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Background and Motivation

The PEPA project

I The PEPA project started in Edinburgh in 1991.

I It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

I Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

I Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

I The project has sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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Background and Motivation

PEPA for Performance Modelling

Model Construction: Compositionality leads to

I ease of construction
I reusable submodels
I easy to understand models

Model Manipulation: Equivalence relations lead to

I term rewriting/state space reduction techniques
I aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

I automatic identification of classes of models
susceptible to efficient solution

I use of logics to express performance measures
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Background and Motivation

Example PEPA Case Studies

I Multiprocessor access-contention protocols (Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Multimedia traffic characteristics (Bowman et al, Kent)

I Database systems (The STEADY group, Heriot-Watt
University)

I Software Architectures (Pooley, Bradley and Thomas,
Heriot-Watt and Durham)

I Switch behaviour in active networks (Hillston, Kloul and
Mokhtari, Edinburgh and Versailles)
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Background and Motivation

Motivation: why use process algebras to model pathways?

I Process algebraic formulation makes interactions/constraints
explicit – not the case with classical ordinary differential
equation (ODE) models. Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I Access to techniques for reasoning about livelocks, deadlocks

and when using a stochastic process algebra, performance
(transient or steady state) and sophisticated reasoning using
stochastic logics such as CSL and probabilistic model
checking.

Jane Hillston. LFCS, University of Edinburgh.
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PEPA

Stochastic Process Algebra

Attractive features of process algebras

I Compositionality

I Formal definition

I Parsimony

+ Quantification

I Actions have duration

I Probabilistic branching

Performance Evaluation Process Algebra (PEPA)

Models are constructed from components which engage in
activities.

(α, r).P
�

��* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative
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PEPA

Generating a CTMC

The corresponding Continuous Time Markov Chain (CTMC) is
derived automatically from the structured operational semantics
which define the language:

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Note that contrary to classical process algebras, the multiplicity of
transitions is important.

The natural equivalence relation in the process algebra strong
equivalence or Markovian bisimulation generates a lumpable
partition in the underlying CTMC.

Jane Hillston. LFCS, University of Edinburgh.
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PEPA

PEPA

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L concurrent activity

(individual actions )
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

Jane Hillston. LFCS, University of Edinburgh.
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New application domains: biochemical signalling pathways

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of the
processes involved.

I Stochastic process algebras have found a new role in
developing models for systems biology, allowing biologists to
test hypotheses and prioritise experiments.

Jane Hillston. LFCS, University of Edinburgh.
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Extracellular signalling

Extracellular signalling — communication between cells.

I signalling molecules released by one cell migrate to another;

I these molecules enter the cell and instigate a pathway, or
series of reactions, which carries the information from the
membrane to the nucleus;

I the Ras/Raf-1/MEK/ERK pathway conveys differentiation
signals to the nucleus of a cell.

Specific gene
activation

cellular response
to signalSignal

MEKRaf ERK enters nucleus
Activated ERK

Special relevance to cancer research because when pathways
operate abnormally cells divide uncontrollably.

Jane Hillston. LFCS, University of Edinburgh.
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The ERK signalling pathway

m12

m 1 m 2

m 3

m 9

m 8

m 7 m 5 m 6 m 10

m 11

m 4

m13

k14

k15

MEK−PP ERK RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*

k12/k13

k8

k6/k7

k3/k4

k1/k2

k11

k9/k10

k5

Researchers at the
Beatson Institute in
Glasgow are
investigating the
hypothesis that the
protein RKIP has a
regulatory influence on
the ERK signalling
pathway.

Jane Hillston. LFCS, University of Edinburgh.
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Dynamics of cell signalling

m 4

m 5

m 10m 9

m 6

k3/k4

k5

forward reaction
 (association)
with rate k3

backward reaction
(disassociation)
with rate k4

product formation
(disassociation)
with rate k5

concentration
(variable)

reagent (protein)

reagent
with initial concentration

(without initial
concentration)

I Bi-directional arrows denote both
forward and backward reactions;

I Uni-directional arrows denote
reactions which are disassociations.

