
1/ 99

A Fluid Approach to Model Checking

Jane Hillston
joint work with Luca Bortolussi

School of Informatics
University of Edinburgh

(Department of Mathematics and Geosciences, University of Trieste
ISTI-CNR, Pisa,

Department of Computer Science, University of Saarbrueken)

28th January 2015

Introduction Model Checking 2/ 99

Background

In Computer Science we often describe the behaviour of
systems with discrete state-based representations such as
finite state machines (qualitative) or discrete time Markov
chains (DTMC) or continuous time Markov chains (quantitative).

These might capture software, hardware, a sensor network.....
The size of the state space will often number in the hundreds of
thousands or millions.

Introduction Model Checking 3/ 99

Background

In Computer Science we often describe the behaviour of
systems with discrete state-based representations such as
finite state machines (qualitative) or discrete time Markov
chains (DTMC) or continuous time Markov chains (quantitative).

These might capture software, hardware, a sensor network.....
The size of the state space will often number in the hundreds of
thousands or millions.

Introduction Model Checking 4/ 99

Background

We are typically interested in the possible behaviours that the
system will exhibit over time, e.g.

Is a certain state reachable? With a given probability within a
given time limit?

Will the behaviour remain in a certain region of the state space
until a certain condition is met? And will the condition be met
within time interval I, with a given probability?

We use temporal logics to express such properties — these are
logics which include operators such as next, until, eventually
and globally.

Introduction Model Checking 5/ 99

Background

We are typically interested in the possible behaviours that the
system will exhibit over time, e.g.

Is a certain state reachable? With a given probability within a
given time limit?

Will the behaviour remain in a certain region of the state space
until a certain condition is met? And will the condition be met
within time interval I, with a given probability?

We use temporal logics to express such properties — these are
logics which include operators such as next, until, eventually
and globally.

Introduction Model Checking 6/ 99

Background

We are typically interested in the possible behaviours that the
system will exhibit over time, e.g.

Is a certain state reachable? With a given probability within a
given time limit?

Will the behaviour remain in a certain region of the state space
until a certain condition is met? And will the condition be met
within time interval I, with a given probability?

We use temporal logics to express such properties — these are
logics which include operators such as next, until, eventually
and globally.

Introduction Model Checking 7/ 99

Background

Model checking: a technique for automatically querying the
behaviour of an automata-based model with respect to a
property expressed in a suitable logic.

Introduction Model Checking 8/ 99

Model checking

Model checking requires two inputs:

a description of the system, usually given in some
high-level modelling formalism which can be used to
automatically generate a state-based representation;

a specification of one or more desired properties of the
system, normally using temporal logics such as CTL
(Computational Tree Logic), LTL (Linear-time Temporal
Logic) CSL (Continuous Stochastic Logic).

Introduction Model Checking 9/ 99

Model checking

Model checking requires two inputs:

a description of the system, usually given in some
high-level modelling formalism which can be used to
automatically generate a state-based representation;

a specification of one or more desired properties of the
system, normally using temporal logics such as CTL
(Computational Tree Logic), LTL (Linear-time Temporal
Logic) CSL (Continuous Stochastic Logic).

Introduction Model Checking 10/ 99

Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible
behaviours of the system.

The model checking algorithms then automatically verify
whether or not each property is satisfied in the system.

The way in which this is done depends on the structure of
labelled transition system and the particular logic considered.

Introduction Model Checking 11/ 99

Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible
behaviours of the system.

The model checking algorithms then automatically verify
whether or not each property is satisfied in the system.

The way in which this is done depends on the structure of
labelled transition system and the particular logic considered.

Introduction Model Checking 12/ 99

Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible
behaviours of the system.

The model checking algorithms then automatically verify
whether or not each property is satisfied in the system.

The way in which this is done depends on the structure of
labelled transition system and the particular logic considered.

Introduction Model Checking 13/ 99

Probabilistic model checking

In probabilistic model checking it is assumed that the labelled
transition system includes information about the probability and
timing of actions.

In particular in stochastic model checking it is assumed that the
labelled transition system is a Continuous Time Markov Chain
(CTMC).

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Introduction Model Checking 14/ 99

Probabilistic model checking

In probabilistic model checking it is assumed that the labelled
transition system includes information about the probability and
timing of actions.

