
1/ 164

Challenges for Quantitative Analysis of
Collective Adaptive Systems

Jane Hillston
LFCS, University of Edinburgh

August 31st 2013



2/ 164

Outline

1 Introduction
Collective Adaptive Systems
Quantitative Analysis

2 Quantitative Analysis of CAS
Model construction
Mathematical analysis: fluid approximation

Example

Deriving properties: fluid model checking
3 Challenges and future prospects



Introduction Collective Adaptive Systems 3/ 164

Collective Systems

We are surrounded by examples of collective systems:

Most of these systems are also adaptive to their environment
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective
behaviour.
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The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.
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Collective Adaptive Systems

Such systems are often embedded in our environment and need to
operate without centralised control or direction.

Moreover when conditions within the system change it may not be
feasible to have human intervention to adjust behaviour
appropriately.

Thus systems must be able to autonomously adapt.
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The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems, and this is
even more true of systems with collective adaptive behaviour.



Introduction Quantitative Analysis 20/ 164

Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems, and this is
even more true of systems with collective adaptive behaviour.



Introduction Quantitative Analysis 21/ 164

Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems, and this is
even more true of systems with collective adaptive behaviour.



Introduction Quantitative Analysis 22/ 164

Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems, and this is
even more true of systems with collective adaptive behaviour.



Introduction Quantitative Analysis 23/ 164

Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

Capacity planning

How many buses do I need
to maintain service at peak
time in a smart urban
transport system?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Configuration

What capacity do I need at
bike stations to minimise the
movement of bikes by truck?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Modelling: Motivation

System Tuning

What strategy can I use to
maintain supply-demand
balance within a smart
electricity grid?
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic/Markovian Process Algebras.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H
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exponential distribution)
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derivative

The language is used to generate a CTMC for performance
modelling.
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Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 BC
L
P2 Co-operation

P/L Hiding

X Constant
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking
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Discrete event modelling

At the basic level a discrete event model captures the states of the
system and the events that cause transitions between states.

Consider a simple model of a disk:

W F

read

write

fail

correct
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Modelling collective behaviour

A key feature of collective systems is the existence of populations
of entities who share certain characteristics.

High-level modelling formalisms allow this repetition to be
captured at the high-level rather than explicitly.
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Disks revisited

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

W F

read

write

fail

correct

W F

read

write

fail

correct
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Process Algebra for CAS

Process algebra are well-suited for constructing models of CAS:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

State-dependent functional rates allow adaptation to be
captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

Recent advances in analysis techniques for process algebras have
made it possible to study such systems even when the number of
entities and activities become huge.
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.

c

b

a

c

b

a

c

b

a



Quantitative Analysis of CAS Mathematical analysis: fluid approximation 67/ 164

Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.

c

b

a

c

b

a

c

b

a



Quantitative Analysis of CAS Mathematical analysis: fluid approximation 68/ 164

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Analysing collective behaviour

Process algebra models typically give rise to discrete state
mathematical representations, where a state of the whole system is
defined in terms of the state of each of the individual entities in
the system.

This rapidly leads to enormous numbers of states which are
computationally expensive, or even prohibitive, to explore.

Our approach to analysing collective behaviour is to make a
counting abstraction and view the system not in terms of the
individual components but in terms of proportions within the
subpopulations.
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Identity and Individuality

Collective systems are constructed from many instances of a set of
components.

If we cease to distinguish between instances of components we can
form an aggregation which can reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
proportions vary over time.
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Continuous Approximation

This means shifting to a different mathematical representation,
where we no longer keep track of the individual states of each
entity.

As we are focussed instead of proportions within populations we
now treat these variables as continuous rather than discrete.
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Use ordinary differential equations to represent the evolution of
those variables over time.
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Disk model in PEPA

Disk

Working
def
= (read , r).Working
+ (write,w).Working
+ (fail , f ).Failed

Failed
def
= (correct, c).Working

We have W working disks
and F failed (W + F = N).

Working disks fail at rate
f ×W .

Failures are corrected at
rate c × F .

W F

f ×W

c × F

dW /dt = −f ×W + c × F
dF/dt = f ×W − c × F
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Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components to identify the counting
abstraction of the process (Context Reduction)

2 Collect the transitions of the reduced context as symbolic
updates on the state representation (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset, under the assumption that the population size
tends to infinity.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs: this family forms a sequence as the initial
populations are scaled by a variable n.

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Example: crowd dynamics

Human crowds may be considered as a population of
interacting entities.

In modern buildings there may also be populations of ICT
components — the informatic environment.

Interactions between these two types of agents could, for
example, help people to navigate in unfamiliar locations.

Recently process algebra models have been used to capture
the behaviour of such systems and study their dynamic
behaviour.