I Each reagent has a variable
concentration, denoted mi .

I Each reaction has a corresponding
rate constant, e.g. k3, but the rate
at which the reaction takes place is
the product of this rate constant
and the current concentrations of
the used substrates.

Jane Hillston. LFCS, University of Edinburgh.
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The ERK signalling pathway

m12

m 1 m 2

m 3

m 9

m 8

m 7 m 5 m 6 m 10

m 11

m 4

m13

k14

k15

MEK−PP ERK RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*

k12/k13

k8

k6/k7

k3/k4

k1/k2

k11

k9/k10

k5
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PEPA models of the pathway

We have constructed two, complementary, PEPA models of the
pathway.

I The first focuses on the reagents and the variations in their
concentrations caused by the reactions they undertake. Each
distinct protein in the pathway is represented as a distinct
PEPA component.

I The second focuses on the sub-pathways within the pathway.
Starting from a reagent which exhibits an initial concentration
each sub-pathway tracks the valid reactions the substrate may
pass through before returning the initial concentration of the
initial substrate.
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Dealing with concentrations

The dynamics or kinetics of the pathway are dependent on the
concentrations of the reactants.

In both our models concentrations are treated in an abstract
fashion.

I In the first we distinguish only high and low concentrations.

I In the second concentrations are not represented explicitly at
all but may be inferred from the state of the appropriate
pathways.
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PEPA components of the reagent-centric model

m 3

m 4

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

k3/k4

k5

Raf-1∗/RKIP/ERK-PPH
def
=

(k5product, k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react, k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
=

(k3react, k3).Raf-1∗/RKIP/ERK-PPH

Each reagent gives rise to a pair of PEPA definitions, one for high
concentration and one for low concentration.
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Configuration of the reagent-centric model

(Raf-1∗H
BC

{k1react,k2react,k12react,k13react,k5product,k14product}

(RKIPH
BC

{k1react,k2react,k11product}

(Raf-1∗/RKIPL
BC

{k3react,k4react}

(Raf-1∗/RKIP/ERK-PPL) BC
{k3react,k4react,k5product}

(ERKL
BC

{k5product,k6react,k7react}

(RKIP-PL
BC

{k9react,k10react}

(RKIP-P/RPL
BC

{k9react,k10react,k11product}
(RPH ‖

(MEKL
BC

{k12react,k13react,k15product}

(MEK/Raf-1∗L
BC

{k14product}

(MEK-PPH
BC

{k8product,k6react,k7react}

(MEK-PP/ERKL
BC

{k8product} (ERK-PPH))))))))))))
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PEPA components of the pathway-centric model

m 9

m 8

m 5

m 4

ERK

Raf−1*−RKIP/ERK−PP

ERK−PP

MEK−PP/ERK−P

k8

k6/k7

k3/k4

k5

Pathway30
def
= (k3react, k3).Pathway31

Pathway31
def
= (k5product, k5).Pathway32

+(k4react, k4).Pathway30

Pathway32
def
= (k6react, k6).Pathway33

Pathway33
def
= (k8product, k8).Pathway30

+(k7react, k7).Pathway32

For each reagent that has an initial concentration we define the
sub-pathway generated by the progression of that reagent.
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Configuration of the pathway-centric model

To complete the model we must ensure that the pathways are
constrained to interact appropriately, i.e. an association can only
occur when all necessary reagents are in a state to make the
reaction.

((((Pathway50
BC

{k12react,k13react,k14product}
Pathway40)

BC
{k6react,k7react,k8product,k3react,k4react,k5product}

Pathway30)

BC
{k1react,k2react,k3react,k4react,k5product}

Pathway20)

BC
{k9react,k10react,k11product}

Pathway10)

Note that this is much simpler in this case than for the reagent
model.
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Commentary on the models

I Neither model currently “correctly” captures the rate of
interaction – concentrations are discretized and rates are
assumed to be constant within levels:

In these examples only
using high and low to modify rates in the sense of enabling or
disabling activities.