In particular in stochastic model checking it is assumed that the
labelled transition system is a Continuous Time Markov Chain
(CTMC).

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Introduction Model Checking 15/ 99

Probabilistic model checking

In probabilistic model checking it is assumed that the labelled
transition system includes information about the probability and
timing of actions.

In particular in stochastic model checking it is assumed that the
labelled transition system is a Continuous Time Markov Chain
(CTMC).

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Introduction Model Checking 16/ 99

Model checking

There are two broad approaches to model checking:

Explicit state model checking (exhaustive exploration for all
possible states/executions): exact results obtained via
numerical computation.
Statistical model-checking (discrete event simulation and
sampling over multiple runs): approximate results.

Introduction Model Checking 17/ 99

The CSL logic

The syntax of CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P∼p[φ UI φ] | S∼p[φ]

where a is an atomic proposition, ∼∈ {<,≤,≥, >},p ∈ [0,1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.

Introduction Model Checking 18/ 99

The CSL logic

The syntax of CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P∼p[φ UI φ] | S∼p[φ]

where a is an atomic proposition, ∼∈ {<,≤,≥, >},p ∈ [0,1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.

Introduction Model Checking 19/ 99

Probabilistic operators

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound
∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path ω through the state space if, for some time
instant t ∈ I, at time t in the path ω the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

Introduction Model Checking 20/ 99

Probabilistic operators

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound
∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path ω through the state space if, for some time
instant t ∈ I, at time t in the path ω the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

Introduction Model Checking 21/ 99

Probabilistic operators

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound
∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path ω through the state space if, for some time
instant t ∈ I, at time t in the path ω the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

Introduction Model Checking 22/ 99

Model checking CTMC

The algorithm for explicit state model checking involves a
combination of:

graph-theoretical algorithms, for conventional temporal logic
model checking and qualitative probabilistic model
checking;

numerical computation, for quantitative probabilistic model
checking, i.e. calculation of probabilities and
reward values.

Introduction Model Checking 23/ 99

Model checking CSL formula on CTMC

The interesting case is the bounded until formula φ1 UI φ2.

This is reduced to calculating the transient probability
distribution in the CTMC:

All φ2 states are made absorbing, because once a state in
this set has been reached the future evolution does not
matter; this set of goal states is known as G.
All states in ¬(φ1 ∨ φ2) are also made absorbing, because
if one of these states is entered it is no longer possible to
satisfy the formula; this set of unsatisfactory states is
known as U.

Once the modified CTMC is constructed, it is uniformized and
the resulting DTMC is solved to find the transient probabilities
w.r.t. the time interval I, using Fox and Glynn’s algorithm.

Introduction Model Checking 24/ 99

Model checking CSL formula on CTMC

The interesting case is the bounded until formula φ1 UI φ2.

This is reduced to calculating the transient probability
distribution in the CTMC:

All φ2 states are made absorbing, because once a state in
this set has been reached the future evolution does not
matter; this set of goal states is known as G.
All states in ¬(φ1 ∨ φ2) are also made absorbing, because
if one of these states is entered it is no longer possible to
satisfy the formula; this set of unsatisfactory states is
known as U.

Once the modified CTMC is constructed, it is uniformized and
the resulting DTMC is solved to find the transient probabilities
w.r.t. the time interval I, using Fox and Glynn’s algorithm.

Introduction Model Checking 25/ 99

Model checking CSL formula on CTMC

The interesting case is the bounded until formula φ1 UI φ2.

This is reduced to calculating the transient probability
distribution in the CTMC:

All φ2 states are made absorbing, because once a state in
this set has been reached the future evolution does not
matter; this set of goal states is known as G.
All states in ¬(φ1 ∨ φ2) are also made absorbing, because
if one of these states is entered it is no longer possible to
satisfy the formula; this set of unsatisfactory states is
known as U.

Once the modified CTMC is constructed, it is uniformized and
the resulting DTMC is solved to find the transient probabilities
w.r.t. the time interval I, using Fox and Glynn’s algorithm.

Introduction Mean Field Approximation 26/ 99

Mean Field Approximation

Introduction Mean Field Approximation 27/ 99

Mean Field Approximation

Introduction Mean Field Approximation 28/ 99

Mean Field Approximation

We view the population of objects more abstractly, assuming
that individuals are indistinguishable.

