
Introduction Continuous Approximation Examples On-going and Future Work

Joint BCS-FACS and BCS Women Evening Seminar

Process Algebra for Collective Dynamics

Jane Hillston

Laboratory for Foundations of Computer Science
University of Edinburgh

10th December 2007

Introduction Continuous Approximation Examples On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Examples
Case Study: Scalable Web Services
Internet worms

4 On-going and Future Work
Alternative Models
New Languages

Introduction Continuous Approximation Examples On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Examples
Case Study: Scalable Web Services
Internet worms

4 On-going and Future Work
Alternative Models
New Languages

Introduction Continuous Approximation Examples On-going and Future Work

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Continuous Approximation Examples On-going and Future Work

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.

Introduction Continuous Approximation Examples On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system

-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Process Algebra

Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Continuous Approximation Examples On-going and Future Work

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���Does a given property φ
hold within the system?

φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Introduction Continuous Approximation Examples On-going and Future Work

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���

Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���Does a given property φ
hold within the system?

φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Introduction Continuous Approximation Examples On-going and Future Work

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���

Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system?

φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Introduction Continuous Approximation Examples On-going and Future Work

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system?

φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

- -
SOS rules state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Examples On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Examples
Case Study: Scalable Web Services
Internet worms

4 On-going and Future Work
Alternative Models
New Languages

Introduction Continuous Approximation Examples On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Examples On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Examples On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Examples On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Examples On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations

.

Introduction Continuous Approximation Examples On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations

.

Introduction Continuous Approximation Examples On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations

.

Introduction Continuous Approximation Examples On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations.

Introduction Continuous Approximation Examples On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

Introduction Continuous Approximation Examples On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

CTMC interpretation
Processors (P) Resources (R) States (2P+R)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

Introduction Continuous Approximation Examples On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

ODE interpretation
dProc0

dt = −r1 min(Proc0,Res0)

+r2 Proc1
dProc1

dt = r1 min(Proc0,Res0)

−r2 Proc1
dRes0

dt = −r1 min(Proc0,Res0)

+s Res1
dRes1

dt = r1 min(Proc0,Res0)

−s Res1

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (simulation run A)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (simulation run B)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (simulation run C)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (simulation run D)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (average of 10 runs)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (average of 100 runs)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (average of 1000 runs)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (average of 10000 runs)

Introduction Continuous Approximation Examples On-going and Future Work

Processors and resources (ODE solution)

Introduction Continuous Approximation Examples On-going and Future Work

Relation to transient solution

It is important to understand what this solution represents
compared to say, traditional transient analysis of a Markov
chain: an ODE represents a deterministic view of a system,
that is, a particular mean trajectory.

This compares to a transient Markov model solution which
maintains the stochastic information in the solution and shows
a particular trajectory’s probability of occurring at a time t.

Introduction Continuous Approximation Examples On-going and Future Work

Relation to transient solution

It is important to understand what this solution represents
compared to say, traditional transient analysis of a Markov
chain: an ODE represents a deterministic view of a system,
that is, a particular mean trajectory.

This compares to a transient Markov model solution which
maintains the stochastic information in the solution and shows
a particular trajectory’s probability of occurring at a time t.

Introduction Continuous Approximation Examples On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Examples
Case Study: Scalable Web Services
Internet worms

4 On-going and Future Work
Alternative Models
New Languages

Introduction Continuous Approximation Examples On-going and Future Work

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Introduction Continuous Approximation Examples On-going and Future Work

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Introduction Continuous Approximation Examples On-going and Future Work

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Introduction Continuous Approximation Examples On-going and Future Work

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Introduction Continuous Approximation Examples On-going and Future Work

Case Study: A Virtual University

Introduction Continuous Approximation Examples On-going and Future Work

Location, Time, and Size

Introduction Continuous Approximation Examples On-going and Future Work

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Introduction Continuous Approximation Examples On-going and Future Work

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Introduction Continuous Approximation Examples On-going and Future Work

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Introduction Continuous Approximation Examples On-going and Future Work

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Introduction Continuous Approximation Examples On-going and Future Work

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Introduction Continuous Approximation Examples On-going and Future Work

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Introduction Continuous Approximation Examples On-going and Future Work

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj(s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj(s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)

Introduction Continuous Approximation Examples On-going and Future Work

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

Introduction Continuous Approximation Examples On-going and Future Work

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk]

)
BC

L

(
Mirror1[q1] ‖ Mirror2[q2] ‖ . . . ‖ Mirrorm[qm]

)

Introduction Continuous Approximation Examples On-going and Future Work

Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk]

)
BC

L

(
Mirror1[q1] ‖ Mirror2[q2] ‖ . . . ‖ Mirrorm[qm]

)

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.001

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.01

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.02

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.03

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.04

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.05

Introduction Continuous Approximation Examples On-going and Future Work

Numerical Results

ridle = 0.06

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.

Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients

Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers

Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Comments

We have a modelling approach which captures both functional
and non-functional properties of large-scale systems.

PEPA gives us insights into the performance of the system.

We applied the continuous-space semantics of PEPA and were
able to see service policies at work.
Analysis carried out on a system of 17 ODEs as opposed to an
underlying CTMC of over 270 million states.

This framework is general. Elements that may be changed are

Classes of clients
Deployment of service providers
Different load balancing policies

Introduction Continuous Approximation Examples On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Examples On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Examples On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Examples On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Examples On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Examples On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Examples On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Examples On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) BC

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) BC

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) BC

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Examples On-going and Future Work

Patch rate γ = 0.1. Connection failure rate δ = 0.5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Worm infection dynamics for gamma=0.1, delta=0.5

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Examples On-going and Future Work

Patch rate γ = 0.3. Connection failure rate δ = 0.5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Worm infection dynamics for gamma=0.3

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Examples On-going and Future Work

Increasing machine patch rate γ from 0.1 to 0.3

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Infected machines for different values of gamma

gamma=0.1
gamma=0.2
gamma=0.3

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) BC

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) BC

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) BC

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Examples On-going and Future Work

Unsecured SIR model (200 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=200

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Examples On-going and Future Work

Unsecured SIR model (50 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=50

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Examples On-going and Future Work

Unsecured SIR model (20 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=20

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

This example describes a modified SIR-Attack model. This
simulates a possible distributed denial-of-service (DDOS)
attack mode of an Internet worm.

In some worms it is known that there is a bimodal behaviour
to the worm, either a worm can infect another computer or it
can start an attack on a victim computer.

The attack need not itself exploit any particular security flaw,
but can be something as simple as requesting a specific web
page, or issuing a ping request.

The combination of perhaps millions of machines making such
requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

This example describes a modified SIR-Attack model. This
simulates a possible distributed denial-of-service (DDOS)
attack mode of an Internet worm.

In some worms it is known that there is a bimodal behaviour
to the worm, either a worm can infect another computer or it
can start an attack on a victim computer.

The attack need not itself exploit any particular security flaw,
but can be something as simple as requesting a specific web
page, or issuing a ping request.

The combination of perhaps millions of machines making such
requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

This example describes a modified SIR-Attack model. This
simulates a possible distributed denial-of-service (DDOS)
attack mode of an Internet worm.

In some worms it is known that there is a bimodal behaviour
to the worm, either a worm can infect another computer or it
can start an attack on a victim computer.

The attack need not itself exploit any particular security flaw,
but can be something as simple as requesting a specific web
page, or issuing a ping request.

The combination of perhaps millions of machines making such
requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

This example describes a modified SIR-Attack model. This
simulates a possible distributed denial-of-service (DDOS)
attack mode of an Internet worm.

In some worms it is known that there is a bimodal behaviour
to the worm, either a worm can infect another computer or it
can start an attack on a victim computer.

The attack need not itself exploit any particular security flaw,
but can be something as simple as requesting a specific web
page, or issuing a ping request.

The combination of perhaps millions of machines making such
requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R + (attack, χ).A

A
def
= (attackA, λ).A + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′ + (attackA,>).Net ′′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Net ′′ def
= (attackV , ρ).Net + (fail , δ).Net

V
def
= (attackV ,>).V ′

V ′ def
= (release, σ).V

Sys
def
= (S [1000] ‖ I ‖ V) BC

L
Net[M]

where L = {infectI , infectS , attackA, attackV }

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R + (attack, χ).A

A
def
= (attackA, λ).A + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′ + (attackA,>).Net ′′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Net ′′ def
= (attackV , ρ).Net + (fail , δ).Net

V
def
= (attackV ,>).V ′

V ′ def
= (release, σ).V

Sys
def
= (S [1000] ‖ I ‖ V) BC

L
Net[M]

where L = {infectI , infectS , attackA, attackV }

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R + (attack, χ).A

A
def
= (attackA, λ).A + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′ + (attackA,>).Net ′′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Net ′′ def
= (attackV , ρ).Net + (fail , δ).Net

V
def
= (attackV ,>).V ′

V ′ def
= (release, σ).V

Sys
def
= (S [1000] ‖ I ‖ V) BC

L
Net[M]

where L = {infectI , infectS , attackA, attackV }

Introduction Continuous Approximation Examples On-going and Future Work

Susceptible-Infective-Removed-Attack (SIR-Attack) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R + (attack, χ).A