I The reagent-centric model can be regarded as a fine-grained
view of the system.

I The pathway-centric model can be regarded as a more
structural, coarse-grained view of the system.

I Applying the structured operational semantics reveals that
they are strongly bisimilar

(in fact, in this case, isomorphic).

Jane Hillston. LFCS, University of Edinburgh.
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The state space

s21 s22 s15 s17

s16s14s20s19

s7 s8 s10 s12

s9 s11 s13

s6

s18s25 s23 s1 s3

s4s2s24s26

s28 s27 s5

k5product

k5product

k6react k6react k6react k6reactk7react k7react k7react k7react

k11product

k11product

k11product

k11productk11product

k11product

k11product

k15productk15productk15productk15productk15productk15product

k8product k8product k8product k8product

k9react

k9react

k9react

k9react

k10react

k10react

k10react

k10react

k10react

k10react

k10react

k9react

k9react

k9react k1react

k2react

k3react

k4react

k3react

k4react

k1react

k2react

k1react

k2react

k1react

k2react

k1react

k2react

k15productk15productk15product

k12react k12react k12react k12react k12react k12react

k13react k13reactk13reactk13reactk13react
k14product k14productk14product k14productk14product k14product
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The bisimulation

s1

(Raf-1∗H, RKIPH, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PL, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗L, MEK-PPH, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway40, Pathway30,

Pathway20, Pathway10)

s2

(Raf-1∗H, RKIPH, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PLRKIP-P/RPL, RPH, MEKH,

MEK/Raf-1∗L, MEK-PPL, MEK-PP/ERKL, ERK-PPH)

(Pathway51, Pathway40, Pathway30,

Pathway20, Pathway10)

s3

(Raf-1∗L, RKIPL, Raf-1∗/RKIPH, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PL, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗L, MEK-PPH, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway41, Pathway30,

Pathway21, Pathway10)

...
...

...

s28

(Raf-1∗L, RKIPL, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PH, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗H, MEK-PPL, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway40, Pathway30,

Pathway20, Pathway10)
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Quantified analysis – k8product

Approximating a variation in the initial concentration of RKIP by
varying the rate constant k1, we can assess the impact on the
production of ERK-PP.
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Quantified analysis – k14product

Similarly we can assess the impact on the production of MEK-PP.
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Systems Biology

Deriving differential equation: overview

I The ODEs are the familiar mathematical model for the
biochemists.

I There should be one equation for each reagent/concentration,
indicating how the concentration varies over time.

I Standard solution tools are available for solution of this
equations, which are known and trusted by the biologists.

I From the reagent-centric PEPA model we can see the
influence of the reactions on each concentration – this is the
basis of the derivation via a directed bipartite graph termed
the activity graph.
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Systems Biology

Deriving differential equations: activity graph
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Systems Biology

Deriving differential equations: activity matrix

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Raf-1∗ -1 +1 0 0 +1 0 0 0 0 0 0 -1 +1 +1 0
RKIP -1 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0

Raf-1∗/RKIP +1 -1 -1 +1 0 0 0 0 0 0 0 0 0 0 0
Raf-1∗/RKIP/ERK-PP 0 0 +1 -1 -1 0 0 0 0 0 0 0 0 0 0

ERK 0 0 0 0 +1 -1 +1 0 0 0 0 0 0 0 0
RKIP-P 0 0 0 0 +1 0 0 0 -1 +1 0 0 0 0 0

MEK-PP 0 0 0 0 0 -1 +1 +1 0 0 0 0 0 +1 -1
MEK-PP/ERK 0 0 0 0 0 +1 -1 -1 0 0 0 0 0 0 0

ERK-PP 0 0 -1 +1 0 0 0 +1 0 0 0 0 0 0 0
RP 0 0 0 0 0 0 0 0 -1 +1 +1 0 0 0 0

RKIP-P/RP 0 0 0 0 0 0 0 0 +1 -1 -1 0 0 0 0
MEK 0 0 0 0 0 0 0 0 0 0 0 -1 +1 0 +1

MEK/Raf-1∗ 0 0 0 0 0 0 0 0 0 0 0 +1 -1 -1 0

Each row corresponds to a single reagent; the entries in a row
indicate whether an activity (column) increases the concentration
(+1), decreases it (-1) or has no impact (0). Each column
corresponds to a single reaction; the negative entries indicate those
substrates which are used in the reaction.
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Systems Biology

