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Overview

Fluid or mean field methods have been very successful as an
approximate description of the collective (average) behaviour of
models made up of many (simple) interacting agents, e.g.
stochastic process algebra models of populations.

Can we use them to query stochastic models and estimate more
complex stochastic properties?

Stated otherwise:

Can we do fluid model checking?
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The goal of this work

We consider collective systems, composed of many interacting
agents of one or more classes, with behaviour over discrete states
in continuous time.

We focus on questions related to the behaviour of an individual
agent in the system.

Examples

There are many examples in which this can be interesting:

Estimate performance metrics in network models, from the
point of view of a single user/single server.

Ecological models, when one is interested in the survival
chances of an individual.

...
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Model checking

Model checking: automatically querying the behaviour of an
automata-based model with respect to a property expressed in a
suitable logic.
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Model checking

Model checking requires two inputs:

a description of the system, usually given in some high-level
modelling formalism, which can be used to automatically
generate a state-based representation; CTMC (Continuous
Time Markov Chain)

a specification of one or more desired properties of the
system, normally using temporal logics such as CTL
(Computational Tree Logic), LTL (Linear-time Temporal
Logic) CSL (Continuous Stochastic Logic).
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Model checking

There are two broad approaches to model checking:

Explicit state model checking (exhaustive exploration for all
possible states/executions): exact results obtained via
numerical computation.

Statistical model-checking (discrete event simulation and
sampling over multiple runs): approximate results.
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Solving discrete state models

The CTMC will have global
states determined by the
interleaving of the local states
of all the participating agents.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.



Introduction Simons Institute 2016

Mean Field Approximation
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Mean Field Approximation

We view the population of agents more abstractly, assuming that
individuals are indistinguishable.



Introduction Simons Institute 2016

Mean Field Approximation

An occupancy measure records the proportion of agents that are
currently exhibiting each possible behaviour.
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Mean Field Approximation

For a large class of models, just as the size of the state space
becomes unmanageable, the models become amenable to an
efficient, scale-free approximation in terms of the occupancy
measure.
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Continuous Approximation: Intuition

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.
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Fluid or mean field approximation

We approximate the discrete steps on the original state space by
continuous evolution of the occupancy measures. A system of
ordinary differential equations is constructed to approximate the
behaviour of the system.
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Population models — intuition

On Off

Y (t)

N copies: Y
(N)
i

(0,N) (1,N−1) (2,N−2) (0,N)....

X(N)(t)

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}

Y (t), Y
(N)
i (t) and X(N)(t) are all CTMCs;

As N increases we get a sequence of CTMCs, X(N)(t)
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Population state space

The population process X(N) = (X
(N)
1 , . . . ,X

(N)
n ) has the

dimension of the state space of Y (t).

Importantly, its dimensions are independent of N.

Essentially we are making a counting abstraction and
aggregation of the state space.
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Population transitions

The dynamics of the population models is expressed in terms
of a set of possible transitions, T (N).

Transitions are stochastic, and take an exponentially
distributed time to happen.

Their rate may depend on the current global state of the
system.

Each transition is specified by a rate function r
(N)
τ , and by an

update vector vτ , specifying the impact of the event on the
population vector.

The infinitesimal generator matrix Q(N) of X(N)(t) is defined
as:

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.
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Population models — summary of notation

Individuals

We have N individuals Y
(N)
i ∈ S , S = {1, 2, . . . , n} in the system

(can have multiple classes).

System variables

X
(N)
j =

∑N
i=1 1{Y

(N)
i = j}, and X(N) = (X

(N)
1 , . . . ,X

(N)
n )

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r
(N)
τ (X)
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Example: client server interaction

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

ready

process

reply

log

requestlogging

processreply

CLIENT SERVER

timeout
tim
eout

Crq

Cw

Crc Ct

Srq

Srp

SpSl
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Example: client server interaction

Variables

4 variables for the client states: Crq, Cw , Crc Ct .

4 variables for the server states: Srq, Sp, Srp Sl .