A
def
= (attackA, λ).A + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′ + (attackA,>).Net ′′

Net ′ def
= (infectS , β).Net + (fail , δ).Net

Net ′′ def
= (attackV , ρ).Net + (fail , δ).Net

V
def
= (attackV ,>).V ′

V ′ def
= (release, σ).V

Sys
def
= (S [1000] ‖ I ‖ V) BC

L
Net[M]

where L = {infectI , infectS , attackA, attackV }

Introduction Continuous Approximation Examples On-going and Future Work

Impact of the network capacity on the DDOS attack

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

Nu
m

be
r

Time, t

DDOS attack with victim saturation at 150 connections

Attack mode worm infections
Infected machines

Network connections used to carry attacks
DDOS connections on victim

Introduction Continuous Approximation Examples On-going and Future Work

Impact of the network capacity on the DDOS attack

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

Nu
m

be
r

Time, t

DDOS attack with victim saturation at 250 connections

Attack mode worm infections
Infected machines

Network connections used to carry attacks
DDOS connections on victim

Introduction Continuous Approximation Examples On-going and Future Work

Impact of the network capacity on the DDOS attack

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

Nu
m

be
r

Time, t

DDOS attack with victim saturation at 500 connections

Attack mode worm infections
Infected machines

Network connections used to carry attacks
DDOS connections on victim

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then mapped to
abstracted away into appropriate population-based
representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then mapped to
abstracted away into appropriate population-based
representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then mapped to
abstracted away into appropriate population-based
representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then mapped to
abstracted away into appropriate population-based
representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Examples On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Examples
Case Study: Scalable Web Services
Internet worms

4 On-going and Future Work
Alternative Models
New Languages

Introduction Continuous Approximation Examples On-going and Future Work

Alternative Representations

ODEs

population view

Stochastic
Simulation

individual view

Abstract
PEPA model

��
���

���
���

����*

H
HHH

HHH
HHHH

HHHHj

Introduction Continuous Approximation Examples On-going and Future Work

Alternative Representations

ODEs population view

Stochastic
Simulation

individual view

Abstract
PEPA model

��
���

���
���

����*

H
HHH

HHH
HHHH

HHHHj

Introduction Continuous Approximation Examples On-going and Future Work

Discretisation

In some cases observations of the system are made not at the level
of the individuals but at the level of the populations.

This more naturally lends itself to description in ordinary
differential equations (ODEs).

Luckily the process algebra descriptions are the same.

However we may be interested in analyses such as model checking
which cannot be readily applied in the context of ODEs.

This can be accomodated if we consider an abstract, intermediate
level model in which transitions represent discretised steps within
the continuous population range.

Introduction Continuous Approximation Examples On-going and Future Work

Discretisation

In some cases observations of the system are made not at the level
of the individuals but at the level of the populations.

This more naturally lends itself to description in ordinary
differential equations (ODEs).

Luckily the process algebra descriptions are the same.

However we may be interested in analyses such as model checking
which cannot be readily applied in the context of ODEs.

This can be accomodated if we consider an abstract, intermediate
level model in which transitions represent discretised steps within
the continuous population range.

Introduction Continuous Approximation Examples On-going and Future Work

Discretisation

In some cases observations of the system are made not at the level
of the individuals but at the level of the populations.

This more naturally lends itself to description in ordinary
differential equations (ODEs).

Luckily the process algebra descriptions are the same.

However we may be interested in analyses such as model checking
which cannot be readily applied in the context of ODEs.

This can be accomodated if we consider an abstract, intermediate
level model in which transitions represent discretised steps within
the continuous population range.

Introduction Continuous Approximation Examples On-going and Future Work

Discretisation

In some cases observations of the system are made not at the level
of the individuals but at the level of the populations.

This more naturally lends itself to description in ordinary
differential equations (ODEs).

Luckily the process algebra descriptions are the same.

However we may be interested in analyses such as model checking
which cannot be readily applied in the context of ODEs.

This can be accomodated if we consider an abstract, intermediate
level model in which transitions represent discretised steps within
the continuous population range.

Introduction Continuous Approximation Examples On-going and Future Work

Discretisation

In some cases observations of the system are made not at the level
of the individuals but at the level of the populations.

This more naturally lends itself to description in ordinary
differential equations (ODEs).

Luckily the process algebra descriptions are the same.

However we may be interested in analyses such as model checking
which cannot be readily applied in the context of ODEs.