Introduction Mean Field Approximation 29/ 99

Mean Field Approximation

An occupancy measure records the proportion of agents that
are currently exhibiting each possible behaviour.

Introduction Mean Field Approximation 30/ 99

Mean Field Approximation

An occupancy measure records the proportion of agents that
are currently exhibiting each possible behaviour.

Introduction Mean Field Approximation 31/ 99

Mean Field Approximation

An occupancy measure records the proportion of agents that
are currently exhibiting each possible behaviour.

Introduction Mean Field Approximation 32/ 99

Mean Field Analysis

Based on the mean field approximation we can analyse the
behaviour of large scale systems with collective behaviour.

Recently we have been the first to incorporate this
approach into quantitative model checking.
L.Bortolussi and J.HIllston, Fluid Model Checking, CONCUR 2012.

Introduction Mean Field Approximation 33/ 99

Mean Field Analysis

Based on the mean field approximation we can analyse the
behaviour of large scale systems with collective behaviour.

Recently we have been the first to incorporate this
approach into quantitative model checking.
L.Bortolussi and J.HIllston, Fluid Model Checking, CONCUR 2012.

Introduction Mean Field Approximation 34/ 99

Fluid Model Checking
Properties related to a single agent are expressed in CSL,
e.g. agent Z is in the blue state until it enters the red state and this
must occur within time 1.7.

Z	

%	

Introduction Mean Field Approximation 35/ 99

Fluid Model Checking

This agent is considered in the mean field created by the
rest of the system.

The rates of its transitions become dependent on the state
of the rest of the system and so vary over time.

This is represented as a time-inhomogeneous CTMC.

f1(m1,m2,m3)	 f2(m1,m2,m3)	

f3(m1,m2,m3)	

f4(m1,m2,m3)	

%	

Introduction Mean Field Approximation 36/ 99

Fluid Model Checking

ZZ	

P<0.2(Z@blue U <1.7 Z@red)
Property	 of	 object	 Z	

in	 System	

Model-‐Checking	
Algorithm/tool	

f1	 f2	 f3	

f4	

CSL	 formula	

Introduction Mean Field Approximation 37/ 99

Outline

1 Introduction
Model Checking
Mean Field Approximation

2 Fluid Model Checking
Theoretical Foundations
Example

3 Model Checking ICTMC
CSL model checking

4 Conclusions

Fluid Model Checking Theoretical Foundations 38/ 99

Population models — introduction to notation

Individuals

We have N individuals Y (N)

i ∈ S, S = {1,2, . . . ,n} in the system
(can have multiple classes).

System variables

X (N)

j =
∑N

i=1 1{Y (N)

i = j}, and X(N) = (X (N)

1 , . . . ,X (N)
n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ: X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Foundations 39/ 99

Population models — introduction to notation

Individuals

We have N individuals Y (N)

i ∈ S, S = {1,2, . . . ,n} in the system
(can have multiple classes).

System variables

X (N)

j =
∑N

i=1 1{Y (N)

i = j}, and X(N) = (X (N)

1 , . . . ,X (N)
n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ: X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Foundations 40/ 99

Population models — introduction to notation

Individuals

We have N individuals Y (N)

i ∈ S, S = {1,2, . . . ,n} in the system
(can have multiple classes).

System variables

X (N)

j =
∑N

i=1 1{Y (N)

i = j}, and X(N) = (X (N)

1 , . . . ,X (N)
n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ: X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Foundations 41/ 99

Example: client server interaction

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

ready

process

reply

log

requestlogging

processreply

CLIENT SERVER

timeout
tim
eout

Crq

Cw

Crc Ct

Srq

Srp

SpSl

Fluid Model Checking Theoretical Foundations 42/ 99

Example: client server interaction

Variables
4 variables for the client states: Crq, Cw , Crc Ct .
4 variables for the server states: Srq, Sp, Srp Sl .

Transitions
There are 7 transition in totals. Rates based on hand-shaking.

request: (·,1Cw ,Sp − 1Crq ,Srq , kr ·min(Crq ,Srq))

reply: (·,1Ct ,Sl − 1Cw ,Srp ,min(kwCw , krpSrp))

timeout: (·,1Crc − 1Cw , ktoCw)

. . .

