebra

The primary disadvantage of stochastic process algebras, shared by
all discrete event modelling paradigms, is the problem of state
space explosion, also known as the curse of dimensionality.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Crowd dynamics
Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.



A conundrum

Process algebras are well-suited to constructing such models:

• Developed to represent concurrent behaviour compositionally;

• Represent the interactions between individuals explicitly;

• Stochastic extensions allow the dynamics of system behaviour
to be captured;

• Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.
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The CODA project

In the CODA project we have been developing stochastic process
algebras and associated theory, tailored to the construction and
evaluation of the collective dynamics of large systems of
interacting entities.

One approach to this is to keep the discrete state representation in
the model and to evaluate it algorithmically rather than
analytically, i.e. carry out a discrete event simulation of the model
to explore its possible behaviours.

However, our main approach has been to use a counting
abstraction in order to make a shift to population statistics and to
develop a fluid approximation.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Then we make a continuous approximation of how the counts vary
over time.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models for
dynamic evaluation represents a paradigm shift in how such
formal models are analysed.

The prospect of formally-based quantified evaluation of dynamic
behaviour could have significant impact in application domains
which have traditionally worked directly at the level of fitting
differential equation models.
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A new approach to SPA semantics

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.
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Models suitable for counting abstraction

• In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

• The impact of an action of a counting variable is

• decrease by 1 if the component participates in the action
• increase by 1 if the component is the result of the action
• zero if the component is not involved in the action.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting SOS semantics is not suitable because it constructs
the state space of the CTMC explicitly.

Instead we define a structured operational semantics which defines
the possible transitions of an abitrary abstract state, giving the
CTMC implicitly as a set of generator functions, which directly
give rise to the ODEs.
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.
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Context Reduction
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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Construction of f (ξ, l , α)
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• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

• Take l = (0, 0, 0, 0)

• Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

• Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = min
(
r1ξ1, r3ξ4

)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1
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= (task2 , r2 ).Proc0
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def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
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Extraction of the ODE from f

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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Generator Function
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Differential Equation

dx1
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dx2
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dx3
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dx4
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Consistency results

• The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

• The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

• We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

• Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.
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Why use a process algebra?

• High level description of the system eases the task of model
construction.

• Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

• Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

• Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

• Compositionality can be exploited both for model construction
and (in some cases) for model analysis.
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Conclusions

• Many interesting and important systems can be studied as a
result of the link between stochastic process algebras and
ODEs.

• Particularly, we can now consider examples of collective
dynamics and emergent behaviour.

• Stochastic process algebras, are well-suited to modelling the
behaviour of such systems in terms of the individuals and their
interactions.

• Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.
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On-going work

• Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessarily the information we require.

• Recent work has established the validity of performance
measures such as throughput, and average response time
derived from the ODE solutions [TDGH 2012, IEEE TSE].

• On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

• Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.
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