Deriving differential equations: activity matrix

k1 k2 k3 k4 k5 k6 . . . conc .

Raf-1∗ −1 +1 0 0 +1 0 . . . m1

RKIP −1 +1 0 0 0 0 . . . m2

Raf-1∗/RKIP +1 −1 −1 +1 0 0 . . . (m3)
Raf-1∗/RKIP/ERK-PP 0 0 +1 −1 −1 0 . . . m4

ERK 0 0 0 0 +1 −1 . . . m5

RKIP-P 0 0 0 0 +1 0 . . . m6

MEK-PP 0 0 0 0 0 −1 . . . m7

MEK-PP/ERK 0 0 0 0 0 +1 . . . m8

ERK-PP 0 0 −1 +1 0 0 . . . m9

...
...

...
...

...
...

...
. . .

dm3(t)

dt
= k1 m1(t)m2(t)−k2 m3(t)−k3 m3(t)m9(t) +k4 m4(t)
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Systems Biology

Differential equations

Using this approach, we can validate our PEPA model against the
system of ODEs indepedently derived by the biochemists:

dm1(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k5m4(t)− k12m1(t)m12(t)

+k13m13(t) + k14m13(t)

dm2(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k11m11(t)

dm3(t)

dt
= k1m1(t)m2(t)− k2m3(t)− k3m3(t)m9(t) + k4m4(t)

...
...

dm13(t)

dt
= k12m1(t)m12(t)− k13m13(t)− k14m13(t)
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Systems Biology

ODEs via PEPA

There are several advantages to be gained by introducing a process
algebra model as an intermediary to the derivation of the ODEs.

I The ODEs can be automatically generated from the
descriptive process algebra model, thus reducing human error.

I The formality of the process algebra model and its underlying
semantics allow us to derive properties of the model, such as
freedom from deadlock, before numerical analysis is carried
out.

I The algebraic formulation of the model makes clear the
interactions between the biochemical entities, or substrates.
The style of modelling is descriptive, close to informal
graphical representations that biochemists already use.
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Performance evaluation

Performance evaluation: new mathematical structures

For a generation, performance modellers have seen their choices as
being:

I Closed form analytical models;

I Simulations; or

I Numerical solution of continuous time Markov chains (CTMC)

The major limitations of the CTMC approach are the state space
explosion problem and the reliance on exponential distributions.
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Performance evaluation

New mathematical structures: differential equations

I Use a more abstract state representation rather than the
CTMC complete state space.

I No longer aim to calculate the probability distribution over
the entire state space of the model.

I Assume that these state variables are subject to continuous
rather than discrete change.

Only appropriate for some models, but results are promising in
those cases.
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Performance evaluation

Differential equations from arbitrary PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I When we have large numbers of repeated components it can
make sense to represent the state of the system as the count
of the current number of each possible local derivative or
component type.

I We can approximate the behaviour of the model by treating
the number of each component type as a continuous variable,
and the state of the model as a whole as the set of such
variables.

I The evolution of each such variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).
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Performance evaluation

Differential equations from arbitrary PEPA models

I The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

I The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

Derivation of the system of ODES representing the PEPA model
then proceeds via an activity matrix in much the same way as for
the high/low biochemical pathway model.
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Example: Secure Web Service use

Second party Broker Web service First party

I The example which we consider is a Web service which has
two types of clients:

I first party application clients which access the web service
across a secure intranet, and

I second party browser clients which access the Web service
across the Internet.