Fluid Model Checking Theoretical Foundations 43/ 99

Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMC, for
increasing total population N.
We normalize such models, dividing variables by N:

X
(N)

= X
N

for each τ ∈ T (N), the normalized update is v̄ = v/N and

the rate function is r̄τ(X
(N)

) = Nfτ(X
(N)

) (density
dependence).

Fluid ODE
The fluid ODE is ẋ = F (x), where

F (x) =
∑
τ∈T

vτfτ(x)

Fluid Model Checking Theoretical Foundations 44/ 99

Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC,
residing in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)
x(t): solution of dx

dt = F (x), x(0) = x0, residing in E .

Theorem
For any finite time horizon T < ∞, it holds that:

P(sup
0≤t≤T

||X
(N)

(t) − x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.
Journal of Applied Probability, 1970.

Fluid Model Checking Theoretical Foundations 45/ 99

Single Agent Asymptotic Behaviour

Dynamics of individuals

Focus on a single individual Y (N)

h , which is a stochastic process
on S = {1, . . . ,n} (but NOT Markov!).

Let Q(N)(x) be the “infinitesimal generator matrix” of Y (N)

h :

P{Y (N)

h (t + dt) = j | Y (N)

h (t) = i , X
(N)

(t) = x} = q(N)

i ,j (x)dt .

Fix k and let Z (N)

k = (Y (N)

1 , . . . ,Y (N)

k), with state space Sk

Suppose Q(N)(x)→ Q(x)

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

We suppose that as the population increases the transition
rates of the individual tend to the transition rates of an
individual dependent instead on the mean field.

Fluid Model Checking Theoretical Foundations 46/ 99

Single Agent Asymptotic Behaviour

Dynamics of individuals

Focus on a single individual Y (N)

h , which is a stochastic process
on S = {1, . . . ,n} (but NOT Markov!).

Let Q(N)(x) be the “infinitesimal generator matrix” of Y (N)

h :

P{Y (N)

h (t + dt) = j | Y (N)

h (t) = i , X
(N)

(t) = x} = q(N)

i ,j (x)dt .

Fix k and let Z (N)

k = (Y (N)

1 , . . . ,Y (N)

k), with state space Sk

Suppose Q(N)(x)→ Q(x)

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

We suppose that as the population increases the transition
rates of the individual tend to the transition rates of an
individual dependent instead on the mean field.

Fluid Model Checking Theoretical Foundations 47/ 99

Fast Simulation

Asymptotic behaviour of Z (N)

k

Let x(t) be the solution of the fluid ODE, and assume to be
under the hypothesis of Kurtz theorem.

Let zk (t) be the time inhomogeneous-CTMC on Sk defined by
the following infinitesimal generator (for any h = 1, . . . , k):

P{zk (t + dt) = (. . . , j , . . .) | zk (t + dt) = (. . . , i , . . .)} = qi ,j(x(t))dt

Theorem (Fast simulation theorem)

For any T < ∞, P{Z (N)

k (t) , zk (t), t ≤ T } → 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

Fluid Model Checking Theoretical Foundations 48/ 99

Fast Simulation

Asymptotic behaviour of Z (N)

k

Let x(t) be the solution of the fluid ODE, and assume to be
under the hypothesis of Kurtz theorem.

Let zk (t) be the time inhomogeneous-CTMC on Sk defined by
the following infinitesimal generator (for any h = 1, . . . , k):

P{zk (t + dt) = (. . . , j , . . .) | zk (t + dt) = (. . . , i , . . .)} = qi ,j(x(t))dt

Theorem (Fast simulation theorem)

For any T < ∞, P{Z (N)

k (t) , zk (t), t ≤ T } → 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

Fluid Model Checking Theoretical Foundations 49/ 99

Client-Server example

Single client

Y (N) ∈ {rq,w , t , rc}

Rates of Z (N)

1

request: 1
C(N)

rq
kr min(C(N)

rq ,S(N)
rq)

reply: 1
C(N)

w
min(kwC(N)

w , krpS(N)
rp)

timeout: kto; recover: krc

Rates of z1

request: kr min(1, srq(t)
crq(t)

)

reply: min(kw , krp
srp(t)
cw (t))

timeout: kto; recover: krc

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

CLIENT

Xrq

Xw

Xrc Xt

Fluid Model Checking Theoretical Foundations 50/ 99

The idea

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z.