This can be accomodated if we consider an abstract, intermediate
level model in which transitions represent discretised steps within
the continuous population range.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d

-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d

-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Discretising continuous variables

d dd dd d d d-� -� -� -� -� -� -�

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the entity.

Or alternatively each copy of an entity might represent a range of
concentration values.

Introduction Continuous Approximation Examples On-going and Future Work

Alternative Representations

ODEs

CTMC with
M levels

abstract view

Stochastic
Simulation

Abstract
PEPA model

-

��
���

���
���

����*

H
HHH

HHHH
HHH

HHHHj

Model checking and
Markovian analysis

Introduction Continuous Approximation Examples On-going and Future Work

Alternative Representations

ODEs

CTMC with
M levels

abstract view

Stochastic
Simulation

Abstract
PEPA model

-��
���

���
���

����*

H
HHH

HHHH
HHH

HHHHj

Model checking and
Markovian analysis

Introduction Continuous Approximation Examples On-going and Future Work

Alternative Representations

ODEs

CTMC with
M levels

abstract view

Stochastic
Simulation

Abstract
PEPA model

-��
���

���
���

����*

H
HHH

HHHH
HHH

HHHHj

Model checking and
Markovian analysis

Introduction Continuous Approximation Examples On-going and Future Work

Software Tool Support

PEPA is supported by several tool suites:

The PRISM probabilistic model checker

Kwiatkowska, Norman, Parker – Oxford

The IPC/Hydra tool chain

Bradley, Knottenbelt, Dingle – Imperial College, London

The Eclipse Plug-in for PEPA

Tribastone, Clark and Duguid – Edinburgh

Introduction Continuous Approximation Examples On-going and Future Work

Eclipse Plug-in for PEPA

Introduction Continuous Approximation Examples On-going and Future Work

New languages

In addition to using PEPA in this novel way we are also exploring
the use of new process algebras, specifically designed with
collective dynamics in mind:

Bio-PEPA: Designed for modelling biochemical processes such as
those that arise in signal transduction pathways.

HYPE: Designed for modelling hybrid systems combining
discrete and continuous behaviour.

L: Taking an alternative approach to modelling systems
from the population perspective.

Introduction Continuous Approximation Examples On-going and Future Work

Bio-PEPA

Particularly suited to modelling biochemical processes
Bio-PEPA is designed for abstract modelling with parameters
capturing state changes in terms of abstract levels.

Moreover the notion of stoichiometry is fully supported:
different participants in a reaction (action) may be modified
to different degrees.

Introduction Continuous Approximation Examples On-going and Future Work

Bio-PEPA

Particularly suited to modelling biochemical processes
Bio-PEPA is designed for abstract modelling with parameters
capturing state changes in terms of abstract levels.

Moreover the notion of stoichiometry is fully supported:
different participants in a reaction (action) may be modified
to different degrees.

Introduction Continuous Approximation Examples On-going and Future Work

HYPE

The continuous approximation approach currently assumes
that it is valid to consider populations of all component types
so that all actions can be modelled by ODEs.

HYPE is designed to describe hybrid systems in which there
are two types of actions: instantaneous, discrete events and
continuously acting influences.

Introduction Continuous Approximation Examples On-going and Future Work

HYPE

The continuous approximation approach currently assumes
that it is valid to consider populations of all component types
so that all actions can be modelled by ODEs.

HYPE is designed to describe hybrid systems in which there
are two types of actions: instantaneous, discrete events and
continuously acting influences.

Introduction Continuous Approximation Examples On-going and Future Work

L

Targetted to population level models, L takes a dual view of
systems with components representing processes or flows and
actions representing the aspects of the system which modify
flows.

This offers an alternative formalisation of ODE-based models,
the potential of which is currently being explored.

Introduction Continuous Approximation Examples On-going and Future Work

L

Targetted to population level models, L takes a dual view of
systems with components representing processes or flows and
actions representing the aspects of the system which modify
flows.

This offers an alternative formalisation of ODE-based models,
the potential of which is currently being explored.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Examples On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Examples On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Stephen Gilmore, Marco Stenico, Mirco Tribastone,
and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Examples On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Stephen Gilmore, Marco Stenico, Mirco Tribastone,
and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Examples On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Stephen Gilmore, Marco Stenico, Mirco Tribastone,
and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Examples On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Stephen Gilmore, Marco Stenico, Mirco Tribastone,
and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant.

More information:
http://www.dcs.ed.ac.uk/pepa

	Introduction
	Collective Dynamics
	Process Algebra

	Continuous Approximation
	State variables
	Numerical illustration

	Examples
	Case Study: Scalable Web Services
	Internet worms

	On-going and Future Work
	Alternative Models
	New Languages

