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Collective Systems

We are surrounded by examples of collective systems:
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The Informatic Environment

Robin Milner coined the term of informatic environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems are now becoming the reality, and many form
collective adaptive systems, in which large numbers of computing
elements collaborate to meet the human need.

For instance, many examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.
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Collective Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective
behaviour.
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Collective Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the efficient and equitable
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems, and this is
even more true of systems with collective behaviour.
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Performance Modelling: Motivation

Capacity Planning

How many clients can the existing server support and maintain
reasonable response times?

How many buses do I need to maintain service at peak time in a
smart urban transport system?

System Configuration

Where should I place base stations in a network to keep blocking
probabilities low?

What capacity do I need at bike stations to minimise the movement
of bikes by truck?

System Tuning

In an automated factory what speed of conveyor belt will minimize
robot idle time and jamming but maximize throughput?

What strategy can I use to maintain supply-demand balance within
a smart electricity grid?
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic/Markovian Process Algebras.
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Stochastic Process Algebra 36/ 184

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Stochastic Process Algebra 37/ 184

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram



Introduction Stochastic Process Algebra 38/ 184

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram



Introduction Stochastic Process Algebra 39/ 184

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.
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Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 44/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 45/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 46/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 47/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 48/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 49/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 50/ 184

Performance Evaluation Process Algebra

(α, f ).P Prefix

P1 + P2 Choice

P1 ��
L
P2 Co-operation

P/L Hiding

X Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)



Introduction Stochastic Process Algebra 51/ 184

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
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L
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(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))



Introduction Stochastic Process Algebra 57/ 184

Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))



Introduction Stochastic Process Algebra 58/ 184

Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L
Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L
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E
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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Modelling collective behaviour

A key feature of collective systems is the existence of populations
of entities who share certain characteristics.

High-level modelling formalisms allow this repetition to be
captured at the high-level rather than explicitly.
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Process Algebra for Collective Systems

Process algebra are well-suited for constructing models of collective
systems:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Populations are readily and rigorously identified;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

Recent advances in analysis techniques for process algebras have
made it possible to study such systems even when the number of
entities and activities become huge.
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Identity and Individuality

Collective systems are constructed from many instances of a set of
components.

If we cease to distinguish between instances of components we can
aggregate using a counting abstraction to reduce the state space.

We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population statistics: emergent behaviour

This shift in perspective allows us to model the interactions
between individual components but then only consider the system
as a whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
proportions vary over time.
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Continuous Approximation

This means using a different mathematical representation, where
we no longer keep track of the individual states of each entity.

As we are focussed instead of proportions within populations we
now treat these variables as continuous rather than discrete.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
We use ordinary differential equations to represent the evolution of
those variables over time.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576



Quantitative Analysis of Collective Systems Numerical illustration 107/ 184

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

dx2
dt

= min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2

dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0

dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (ODE solution)
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Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions



Quantitative Analysis of Collective Systems Numerical illustration 119/ 184

Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions



Quantitative Analysis of Collective Systems Numerical illustration 120/ 184

Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Deriving a Fluid Approximation of a SPA model
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limit of that CTMC.
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We define a structured operational semantics which defines the
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components to identify the counting
abstraction of the process (Context Reduction)

2 Collect the transitions of the reduced context as symbolic
updates on the state representation (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset, under the assumption that the population size
tends to infinity.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Location Dependency
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics by Example
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Fluid Structured Operational Semantics by Example
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Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =min
(
r1ξ1, r3ξ4

)
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

R1 ‖ R0 )

(P1 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw



Quantitative Analysis of Collective Systems Numerical illustration 141/ 184

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)(3, 0, 2, 0) -min(3r1, 2r3)
(2, 1, 1, 1)
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 , r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 , ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Jump Multiset
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)
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Construction of f (ξ, l , α)
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Construction of f (ξ, l , α)
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Construction of f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 , r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 , ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset, ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Quantitative Analysis of Collective Systems Numerical illustration 152/ 184

Construction of f (ξ, l , α)
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Construction of f (ξ, l , α)
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Capturing behaviour in the Generator Function
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Capturing behaviour in the Generator Function
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation
dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation
dx1

dt
= −min (r1x1, r3x3) + r2x2

dx2

dt
= min (r1x1, r3x3)− r2x2

dx3

dt
= −min (r1x1, r3x3) + r4x4

dx4

dt
= min (r1x1, r3x3)− r4x4
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs: this family forms a sequence as the initial
populations are scaled by a variable n.

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.
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Fluid model checking

Since the vector field records only deterministic behaviour, LTL
model checking can be used over a trace to give boolean results.

But for the systems we are interested in we would like some more
quantified answers, in the style of stochastic model checking.

Work on this is on-going but there are initial results for:

CSL properties of a single agent within a population.

L.Bortolussi and J.Hillston. Fluid model checking. CONCUR 2012.

L.Bortolussi and J.Hillston. Model checking single agent behaviour by fluid approximation. Inf & Comp 2015.

The fraction of a population that satisfies a property
expressed as a one-clock deterministic timed automaton.

L.Bortolussi and R.Lanciani. Central Limit Approximation for Stochastic Model Checking. QEST 2013.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.



Quantitative Analysis of Collective Systems Deriving properties: fluid model checking 171/ 184

CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

We consider an arbitrary member of the population.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

This agent is kept discrete, making transitions between its discrete
states, but all other agents are treated as a mean-field influencing
the behaviour of this agent.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs.

Essentially we keep a detailed discrete-event representation of the
one agent and make a fluid approximation of the rest of the
population.
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Inhomogeneous CTMC

The transition rates within the discrete-event representation will
depend on the rest of the population.

i.e. it will depend on the vector field capturing the behaviour of the
residual population.

r1

r2

r3

r4

=⇒

f1

f2

f3

f4

where fi = f
( )

It is an inhomogeneous continuous time Markov chain.
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Model checking the ICTMC

Care is needed to model check the ICTMC, which proceeds by
explicitly calculating the reachability probabilities for states of
interest (analogously to CSL model checking on CTMCs).

The inhomogeneous time within the model means that truth values
may change with respect to time.
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Conclusions

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but there remain many
interesting and challenging problems to be solved.

In particular we currently seek to bring the fluid approximation
techniques to systems with distinct locations.
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