Model check temporal logic formulae on z.

Outline of results
A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).
Investigation of its decidability.
Convergence results (asymptotic correctness for large N).

L. Bortolussi, J. Hillston. Fluid Model Checking. CONCUR 2012 and to appear in Information & Computation 2015.

Fluid Model Checking Theoretical Foundations 51/ 99

The idea

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z.

Model check temporal logic formulae on z.

Outline of results
A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).
Investigation of its decidability.
Convergence results (asymptotic correctness for large N).

L. Bortolussi, J. Hillston. Fluid Model Checking. CONCUR 2012 and to appear in Information & Computation 2015.

Fluid Model Checking Example 52/ 99

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of Z (t) is a sequence σ = s0
t0
→ s1

t1
→ . . ., with non null

probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of Z (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 53/ 99

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of Z (t) is a sequence σ = s0
t0
→ s1

t1
→ . . ., with non null

probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of Z (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 54/ 99

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of Z (t) is a sequence σ = s0
t0
→ s1

t1
→ . . ., with non null

probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of Z (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 55/ 99

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 56/ 99

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 57/ 99

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 58/ 99

Client-Server example

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

CLIENT

Xrq

Xw

Xrc Xt

Fluid Model Checking Example 59/ 99

Client-Server: P=?(F≤T atimeout) = P=?(true U [0,T]atimeout)

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr=?[F<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Fluid Model Checking Example 60/ 99

Client-Server: P=?(arequest ∨ awaitU≤T atimeout)

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Pr=?[(request or wait) U<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Fluid Model Checking Example 61/ 99

Client-Server: computational cost

Computational cost
The cost of the fluid system is independent of N.
For this example (10 clients - 5 servers) it is ∼100 times faster
than the simulation-based approach (which increases linearly
with N).

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr=?[F<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Pr=?[(request or wait) U<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Model Checking ICTMC CSL model checking 62/ 99

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

Time-homogeneous CTMC

For time-homogeneous case, we can check this formula by
computing, for each state s ∈ S, the probability of paths
satisfying φ1 U [0,T] φ2 deciding if this probability is ./ p.

This is done via transient analysis on the chain in which ¬φ1
and φ2 states are made absorbing.

Time-homogeneity⇒ we can run each transient analysis from
time t0 = 0 even if we have nested until formulae.

Model Checking ICTMC CSL model checking 63/ 99

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

Time-homogeneous CTMC

For time-homogeneous case, we can check this formula by
computing, for each state s ∈ S, the probability of paths
satisfying φ1 U [0,T] φ2 deciding if this probability is ./ p.

This is done via transient analysis on the chain in which ¬φ1
and φ2 states are made absorbing.

Time-homogeneity⇒ we can run each transient analysis from
time t0 = 0 even if we have nested until formulae.

Model Checking ICTMC CSL model checking 64/ 99

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

This is no longer true in time-inhomogeneous CTMCs, as the
probability of an until formula depends on the time at which we
evaluate it.

The truth value of φ in a state s
depends on the time t at which we evaluate it!

This causes problems when we consider nested until formulae.

Model Checking ICTMC CSL model checking 65/ 99

Model Checking ICTMC — related work

The CTMC z(N)
n is time-inhomogeneous.

Model checking for ICTMC

Model checking Hennessy Milner Logics (ICTMC with
piecewise constant rates)
Model checking LTL (time unbounded operators, requires
asymptotic regularity of rates).
Model checking against DTA specification (not for ICTMC,
can possibly be extended)

J.P. Katoen, A. Mereacre. Model Checking HML on Piecewise-Constant Inhomogeneous Markov Chains.
FORMATS 2008.

T. Chen, T. Han, J.P. Katoen, A. Mereacre: LTL Model Checking of Time-Inhomogeneous Markov Chains.
ATVA 2009.

T. Chen, T. Han, J.P. Katoen, A. Mereacre: Model Checking of Continuous-Time Markov Chains Against
Timed Automata Specifications. Logical Methods in Computer Science 7, 2011.