Transitions

There are 7 transition in total. Rates based on hand-shaking.

request: (1Cw ,Sp − 1Crq ,Srq , kr ·min(Crq, Srq))

reply: (1Ct ,Sl − 1Cw ,Srp ,min(kwCw , krpSrp))

timeout: (1Crc − 1Cw , ktoCw )

. . .
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Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMCs.

We normalise such models, dividing variables by N:

X̂ =
X

N

occupancy measures

for each τ ∈ T (N)

the normalised update is v̂ = v/N

there is a normalised rate function r̂
(N)
τ (X̂)

∀τ assume there exists a bounded and Lipschitz continuous
function fτ (X̂), the limit rate function on normalised variables,

independent of N, such that
1

N
r̂ (N)
τ (x)→ fτ (x) uniformly.
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function fτ (X̂), the limit rate function on normalised variables,

independent of N, such that
1

N
r̂ (N)
τ (x)→ fτ (x) uniformly.
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Drift

Drift

The drift F (N)(X̂) — the mean instantaneous increment of model
variables in state X̂ — is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂)

Limit Drift

Let fτ be the limit rate functions.

The limit drift of the model is

F (X̂) =
∑
τ∈T̂

vτ fτ (X̂),

and F (N)(x)→ F (x) uniformly as N −→∞.
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Fluid ODE and Fluid approximation theorem

Fluid ODE

The fluid ODE is

dx

dt
= F (x), with x(0) = x0 ∈ S .

Since F is Lipschitz (all fτ are), this ODE has a unique solution
x(t) starting from x0.

Deterministic Approximation Theorem (Kurtz)

Assume that ∃ x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T <∞, it holds that as
N −→∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Focusing on one individual

We focus on a single individual Y
(N)
h (t), a (Markov) process

on the state space S = {1, . . . , n}, conditional on the global
state of the complete population X̂(N)(t).

Rate qij(X̂) depends on the global system state and X̂(N)(t).

Its transition rates qij , are obtained projecting on a single
agent the rate of global transitions that induce a change of
state of at least one agent from i to j .

However, by the theorem, as N −→∞, the stochastic
fluctuations of X̂(N)(t) tend to vanish, and the stochastic

behaviour of Y
(N)
h (t) can be approximated by making it

dependent only on the fluid limit x(t).

Thus we construct the time-inhomogeneous CTMC z(t) with
state space S and rates qij(x(t)).
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Client-Server example

Single client

Y (N) ∈ {rq,w , t, rc}

Rates of Y
(N)
1

request: 1

C
(N)
rq

kr min(C
(N)
rq ,S

(N)
rq )

reply: 1

C
(N)
w

min(kwC
(N)
w , krpS

(N)
rp )

timeout: kto ; recover: krc

Rates of z1

request: kr min(1,
srq(t)
crq(t)

)

reply: min(kw , krp
srp(t)
cw (t)

)

timeout: kto ; recover: krc

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

CLIENT

Xrq

Xw

Xrc Xt
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Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.
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Illustrative trajectories
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Implications of the Deterministic Approximation Theorem

The Theorem implies that in the limit the dynamics of a single
agent becomes independent of other agents — it will sense them
only through the collective system state, or mean field, described
by the fluid limit.

This asymptotic decoupling allows us to find a simple,
time-inhomogenous, Markov chain for the evolution of the single
agent, a result often known as fast simulation.
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The idea

Approximate the behaviour of an agent Y
(N)
h in the system using

the time-inhomogeneous Markov chain z .

Model check temporal logic formulae on z .

Outline of results

A model checking algorithm for CSL on time-inhomogeneous
CTMC (ICTMC).

Investigation of its decidability.

Convergence results (asymptotic correctness for large N).

L. Bortolussi, J. Hillston. Information & Computation 2015.
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Fluid Model Checking

Properties related to a single agent are expressed in CSL,
e.g. agent Z is in the blue state until it enters the red state and this

must occur within time 1.7.

Z	  

%	  



Fluid Approximation Simons Institute 2016

Fluid Model Checking

This agent is considered in the mean field created by the rest
of the system.

The rates of its transitions become dependent on the state of
the rest of the system and so vary over time.

