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The PEPA project

I The PEPA project started in Edinburgh in 1991.

I It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

I Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

I Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

I The project has sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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PEPA Case Studies (1)

I Multiprocessor access-contention protocols (Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Multimedia traffic characteristics (Bowman et al, Kent)

I Database systems (The STEADY group, Heriot-Watt
University)

I Software Architectures (Pooley, Bradley and Thomas,
Heriot-Watt and Durham)

I Switch behaviour in active networks (Hillston, Kloul and
Mokhtari, Edinburgh and Versailles)
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PEPA Case Studies (2)

I Locks and movable bridges in
inland shipping in Belgium
(Knapen, Hasselt)

I Robotic workcells (Holton,
Gilmore and Hillston, Bradford
and Edinburgh)

I Cellular telephone networks
(Kloul, Fourneau and Valois,
Versailles)

I Automotive diagnostic expert
systems (Console, Picardi and
Ribaudo, Turin)

........................

............

............
............
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Motivation

Systems Biology

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of the
processes involved.

I It involves taking a systems theoretic view of biological
processes — analysing inputs and outputs and the
relationships between them.

I A radical shift from earlier reductionist approaches, systems
biology aims to provide a conceptual basis and a methodology
for reasoning about biological phenomena.
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Motivation

Biochemical Pathways

At the intra-cellular level we can distinguish three distinct types of
pathways or networks

Gene networks: Genes control the production of proteins but are
themselves regulated by the same or different
proteins.

Signal transduction networks: External stimuli initiate messages
that are carried through a cell via a cascade of
biochemical reactions.

Metabolic pathways: The survival of the cell depends on its ability
to transform nutrients into energy.

But these distinctions are to some extent arbitrary as models may
include elements of more than one pathway type.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Signal transduction pathways

I All signalling is biochemical:

I Increasing protein concentration
broadcasts the information about
an event.

I The message is “received” by a
concentration dependent response
at the protein signal’s site of
action.

I This stimulates a response at the
signalling protein’s site of action.

I Signals propagate through a series
of protein accumulations.
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Motivation

Formal Systems

There are two alternative approaches to contructing dynamic
models of biochemical pathways commonly used by biologists:

I Ordinary Differential Equations:
I continuous time,
I continuous behaviour (concentrations),
I deterministic.

I Stochastic Simulation:
I continuous time,
I discrete behaviour (no. of molecules),
I stochastic.
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Motivation

Ordinary Differential Equations

I This deterministic approach has at its core the law of mass
action. This states that for a reaction in a homogeneous, free
medium, the reaction rate will be proportional to the
concentrations of the individual reactants involved.

For example, for a reaction A + B
k−→ C :

d [A]

dt
=

d [B]

dt
= −k[A][B]

d [C ]

dt
= k[A][B]

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Motivation

Ordinary Differential Equations

I This deterministic approach has at its core the law of mass
action. This states that for a reaction in a homogeneous, free
medium, the reaction rate will be proportional to the
concentrations of the individual reactants involved.

For example, for a reaction A + B
k−→ C :

d [A]

dt
=

d [B]

dt
= −k[A][B]

d [C ]

dt
= k[A][B]

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Motivation

Limitations of Ordinary Differential Equations

I Given knowledge of initial molecular concentrations, the law
of mass action provides a complete picture of the component
concentrations at all future time points.

I This is based on the assumption that chemical reactions to be
macroscopic under convective or diffusive stirring, continuous
and deterministic.

I This is a simplification, because in reality chemical reactions
involve discrete, random collisions between individual
molecules.

I As we consider smaller and smaller systems, the validity of a
continuous approach becomes ever more tenuous.
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Motivation

Stochastic: Propensity function

As explicitly derived by Gillespie, the stochastic model uses basic
Newtonian physics and thermodynamics to arrive at a form often
termed the propensity function that gives the probability aµ of
reaction µ occurring in time interval (t, t + dt).

aµdt = hµcµdt

where the M reaction mechanisms are given an arbitrary index µ
(1 ≤ µ ≤ M), hµ denotes the number of possible combinations of
reactant molecules involved in reaction µ, and cµ is a stochastic
rate constant.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Stochastic: Chemical Master Equation

Applying this leads us to an important partial differential equation
(PDE) known as the Chemical Master Equation (CME).

∂ Pr(X; t)

∂t
=

M∑
µ=1

aµ(X− vµ) Pr(X− vµ; t)− aµ(X) Pr(X; t)

Does not lend itself to either analytic nor numerical solutions.
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Motivation

Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) is essentially an
exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of
the randomness inherent in such a system.

It is rigorously based on the same microphysical premise that
underlies the chemical master equation and gives a more realistic
representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically by ODEs.

As with the chemical master equation, the SSA converges, in the
limit of large numbers of reactants, to the same solution as the law
of mass action.
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Motivation

Systems Analysis

I In biochemical signalling pathways the events of interests are
I when reagent concentrations start to increase;
I when concentrations pass certain thresholds;
I when a peak of concentration is reached.