Model Checking ICTMC CSL model checking 66/ 99

CSL model checking for ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).

P./p(φ1 U [0,T] φ2)

Model Checking ICTMC CSL model checking 67/ 99

CSL model checking for ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).

P./p(φ1 U [0,T] φ2)

This can be model checked using transient analysis to solve the
following reachability problem:

What is the probability of reaching a φ2-state within time T
without entering a ¬φ1-state?

Model Checking ICTMC CSL model checking 68/ 99

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i ,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 69/ 99

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i ,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 70/ 99

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i ,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 71/ 99

Time-dependent reachability probability

1. Compute Π(t , t + T), for t ∈ [0,Tf]

Π(t , t + T), as a function of t , with initial conditions Π(0,T),
satisfies:

dΠ(t , t + T)

dt
= Π(t , t + T)Q(t + T) −Q(t)Π(t , t + T)

2. Add probability for goal states

Then, Pφ1U [0,T]φ2
(s, t) is equal to

∑
s′ |=φ2

Π¬φ1∧φ2(t , t + T)s,s′ .

3. Compare with threshold p

Finally, we need to solve the inequality Pφ1U [0,T]φ2
(s, t) ./ p to

obtain the truth value T(φ, s, t) of the until formula in state s at
time t .
This can be done by searching the set of zeros of the function
Pφ1U [T ,T ′]φ2

(s, t) − p.

Model Checking ICTMC CSL model checking 72/ 99

Client Server: P=?F≤T atimeout as a function of t0

●

● ●

●
●

●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

Pr=?[F<=50 timeout] −− t0 varying −− 10 clients, 5 servers

initial time

pr
ob

ab
ili

ty

●

● ●

●
●

●

stat mc (10000 runs)
fluid mc

Model Checking ICTMC CSL model checking 73/ 99

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 74/ 99

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 75/ 99

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 76/ 99

Time dependent truth: G ≤Tφ = ¬(true U [0,T]¬φ)

t0
false

true

Td

T(φ, s, t)

At discontinuity times, changes in topology introduce
discontinuities in the probability values.

But...
Discontinuities happen at specific and fixed time instants. We
can solve Kolmogorov equations piecewise!

Model Checking ICTMC CSL model checking 77/ 99

Time dependent truth: G ≤Tφ = ¬(true U [0,T]¬φ)

t0
false

true

Td

T(φ, s, t)

More precisely

Write Π(t , t + T) = ζTd (Π(t ,Td))Π(Td , t + T), and derive
Kolmogorov equations by applying chain rule.

Here ζTd sets to zero all entries πs,s′ , such that s is a ¬φ-state
before time Td and s′ is a ¬φ-state either before of after time Td .

Model Checking ICTMC CSL model checking 78/ 99

Time dependent truth: F≤Tφ = (true U [0,T]φ)

t0
false

true

Td

T(φ, s, t)

State s becomes a goal state at time Td .
If we are in state s at time T−d (without having reached a φ
state before), then we are suddenly in a φ-state at time T+

d .
At time Td we need to add πs′,s(t ,Td) to the reachability
probability from each state s′.
This introduces discontinuties in the reachability
probability.
At each discontinuity event, we also have to appropriately
re-route the Q matrix.

Model Checking ICTMC CSL model checking 79/ 99

Time dependent truth: F≤Tφ = (true U [0,T]φ)

t0
false

true

Td

T(φ, s, t)

Pragmatically
In both cases, at each discontinuity event, we have to
appropriately re-route the Q matrix.

For bookkeeping reasons, we need to add |S| additional sink
variables that collect the probability of reaching a φ-state within
T time units from time t to t + T .

Model Checking ICTMC CSL model checking 80/ 99

k discontinuities T1, . . . ,Tk in [t , t + T]

time

t t + T

T1 T2 Tk Tk+1
· · ·

The generic Chapman-Kolmogorov equation
Π(t , t + T) = Π1(t ,T1)ζ(T1)Π2(T1,T2)ζ(T2) · · · ζ(Tk)Πk+1(Tk , t + T).

ζ(Tj) apply the appropriate bookkeeping operations to deal with
changes in the topology of absorbing states.

