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Process Algebra

Models consist of agents which engage in actions.

α.P
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action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.
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activity rate
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exponential distribution)
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derivative

The language is used to generate a CTMC for performance
modelling.
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MULTI-
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SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?

e ee e e ehee e
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Does a given property φ
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with a given probability?
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Rates of interaction: bounded capacity

Stochastic process algebras differ in how they define the rate of
synchronised actions.

In PEPA the cooperation of components is assumed to give rise to
shared actions and the rates of these shared actions are governed
by the assumption of bounded capacity.

The principle of bounded capacity means that a component cannot
be made to carry out an action in cooperation faster than its own
defined rate for the action. Thus shared actions proceed at the
minimum of the rates in the participating components.

In contrast independent actions do not constrain each other and if
there are multiple copies of a action enabled in independent
concurrent components their rates are summed.
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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Calculating the rate of actions carried out in cooperation

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1
2r1

r3
3r3

min(2r1, 3r3) = 1
6 min(2r1, 3r3)
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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:
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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.
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Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.
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The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:
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for dynamic evaluation represents a paradigm shift in how
such systems are studied.
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dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
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Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.
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Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Crowd dynamics
Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.
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Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.
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Use ordinary differential equations to represent the evolution of
those variables over time.
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New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1x1, r3x3) + r2 x1

x1 = no. of Proc0
dx2
dt = r1 min(x1, x3)− r2 x1

x2 = no. of Proc1
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (average of 10000 runs)
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100 processors and 80 resources (ODE solution)
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

Nevertheless we are able to define a structured operational semantics
which defines the possible transitions of an abitrary abstract state
and from this derive the ODEs.
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
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= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4
r∗task1 (Res0 , ξ)

min
(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1
r1ξ1

r3ξ4
r3ξ4

min
(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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6 min(2r1, 3r3)
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4



Introduction Continuous Approximation Fluid-Flow Semantics Example Conclusions
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Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx1
dt

= −min (r1x1, r3x3) + r2x2

dx2
dt

= min (r1x1, r3x3)− r2x2

dx3
dt
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dt

= min (r1x1, r3x3)− r4x4
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Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.
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Case Study: A Virtual University
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Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing
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Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.
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Model in PEPA

Clients

Client i
def
= (connect1, c1,i ).(download1, d1,i ).Idle i
+ (connect2, c2,i ).(download2, d2,i ).Idle i
. . .
+ (connectm, cm,i ).(downloadm, dm,i ).Idle i
+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i ).Client i

(1 ≤ i ≤ k)
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Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj(s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)
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Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise
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Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk ]

)
��
L

(
Mirror1[q1] ‖ Mirror2[q2] ‖ . . . ‖ Mirrorm[qm]

)
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Numerical Results

ridle = 0.001
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Numerical Results

ridle = 0.05
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Numerical Results

ridle = 0.06
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.
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Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.
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