I Second party clients route their service requests via trusted
brokers.
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Scalability and replication

Second party Broker Web service First party

I To ensure scalability the Web service is replicated across
multiple hosts.

I Multiple brokers are available.

I There are numerous first party clients behind the firewall using
the service via remote method invocations across the secure
intranet.

I There are numerous second party clients outside the firewall.
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Security and use of encryption

Second party Broker Web service First party

I Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

I Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.

I When processing a request from a second party client brokers
decrypt the request before re-encrypting it for the Web service.

I When the response to a request is returned to the broker it
decrypts the response before re-encrypting it for the client.
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PEPA model: Second party clients

Second party Broker Web service First party

I A second party client composes service requests, encrypts
these and sends them to its broker.

I It then waits for a response from the broker.

I The rate at which the first three activities happen is under the
control of the client.

I The rate at which responses are produced is determined by
the interaction of the broker and the service endpoint.
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PEPA model: Second party clients

Second party Broker Web service First party

SPCidle
def
= (composesp, rsp cmp).SPCenc

SPCenc
def
= (encryptb, rsp encb).SPCsending

SPCsending
def
= (requestb, rsp req).SPCwaiting

SPCwaiting
def
= (responseb,>).SPCdec

SPCdec
def
= (decryptb, rsp decb).SPCidle
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PEPA model: Brokers

Second party Broker Web service First party

I The broker is inactive until it receives a request.

I It then decrypts the request before re-encrypting it for the
Web service to ensure end-to-end security.

I It forwards the request to the Web service and then waits for
a response.

I The corresponding decryption and re-encrytion are performed
before returning the response to the client.
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PEPA model: Brokers

Second party Broker Web service First party

Brokeridle
def
= (requestb,>).Brokerdec input

Brokerdec input
def
= (decryptsp, rb dec sp).Brokerenc input

Brokerenc input
def
= (encryptws , rb enc ws).Brokersending

Brokersending
def
= (requestws , rb req).Brokerwaiting

Brokerwaiting
def
= (responsews ,>).Brokerdec resp

Brokerdec resp
def
= (decryptws , rb dec ws).Brokerenc resp

Brokerenc resp
def
= (encryptsp, rb enc sp).Brokerreplying

Brokerreplying
def
= (responseb, rb resp).Brokeridle
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PEPA model: First party clients

Second party Broker Web service First party

I The lifetime of a first party client mirrors that of a second
party client except that encryption need not be used when all
of the communication is conducted across a secure intranet.

I Also the service may be invoked by a remote method
invocation to the host machine instead of via HTTP.

I Thus the first party client experiences the Web service as a
blocking remote method invocation.
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PEPA model: First party clients

Second party Broker Web service First party

FPCidle
def
= (composefp, rfp cmp).FPCcalling

FPCcalling
def
= (invokews , rfp inv ).FPCblocked

FPCblocked
def
= (resultws ,>).FPCidle
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PEPA model: Web service

Second party Broker Web service First party

I There are two ways in which the service is executed, leading
to a choice in the process algebra model taking the service
process into one or other of its two modes of execution.

I In either case, the duration of the execution of the service
itself is unchanged.

I The difference is only in whether encryption is needed and
whether the result is delivered via HTTP or not.
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PEPA model: Web service

Second party Broker Web service First party

WSidle
def
= (requestws ,>).WSdecoding
+ (invokews ,>).WSmethod

WSdecoding
def
= (decryptReqws , rws dec b).WSexecution

WSexecution
def
= (executews , rws exec).WSsecuring

WSsecuring
def
= (encryptRespws , rws enc b).WSresponding

WSresponding
def
= (responsews , rws resp b).WSidle

WSmethod
def
= (executews , rws exec).WSreturning

WSreturning
def
= (resultws , rws res).WSidle
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PEPA model: System composition

In the initial state of the system model we represent each of the
four component types being initially in their idle state.