I For example, delay from the activation of a gene promoter
until reaching an effective level to control the next promoter
in a pathway depends on the rate of protein accumulation.

I These data can be collected from wet lab experiments.

I The accumulation of protein is a stochastic process affected
by several factors in the cell (temperature, pH, etc.).

I Thus it is more realistic to talk about a distribution rather
than a deterministic time.
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Motivation

Formal Systems Revisited

I Currently mathematics is being used directly as the formal
system — even the work with the stochastic π-calculus only
uses the π-calculus to describe a continuous time Markov
chain (CTMC) for simulation.

I Previous experience in the performance arena has shown us
that there can be benefits to interposing a formal model
between the system and the underlying mathematical model.

I Moreover taking this “high-level programming” style approach
offers the possibility of different “compilations” to different
mathematical models.

Jane Hillston. LFCS, University of Edinburgh.
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Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π-calculus and related calculi, maps
a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and
analysis will generally be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).

Alternative mappings from the process algebra to underlying
mathematics are then readily available.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra
models for systems biology are:

I Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible is the state space is not prohibitively large.

I The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that
it can be useful to use semiquantitative models rather than
quantitative ones.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Alternative Representations

ODEs

population view

Stochastic
Simulation

individual view

Abstract
SPA model
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Abstract Modelling

Discretising the population view

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the reagent.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

PEPA: Performance Evaluation Process Algebra

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

PEPA: Performance Evaluation Process Algebra

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

The language may be used to generate a Markov Process (CTMC).

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Q is the infinitesimal generator matrix characterising the CTMC.
Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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Abstract Modelling

Markovian analysis

I Analysis of the Markov process can yield quite detailed
information about the dynamic behaviour of the model.

I A steady state analysis provides statistics for average
behaviour over a long run of the system, when the bias
introduced by the initial state has been lost.

I A transient analysis provides statistics relating to the
evolution of the model over a fixed period. This will be
dependent on the starting state.

I Stochastic model checking is available via the PRISM model
checker, assessing the probable validity of properties expressed
in CSL (Continuous Stochastic Logic).

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Reagent-centric modelling [CGH04]

Reagent role Impact on reagent Impact on reaction rate

Producer decreases concentration has a positive impact,
i.e. proportional to cur-
rent concentration

Product increases concentration has no impact on the
rate, except at saturation

Enzyme concentration unchanged has a positive impact,
i.e. proportional to cur-
rent concentration

Inhibitor concentration unchanged has a negative impact,
i.e. inversely proportional
to current concentration

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

PEPA reagent-centric example

BA

C

b_a

c_b

ab_c

c_a

AH
def
= (ab c , α).AL

AL
def
= (b a, β).AH+(c a, γ).AH

BH
def
= (ab c , α).BL+(b a, β).BL

BL
def
= (c b, δ).BH

CH
def
= (c a, γ).CL+(c b, δ).CL

CL
def
= (ab c , α).CH

(AH BC
{ab c,b a}

BH) BC
{ab c,c a,c b}

CL
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Case Study

Case Study: Schoeberl et al.’s model of the MAPK
Cascade [CDGH06]

I Published in Nature Biotechnology 20:370-375 in 2002.

I Influential, cited by more than 150 subsequent published
papers.

I Consists of 94 reagent species involved in 125 reactions.

I Substantial ODE model consisting of 94 state variables and 95
parameters.

I Original model constructed “by hand”, with help of a
graphical representation.

I Original analysis based on numerical integration platform of
the Matlab numerical computing platform.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

The MAP Kinase Cascade
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The MAP Kinase Cascade

There are many ambiguities in the graphical representation, e.g.

I An infinite supply of EGF is assumed;

I Reaction v7 is uni-directional whereas all others are reversible.
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Case Study

Extracts from the model of the MAP Kinase Cascade

EGFH
def
= (v1, k1).EGFH

EGFRH
def
= (v1, k1).EGFRL + (v6, k6).EGFRL

EGFRL
def
= (v -1, k-1).EGFRH + (v -6, k-6).EGFRH + (v13, k13).EGFRH

EGF-EGFRH
def
= (v2, k2).EGF-EGFRL + (v -1,k -1).EGF-EGFRL

EGF-EGFRL
def
= (v1, k1).EGF-EGFRH + (v -2,k-2).EGF-EGFRH

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Case Study

The PEPA model

Similar PEPA definitions were constructed for each of the 94
species in the pathway.

This was tedious, but not difficult, although care was needed to
handle the points of ambiguity in the graphical representation.

In order to complete the model we also needed to capture the
interactions (i.e. cooperations) between the reagents. In this case
we assumed that whenever reagents participated in reactions with
the same name they did so in cooperation.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

Validation of the PEPA model

I Once the PEPA model was constructed, we wanted to ensure
that it was generating the same mathematical representation
of the system.

I In the first instance we derived a set of ODEs in a format
suitable for Matlab.

I These could not be compared directly with Schoeberl et al’s
ODEs due to different representations being used, but we
compared them empirically in terms of the results.