A.Bracciali, J.Hillston, M.Massink and D.Latella. Modelling Non-linear Crowd Dynamics in Bio-PEPA. FASE 2011.
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Emergency egress

Emergency egress can be regarded as a particular case of crowd
dynamics, when the location may be familiar but circumstances
may alter the usual topology and make efficient movement
particularly important.

Here technology mediation may mean that information about the
best routes (possibly contradicting signage) can be supplied
dynamically.



Quantitative Analysis of CAS Mathematical analysis: fluid approximation 124/ 164

Emergency egress

Emergency egress can be regarded as a particular case of crowd
dynamics, when the location may be familiar but circumstances
may alter the usual topology and make efficient movement
particularly important.

Here technology mediation may mean that information about the
best routes (possibly contradicting signage) can be supplied
dynamically.



Quantitative Analysis of CAS Mathematical analysis: fluid approximation 125/ 164

Example scenario

RA
211 18w 18e

SE
13

LW
25

HA
133

LE
16

SW
22

RB
92 16w

RC
98 18e

The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Process algebra components describe the behaviours of individuals,
but also rooms and information dissemination.
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Example results: room occupancy
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Adaptive behaviour: rerouting through mediation
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During the course of the evacuation one of the stairwells may
become blocked but the static signage will continue to send people
towards the problems.

WIth technology mediation (smart signage, SMS messages) people
can be rerouted dynamically.
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Adaptive behaviour: rerouting through mediation
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.
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Fluid model checking

Since the vector field records only deterministic behaviour, LTL
model checking can be used over a trace to give boolean results.

But for the systems we are interested in we would like some more
quantified answers, in the style of stochastic model checking.

Work on this is on-going but there are initial results for:

CSL properties of a single agent within a population.

L.Bortolussi and J.Hillston. Fluid model checking. CONCUR 2012.

The fraction of a population that satisfies a property
expressed as a one-clock deterministic timed automaton.

L.Bortolussi and R.Lanciani. Central Limit Approximation for Stochastic Model Checking. QEST 2013.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.
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We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

We consider an arbitrary member of the population.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

This agent is kept discrete, making transitions between its discrete
states, but all other agents are treated as a mean-field influencing
the behaviour of this agent.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

Essentially we keep a detailed discrete-event representation of the
one agent and make a fluid approximation of the rest of the popu-
lation.
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Inhomogeneous CTMC

The transition rates within the discrete-event representation will
depend on the rest of the population.

i.e. it will depend on the vector field capturing the behaviour of the
residual population.

r1

r2

r3

r4

=⇒

f1
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f3

f4

where fi = f
( )

It is an inhomogeneous continuous time Markov chain.
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Model checking the ICTMC

Care is needed to model check the ICTMC, which proceeds by
explicitly calculating the reachability probability probabilities for
states of interest (analogously to CSL model checking on CTMCs).

The inhomogeneous time within the model means that truth values
may change with respect to time.
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Challenges for modelling CAS

The work so far demonstrates provides a solid basic framework for
modelling systems with collective behaviour but there remain a
number of challenges:

Spatial aspects

Richer forms of interaction and adaptation

Extending model checking capabilities



Challenges and future prospects 151/ 164

Modelling space

Whilst fluid approximation of stochastic process algebra models
can be used to model collective systems there is an implicit
assumption that all components are co-located.

We can impose the effects of space by encoding it into the
behaviour of the actions of components and distinguishing the
same component in different location as distinct types, but this is
modelling space implicitly.

Given the important role that location and movement play within
many CAS, e.g. smart cities, it would be preferable to model space
explicitly.

This poses significant challenges both of model expression and
model solution.
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Fluid approximation and space

There is a danger that as we distinguish subpopulations by their
location, we no longer have a large enough population to justify
the fluid approximation.

Initial work is exploring the use of time scale decompositions,
partial differential equations and diffusion models but much more
work is needed.
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Richer forms of interaction and adaptation

If we consider real collective adaptive systems, especially those
with emergent behaviour, they embody rich forms of interaction,
often based on asynchronous communication.

For example, pheromone trails left by social insects.

Languages like SCEL offer these richer communication patterns,
with components which include a knowledge store which can be
manipulated by other components and attribute-based
communication.
R.De Nicola, G.Ferrari, M.Loreti, R.Pugliese. A Language-Based Approach to Autonomic Computing. FMCO 2011.

Developing scalable analysis techniques, such a fluid
approximation, for such languages remains an open problem.
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Conclusions

Collective Adaptive Systems are an interesting and challenging
class of systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but there remain many
interesting and challenging problems to be solved.
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Thank you!

Thanks to the other members of the QUANTICOL project

www.quanticol.eu
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