System
def
= (SPCidle BC

K
Brokeridle) BC

L
(WSidle BC

M
FPCidle)

where K = { requestb, responseb }
L = { requestws , responsews }
M = { invokews , resultws }

This model represents the smallest possible instance of the system,
where there is one instance of each component type. We evaluate
the system as the number of clients, brokers, and copies of the
service increase.
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Cost of analysis

I Performance models admit many different types of analysis.
Some have lower evaluation cost, but are less informative,
such as steady-state analysis. Others have higher evaluation
cost, but are more informative, such as transient analysis.

I We compare ODE-based evaluation against other techniques
which could be used to analyse the model.

I We compare against steady-state and transient analysis as
implemented by the PRISM probabilistic model-checker,
which provides PEPA as one of its input languages. We also
compare against Monte Carlo Markov Chain simulation.

Jane Hillston. LFCS, University of Edinburgh.

Adventures in Systems Biology



Introduction Case Study in Systems Biology Continuous Approximation and Differential Equations Case Study in Web Services

Cost of analysis

I Performance models admit many different types of analysis.
Some have lower evaluation cost, but are less informative,
such as steady-state analysis. Others have higher evaluation
cost, but are more informative, such as transient analysis.

I We compare ODE-based evaluation against other techniques
which could be used to analyse the model.

I We compare against steady-state and transient analysis as
implemented by the PRISM probabilistic model-checker,
which provides PEPA as one of its input languages. We also
compare against Monte Carlo Markov Chain simulation.

Jane Hillston. LFCS, University of Edinburgh.

Adventures in Systems Biology



Introduction Case Study in Systems Biology Continuous Approximation and Differential Equations Case Study in Web Services

Cost of analysis

I Performance models admit many different types of analysis.
Some have lower evaluation cost, but are less informative,
such as steady-state analysis. Others have higher evaluation
cost, but are more informative, such as transient analysis.

I We compare ODE-based evaluation against other techniques
which could be used to analyse the model.

I We compare against steady-state and transient analysis as
implemented by the PRISM probabilistic model-checker,
which provides PEPA as one of its input languages. We also
compare against Monte Carlo Markov Chain simulation.

Jane Hillston. LFCS, University of Edinburgh.

Adventures in Systems Biology



Introduction Case Study in Systems Biology Continuous Approximation and Differential Equations Case Study in Web Services

Comparison of analysis types

I We report only a single run of the transient analysis and
simulation. In practice, due to the stochastic nature of the
analyses, these would need to be re-run multiple times to
produce results comparable to the ODE-based analysis.

I Moreover, note that the number of ODEs is constant
regardless of the number of components in the system, whilst
the state space grows dramatically.
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Time series analysis via ODEs

I We now consider the results from our solution of the PEPA
Web Service model as a system of ODEs with the number of
clients of both kinds, brokers, and web service instances
all 1000.

I The results as presented from our ODE integrator are
time-series plots of the number of each type of component
behaviour as a function of time.

I The graphs show fluctuations in the numbers of components
with respect to time from t = 0 to t = 100 for estimated
values of rates for the activities of the system. We can
observe an initial flurry of activity until the system stabilises
into its steady-state equilibrium at time (around) t = 50.
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Comparison with Continuous-Time Markov Chain solution

I For a system without blocking (1000 instances of all
components) we compared the steady-state values of state
variables with values derived from the the steady-state
probabilities computed by the PEPA Workbench for the model
with one instance of each component.

I The steady state probabilities of the PEPA Workbench were
scaled by 1000.

I We found good agreement with the results obtained by ODE
solution after the system stabilises into its steady-state
equilibrium.
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Conclusions

The excursion into systems biology has been very worthwhile:

I the reaction of the biochemists from the Beatson Institute
have been very positive:

I the presentation of the system in two contrasting styles, which
can be proved to be equivalent;

I the quantified reasoning at the Markov chain level – even with
crude approximation of concentrations – giving estimations of
transient properties such as throughput over time, and first
passage time distributions.

I the derivation of differential equations appears to offer an
interesting alternative to existing modelling approaches to
performance evaluation of large scale models.
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