This is represented as a time-inhomogeneous CTMC.

f1(m1,m2,m3)	   f2(m1,m2,m3)	  

f3(m1,m2,m3)	  

f4(m1,m2,m3)	  

%	  
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Fluid Model Checking

ZZ	  

P<0.2(Z@blue  U <1.7 Z@red)  
Property	  of	  object	  Z	  

in	  System	  

Model-‐Checking	  
Algorithm/tool	  

f1	   f2	  f3	  

f4	  

CSL	  formula	  
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Model checking the ICTMC

Care is needed to model check the ICTMC, which proceeds by
explicitly calculating the reachability probabilities for states of
interest (analogously to CSL model checking on CTMCs).

The inhomogeneous time within the model means that truth values
may change with respect to time.
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Time-bounded Continuous Stochastic Logic (CSL)

The syntax of CSL is as follows:

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P∼p[ϕ UI ϕ] | S∼p[ϕ]

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.
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Probabilistic operators

A until formula ϕ1 UI ϕ2 is true of a path ω through the state
space if, for some time instant t ∈ I , at time t the CSL subformula
ϕ2 is true and the subformula ϕ1 is true at all preceding time
instants.

A formula P∼p[ϕ UI ϕ] is true in a state s if the probability of the
formula (ϕ UI ϕ) being satisfied from state s meets the bound ∼p.

A formula S∼p[ϕ] is true in state s if the probability that the
formula ϕ being satisfied in a steady state reached from state s
meets the bound ∼p.
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CSL model checking for CTMC

Consider a CTMC with state space S and rates given by Q = Q(t).
Focus on the formula

P./p (ϕ1 U
[T1,T2] ϕ2)

Time-homogeneous CTMC

We check this formula by computing, for each state s ∈ S , the
probability of paths satisfying ϕ1 U

[T1,T2] ϕ2 and then comparing
this probability ./ p.

This is done via transient analysis on the chain in which ¬ϕ1 and
ϕ2 states are made absorbing.
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Model checking CSL formula on CTMC

All ϕ2 states are made absorbing, because once a state in this
set has been reached the future evolution does not matter;
this set of goal states is known as G .

All states in ¬(ϕ1 ∨ ϕ2) are also made absorbing, because if
one of these states is entered it is no longer possible to satisfy
the formula; this set of unsatisfactory states is known as U.

Once the modified CTMC is constructed, standard techniques are
used to find the transient probabilities with respect to the time
interval [T1,T2].

C. Baier, B. Haverkort, H. Hermanns, J. Katoen Model checking CTMCs by transient analysis, CAV 2000

Time-homogeneity ⇒ we can run each transient analysis from time
T1 = 0 even if we have nested until formulae.
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CSL model checking for ICTMC

Again consider a CTMC with state space S and rates given by
Q = Q(t) and the formula P./p (ϕ1 U

[T1,T2] ϕ2).

Time-inhomogeneous CTMC

We check this formula by computing, for each state s ∈ S , the
probability of paths satisfying ϕ1 U

[T1,T2] ϕ2 and then comparing
this probability ./ p.

Again this is done via transient analysis, now based on the
Kolmogorov equations, in which ¬ϕ1 and ϕ2 states are made
absorbing.

But:

The truth value of ϕ in a state s depends on the time t at which
we evaluate it!

This causes problems when we consider nested until formulae.
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Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value true(ϕ, s, t) in each state.

When we consider nested temporal operators, we need to take
this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.
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Time dependent truth example: F≤Tϕ = (true U [0,T ]ϕ)

t0
false

true

Td

true(ϕ, s, t)

State s becomes a goal state at time Td .

If we are in state s at time T−d (without having reached a ϕ
state before), then we are suddenly in a ϕ-state at time T+

d .

At time Td we need to add πs′,s(t,Td) to the reachability
probability from each state s ′.

This introduces discontinuties in the reachability probability.

At each discontinuity event, we also have to appropriately
change the sets G and U.
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Time dependent truth

t0
false

true

Td

true(ϕ, s, t)

At discontinuity times, changes in topology introduce
discontinuities in the probability values.