We can compute Π(t , t + T) by an ODE obtained by
derivation and application of chain rule.
In advancing time, when we hit a discontinuity point (from
below or above), the structure of the previous equation
changes: integration has to be stopped and restarted.

Model Checking ICTMC CSL model checking 81/ 99

The Algorithm (sketched)

Proceed bottom-up on the parse tree of a formula.
Case T(P./p(φ1U [0,T]φ2), t):

Compute T(φ1, t) and T(φ2, t)

Let T1, . . . ,Tm be all the discontinuity points of T(φ1, t) and
T(φ2, t) up to a final time Tf .

Compute Π(Ti ,Ti + 1) for each i

Compute Π(0,T) using generalized CK equations

Integrate d
dt Π(t , t + T) up to Tf .

Return T(P./p(φ1U [0,T]φ2), t) = Π(t , t + T) ./ p.

Use of Kolmogorov equations is feasible if the state space is small.
This is usually the case for single agent mean field models.

Model Checking ICTMC CSL model checking 82/ 99

Client-Server: F≤T (P<0.167(F≤50timeout))

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Pr=?[F<=50 timeout] −− t0 varying

initial time

pr
ob

ab
ili

ty

false

true

0.167

t ~ 2.1

rq
truth−value

P<0.167(F≤50timeout) from state rq of client.

Model Checking ICTMC CSL model checking 83/ 99

Client-Server: F≤T (P<0.167(F≤50timeout))

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F<=t(Pr<0.167[F<=50 timeout])

time

pr
ob

ab
ili

ty

R(0)=1
W(0)=1
T(0)=1
A(0)=1

Model Checking ICTMC CSL model checking 84/ 99

Time-dependent until probability

There are two issues which we need to consider:

Numerical stability of the integration of the
forward+backward equation.
Number of zeros of the function Pφ1U [T ,T ′]φ2

(s, t) − p: is it
always finite, if we restrict our attention to a compact time
interval [0,Tmax]? Can it be infinite?

Model Checking ICTMC CSL model checking 85/ 99

Time-dependent until probability

There are two issues which we need to consider:

Numerical stability of the integration of the
forward+backward equation.
Number of zeros of the function Pφ1U [T ,T ′]φ2

(s, t) − p: is it
always finite, if we restrict our attention to a compact time
interval [0,Tmax]? Can it be infinite?

Conclusions 86/ 99

Decidability

Number of zeros of P(t) − p

We want that this equation has a finite number of solutions
in each [0,T].
We can enforce this by requiring rate functions of ICTMC
to be piecewise real-analytic functions.

Conclusions 87/ 99

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t) − p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 88/ 99

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t) − p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 89/ 99

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t) − p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 90/ 99

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t) − p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 91/ 99

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t) − p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 92/ 99

Decidability

Theorem (Quasi-decidability)

Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk) ∈ [0,1]k appearing in until formulae.

The CSL model checking for ICTMC problem is decidable for
p ∈ E, where E is an open subset of [0,1]k , of measure 1.

Conclusions 93/ 99

Convergence of CSL truth

We considered also convergence of CSL properties:
properties that are true in zk are eventually true in Z (N)

k ?
Convergence suffers from similar issues to decidability:
tangential zeros and P(s,0) = p can create problems.

Theorem (Asymptotic correctness)

Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk) ∈ [0,1]k appearing in until formulae.

Then, for p ∈ E, an open subset of [0,1]k of measure 1, there
exists N0 such that ∀N ≥ N0

s,0 |=
Z (N)

k
φ⇔ s,0 |=zk φ.

Conclusions 94/ 99

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 95/ 99

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 96/ 99

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 97/ 99

Future work

Investigate the use of error bounds for mean field
convergence to provide a (rough) estimate of the error.

Investigate better the “individual to population” relationship
(average behaviour, estimates for probability).

Conclusions 98/ 99

Thanks!

Acknowledgements: funding

Thanks to the Royal Society International Joint Project
JP090562 which supported this work

Conclusions 99/ 99

Thanks!

Acknowledgements: funding

Thanks to the Royal Society International Joint Project
JP090562 which supported this work

	Introduction
	Model Checking
	Mean Field Approximation

	Fluid Model Checking
	Theoretical Foundations
	Example

	Model Checking ICTMC
	CSL model checking

	Conclusions

