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Events with delays

I In discrete event modelling a single delay is usually
associated with an event (or action leading to the event).

I The usual interpretation of this delay is the duration of the
action or event.

I But if we look at it more closely there can be different delays
associated with an event:

I There may be a delay from the time when an event becomes
possible (enabled) ;

I When an event occurs there may be a delay until the effects of
the event become apparent.
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Example: actions with delays in biochemistry

We are interested in modelling intracellular biochemical processes
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Delays as abstraction
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Population Models

The state of the system is a population vector, n, with one entry for
each population variable, the entry recording the current value.

Each event will update the vector according to the update vector as
a single atomic step after an exponentially distributed delay.
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Continuous Approximation

A discrete interpretation (CTMC) is based on discrete events and
integer values of variables.

As the population N increases the values and the frequency of
events both increase.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Using continuous state variables to approximate the discrete state
space and ordinary differential equations to represent the evolution
of those variables over time we can make an alternative
continuous interpretation.
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Alternative Semantics of Population Models

ODEs

continuous interpretation

CTMC

discrete interpretation

Population
Model
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Small Example

Consider a simple genetic network consisting of a single gene
expressing a protein which acts as a self-repressor.

(G) M Ptranscription translation- -

HHj HHj

We explicitly model transcription (synthesis of mRNA from the
gene), translation (synthesis of protein from mRNA), and
degradation.
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Small Example

Two variables, M and P, capture the amount of mRNA and protein
(as molecule counts) respectively, modified by four transitions:
I ((1, 0), αM

1
1+(P/P0)h ) : transcription of mRNA.

I ((0, 1), αPM): translation of mRNA into protein P.
I ((−1, 0), βMM): degradation of mRNA.
I ((0,−1), βPP): degradation of the protein P.
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Small Example

For this model we can derive a CTMC and the following system of
ODEs:

dm(t)
dt

=
αm

1 + (p(t)/P0)h
− βmm(t)

dp(t)
dt

= αpm(t) − βpp(t)

Jane Hillston.
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Convergence of Models

ODEs

CTMC

Population
Model
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?
Kurtz’s Theorem [1970]

As population N grows large (∞),
the behaviour of the population and
individual models become indistinguishable.

?

6
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Example Revisited
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A trajectory of the ODE model compared with trajectories of the CTMC
for protein variable P, for increasing values of N.
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Delayed Population Models

As previously the state of the system is a population vector, n, with
one entry for each variable.

Some events will generate an update after the exponentially
distributed occurrence of the event and another update after the
deterministically timed delay.

�
��
n

�
��
n + u′

�
��
n + u′ + u′′

- -
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Example as a delayed population model

In our model, we can easily introduce delays by replacing
transcription and translation by delayed transitions:

I ((0, 0), αM
1

1+(P/P0)h , (1, 0), σM): delayed transcription;
I ((0, 0), αPM, (0, 1), σP): delayed translation.

The degradation transitions remain the same.
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Alternative Semantics of Delayed Population Models

Delay Differential Equations (DDEs)

continuous interpretation

Generalised Semi-Markov Process (GSMP)

discrete interpretation

Delayed CTMC

Delayed
Population

Model
�
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@
@
@
@
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@
@R

?
We would like to ensure that:

As population N grows large (∞),
the behaviour of two interpretations
become indistinguishable.

?
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Delay Differential Equations

Delay Differential Equations (DDE) are differential equations in
which the derivative can depend also on past values of the function

dx(t)
dt

= F(t , xt)

The initial condition of a DDE is no longer a single point, but rather
a function ϕ : [−d, 0]→ Rn.

Our models give rise to DDEs with constant delays:

dx(t)
dt

= F(t , x(t), x(t − σ1), . . . , x(t − σn)).

Jane Hillston.
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Example Revisited

The DDEs associated with the transcription/translation example
are:

dm(t)
dt

=
αm

1 + (p(t − σM)/P0)h
− βmm(t)

dp(t)
dt

= αpm(t − σP) − βpp(t)

Jane Hillston.
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Eliminating deterministic delays

It is well-known that if you have a sequence of k exponential
delays, each with expected duration σ/k , then as k → ∞ then the
end-to-end delay tends to a deterministic delay of duration σ.

In terms of our models, this means that we can approximate each
deterministic delay by a sequence of exponential delays:

�
��
n

�
��
n + u′

�
��
n + u′ + u′′

- -- - · · · - -

Jane Hillston.
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Eliminating deterministic delays

�
��
n

�
��
n + u

�
��
n + u + v

- - - · · · - -

Replacing the deterministic delay by a sequence of exponential
delays means that the underlying stochastic process is again a
CTMC rather than a delayed CTMC.

That means that we can once again apply Kurtz’s Theorem
knowing that we have convergence to a set of ODEs.

Unfortunately this does not immediately tell us anything about the
relationship with the set of DDEs generated from the delay
population model.

Jane Hillston.
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Erlang Approximation
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This expanded CTMC has more states as we now need to keep
track of the phase of the delays as well as the original variables.
We are able to prove that, as N tends to infinity, the behaviour of
the delayed CTMC and the expanded CTMC are the same.
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This expanded CTMC has more states as we now need to keep
track of the phase of the delays as well as the original variables.

We are able to prove that, as N tends to infinity, the behaviour of
the delayed CTMC and the expanded CTMC are the same.
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Convergence in the Example
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As k increases the expanded CTMC has better agreement with the
delayed CTMC.

Jane Hillston.

Fluid approximation of CTMC with deterministic delays



Introduction Population Models Delayed Population Models Convergence Result Conclusions

Erlang Approximation for DDE

We can make the same “Erlang approximation” with the
deterministic delays in the DDEs.

Recall a DDE has the form

dx(t)
dt

= F(t , x(t), x(t − σ1), . . . , x(t − σn)).

We can approximate each of the σi by a sequence of small steps.
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Erlang Approximation for DDE

Consider the DDE: dx(t)
dt = f(x(t − σ)).

We introduce k variables z1, . . . , zk , representing k intermediate
steps, with

z1(t + σ/k) = f(x(t))

and
zj+1(t + σ/k) = zj(t), j = 1, . . . , k − 1.
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Erlang Approximation for DDE

Noting dzj+1(t)
dt = k

σ (zj(t) − zj+1(t)) we obtain the following set of
ODEs: 

dz1(t)
dt = k

σ (f(x(t)) − z1(t))
...

dzj+1(t)
dt = k

σ (zj(t) − zj+1(t))
...

dx(t)
dt = zk (t)

We can show that as k −→ ∞ the DDEs and the ODEs exhibit the
same behaviour.
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DDE Convergence in the Example
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Increasing k improves agreement between the ODE and the DDE.
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Convergence Result
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Initial Conditions
Recall that the initial conditions of a DDE are a function in the time
interval [t0 − σM , t0], where σM is the largest delay.

M 2 1 t 0

...

In contrast, in the CTMC approximation of the delayed CTMC the
newly added variables are set to zero, and the effects of delays
take place in the future with no effect from the past.

t 0
1 2 M

...
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Initial Conditions

Therefore, we consider the solution of the DDE starting not from
time t0, but from time t0 + σM , and construct the initial condition for
the DDE from the behaviour of the delayed CTMC in [t0, t0 + σM].

M 2 1 t 0

...

t 0
1 2 M

...
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Conclusions

I We have defined a class of population models in which some
events may have delayed effects.

I We have shown that the continuous semantics, given in terms
of DDEs, and the discrete semantics, given in terms of a
delayed CTMC, converge as populations grow.
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Thank you!

This work was supported by funding from the BBSRC and the
Royal Society.
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