Fortunately

Discontinuities happen at specific and fixed time instants.

We can carry out the transient solution, using Kolmogorov
equations, piecewise.

At each discontinuity event, we also have to appropriately change
the absorbing structure of the Q matrix.
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The Algorithm (sketched)

Proceed bottom-up on the parse tree of a formula.
Case true(P./p(ϕ1U

[0,T ]ϕ2), t):

Compute true(ϕ1, t) and true(ϕ2, t)

Let T1, . . . ,Tm be all the discontinuity points of true(ϕ1, t)
and true(ϕ2, t) up to a final time Tf .

Compute Π(Ti ,Ti + 1) for each i

Compute Π(0,T ) using generalized Chapman-Kolmogorov
equations

Integrate d
dt Π(t, t + T ) up to Tf .

Return true(P./p(ϕ1U
[0,T ]ϕ2), t) = Π(t, t + T ) ./ p.

Use of Kolmogorov equations is feasible if the state space is small.
This is usually the case for single agent mean field models.
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This is usually the case for single agent mean field models.
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Client-Server example
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Client-Server: P=?(F≤Tatimeout) = P=?(true U [0,T ]atimeout)
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Client-Server: P=?(F≤Tatimeout) (Zoom-in)
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Client-Server: P=?(arequest ∨ awaitU
≤Tatimeout)
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Client-Server: computational cost

Computational cost

The cost of the fluid system is independent of N.
For this example (10 clients - 5 servers) it is ∼100 times faster than
the simulation-based approach (which increases linearly with N).
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Client Server: P=?F
≤Tatimeout as a function of t0

●

● ●

●
●

●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

Pr=?[F<=50 timeout] −− t0 varying −− 10 clients, 5 servers

initial time

pr
ob

ab
ili

ty

●

● ●

●
●

●

stat mc (10000 runs)
fluid mc



Example Simons Institute 2016

Client-Server: F≤T (P<0.167(F≤50timeout))
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Number of zeros of P(s, t)− p

When we are testing probability corresponding to a path formula
against a probability bound we need solve equations of the form
P(s, t)− p = 0.

Number of zeros of P(s, t)− p

We want that this equation has a finite number of solutions in
each [0,T ].

We can enforce this by requiring rate functions of ICTMC to
be piecewise real-analytic functions.
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Decidability

Decidability

We need algorithms to solve ODEs with error guarantee
(interval analysis).

We need to find zeros of function P(s, t)− p (root finding).

To answer the CSL query for highest until formulae, we need
to know if P(s, 0) ./ p (zero test).

It is not known if root finding and zero test are decidable.
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Decidability

Theorem (Quasi-decidability)

Let ϕ = ϕ(p) be a CSL formula, with constants
p = (p1, . . . , pk) ∈ [0, 1]k appearing in until formulae.

The CSL model checking for ICTMC problem is decidable for
p ∈ E , where E is an open subset of [0, 1]k , of measure 1.
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Convergence of CSL truth

Consider convergence of CSL properties: will properties that
are true in the approximating ICTMC zk eventually be true in

the original full CTMC Y
(N)
k ?

Asymptotic Correctness Theorem

Let ϕ = ϕ(p) be a CSL formula, with constants
p = (p1, . . . , pk) ∈ [0, 1]k appearing in until formulae.

Then, for p ∈ E , an open subset of [0, 1]k of measure 1, there
exists N0 such that ∀N ≥ N0

s, 0 |=
Y

(N)
k

ϕ⇔ s, 0 |=zk ϕ.



Conclusions Simons Institute 2016

Outline

1 Introduction

2 Fluid Approximation

3 Model checking a Time-Inhomogeneous CTMC

4 Example

5 Validity of the approach

6 Conclusions



Conclusions Simons Institute 2016

Conclusions

We have developed an application of mean field theory to
model check properties of single agents in a large population.

We focussed on CSL, providing a method to model check CSL
formulae against time-inhomogeneous continuous time
Markov chains.

We have provided convergence results that guarantee almost
sure consistence of the method.
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