I Then we used an alternative mapping from the PEPA to
generate a stochastic simulation of the system.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

Comparing Original Results and PEPA Derived ODEs
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The PEPA derived ODEs return the same results as the Schoeberl
et al. Matlab model.
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Case Study

Comparing Original Results and PEPA Derived Stochastic
Simulation
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Case Study

Corrected Time Step in Matlab Model
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Schoeberl et al. model - smaller steps

The original parameters for the Matlab model stepped over the
true peak.
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Case Study

On-going work

On-going work on this case study is working on a Markovian
analysis of the system.

This involves developing the model to have multiple levels rather
than the simple distinction between high and low which is all that
is needed in order to generate the ODE and stochastic simulation
models.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Alternative Representations

Equivalent Representations?

ODEs

population view

CTMC with
M levels

abstract view

Stochastic
Simulation

individual view

Abstract
PEPA model
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����*

H
HHH
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HHHHHj

6

?

?

?equal when M = N

equal when M −→∞
[GHS07]
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Alternative Representations

Relating CTMC and ODE models

I We consider an extension of PEPA, PEPA+. in which both
bounded capacity and mass action kinetics are defined.

I We obtain a sequence of CTMCs as we consider models with
finer and finer granularity — successively more levels in the
SPA models.

I Kurtz’s theorem states that a sequence of pure jump Markov
processes converge to a limit which coincides with a set of
ODEs [Kurtz 70].

In particular this holds for a class of
CTMCs which are density dependent.

I We show that the CTMCs we construct from the PEPA+
models are density dependent and so satisfy Kurtz’s theorem.

Jane Hillston. LFCS, University of Edinburgh.
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Alternative Representations

Density Dependent CTMC

A family of CTMCs is called density dependent if and only if there
exists a continuous function f (x , l), x ∈ Rh, l ∈ Zh, such that the
infinitesimal generators of XN are given by:

qk,k+l = N f

(
k

N
, l

)
, l 6= 0

where

I qk,k+1 denotes an entry in the infinitesimal generator matrix;

I k is a numerical state vector and

I l is a transition vector i.e. it records the adjustment to the
number of copies of each state of each entity (species) after
the transition is taken.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Alternative Representations

Density Dependent CTMC

A family of CTMCs is called density dependent if and only if there
exists a continuous function f (x , l), x ∈ Rh, l ∈ Zh, such that the
infinitesimal generators of XN are given by:

qk,k+l = N f

(
k

N
, l

)
, l 6= 0

where

I qk,k+1 denotes an entry in the infinitesimal generator matrix;

I k is a numerical state vector and

I l is a transition vector i.e. it records the adjustment to the
number of copies of each state of each entity (species) after
the transition is taken.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Alternative Representations

Density Dependent CTMC

A family of CTMCs is called density dependent if and only if there
exists a continuous function f (x , l), x ∈ Rh, l ∈ Zh, such that the
infinitesimal generators of XN are given by:

qk,k+l = N f

(
k

N
, l

)
, l 6= 0

where

I qk,k+1 denotes an entry in the infinitesimal generator matrix;

I k is a numerical state vector and

I l is a transition vector i.e. it records the adjustment to the
number of copies of each state of each entity (species) after
the transition is taken.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Alternative Representations

Density Dependent CTMC

A family of CTMCs is called density dependent if and only if there
exists a continuous function f (x , l), x ∈ Rh, l ∈ Zh, such that the
infinitesimal generators of XN are given by:

qk,k+l = N f

(
k

N
, l

)
, l 6= 0

where

I qk,k+1 denotes an entry in the infinitesimal generator matrix;

I k is a numerical state vector and

I l is a transition vector i.e. it records the adjustment to the
number of copies of each state of each entity (species) after
the transition is taken.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Outline

Introduction to Systems Biology
Motivation

Stochastic Process Algebra
Abstract Modelling
Case Study
Alternative Representations

Summary

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Stochastic Process Algebra Summary

Summary

I Abstract modelling offers a compromise between the
individual-based and population-based views of systems which
biologists commonly take.

I Moveover we can undertake additional analysis based on the
discretised population view.

I Further work is needed to establish a better relationship
between this view and the population view — empirical
evidence has shown that 6 or 7 levels are often sufficient to
capture exactly the same behaviour as the ODE model.

I In the future we hope to investigate the extent to which the
process algebra compositional structure can be exploited
during model analysis.
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Challenges

I The issue of unknown and uncertain data remains to be
addressed.

I The abstract Markovian models allow quantities of interest
such as “response times” to be expressed as probability
distributions rather than single estimates. This may allow
better reflection of wet lab data which showns variability.

I Promising recent work by Girolami et al. on assessing
candidate models which attempt to cover both unknown
structure and unknown kinetic rates with respect to
experimental data, using Bayesian reasoning.
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Conclusions

I Ultimately we want to understand the functioning of cells as
useful levels of abstraction, and to predict unknown behaviour.

I It remains an open and challenging problem to define a set of
basic and general primitives for modelling biological systems,
inspired by biological processes.

I Achieving this goal is anticipated to have two broad benefits:

I Better models and simulations of living phenomena
I New models of computations that are biologically inspired.
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