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Motivation

Systems Biology

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of the
processes involved.

I It involves taking a systems theoretic view of biological
processes — analysing inputs and outputs and the
relationships between them.

I A radical shift from earlier reductionist approaches, systems
biology aims to provide a conceptual basis and a methodology
for reasoning about biological phenomena.
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Motivation

Biochemical Signalling Pathways

At the intra-cellular level we can distinguish three distinct types of
pathways or networks

Gene networks: Genes control the production of proteins but are
themselves regulated by the same or different
proteins.

Signal transduction networks: External stimuli initiate messages
that are carried through a cell via a cascade of
biochemical reactions.

Metabolic pathways: The survival of the cell depends on its ability
to transform nutrients into energy.

But these distinctions are to some extent arbitrary as models may
include elements of more than one pathway type.
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I All signalling is biochemical:

I Increasing protein concentration
broadcasts the information about
an event.

I The message is “received” by a
concentration dependent response
at the protein signal’s site of
action.

I This stimulates a response at the
signalling protein’s site of action.

I Signals propagate through a series
of protein accumulations.
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Motivation

Formal Systems

There are two alternative approaches to contructing dynamic
models of biochemical pathways commonly used by biologists:

I Ordinary Differential Equations:
I continuous time,
I continuous behaviour (concentrations),
I deterministic.

I Stochastic Simulation:
I continuous time,
I discrete behaviour (no. of molecules),
I stochastic.
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Motivation

Systems Analysis

I In biochemical signalling pathways the events of interests are
I when reagent concentrations start to increase;
I when concentrations pass certain thresholds;
I when a peak of concentration is reached.

I For example, delay from the activation of a gene promoter
until reaching an effective level to control the next promoter
in a pathway depends on the rate of protein accumulation.

I These are the data that can be collected from wet lab
experiments.

I The accumulation of protein is a stochastic process affected
by several factors in the cell (temperature, pH, etc.).

I Thus it is more realistic to talk about a distribution rather
than a deterministic time.
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Individual vs. Population behaviour

I Biochemistry is concerned with the reactions between
individual molecules and so it is often more natural to model
at this level.

I Experimental data is usually more readily available in terms of
populations cf. average reaction rates vs. the forces at play on
an individual molecule in a particular physical context.

I These two views should be regarded as alternatives, each
being appropriate for some models. The challenge then
becomes when to use which approach.

I Note that given a large enough number of molecules, an
“individuals” model will (in many circumstances) be
indistinguishable from the a “population” level model.
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Noise vs. Determinism

I With perfect knowledge the behaviour of a biochemical
reaction would be deterministic.

I However, in general, we do not have the requisite knowledge
of thermodynamic forces, exact relative positions,
temperature, velocity etc.

I Thus a reaction appears to display stochastic behaviour.

I When a large number of such reactions occur, the randomness
of the individual reactions can cancel each other out and the
apparent behaviour exhibits less variability.

I However, in some systems the variability in the stochastic
behaviour plays a crucial role in the dynamics of the system.
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Circadian clock (cartoon)
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Circadian clock (. . . and stochastically)

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Signalling Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra for Biology Conclusions

The problem of Infinite Regress
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Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and
compositionality. When it comes to biochemical pathways opinion
amongst biologists is divided about whether is makes sense to take
a modular view of cellular pathways.

Some biologists (e.g. Leibler) argue that there is modularity,
naturally occuring, where they define a module relative to a
biological function.

Others such as Cornish-Bowden are much more skeptical and cite
the problem of infinite regress as being insurmountable.

Jane Hillston. LFCS, University of Edinburgh.
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Problems with Data

There is a fundamental challenge when modelling cellular pathways
that little is known about some aspects of cellular processes.

In some cases this is because no experimental data is available, or
that the experimental data that is available is inconsistent.

In other cases the data is unknowable because experimental
techniques do not yet exist to collect the data, or those that do
involve modification to the system.

Even when data exists the quality is often poor.
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Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.
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Process Algebra

I Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

I The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Stochastic Process Algebra

Stochastic Process Algebra

I Models are constructed from components which engage in
activities.

(α, r).P
�

��* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a Markov Process (CTMC).

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Stochastic Process Algebra

Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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Abstraction, Modularity and Reasoning

Mapping biological systems to process algebra

The work using the stochastic π-calculus and related calculi, for
modelling biochemical signalling within cells maps a molecule in a
pathway to a process in the process algebra description.

This is an inherently individuals-based view of the system and
assumes analysis will be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).
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Abstraction, Modularity and Reasoning

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra
models for systems biology comes from both key aspects of
modelling:

I The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that
we should use semiquantitative models rather than
quantitative ones.

I Process algebra based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible is the state space is not prohibitively large.
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Abstraction, Modularity and Reasoning

Reagent-centric modelling

Reagent role Impact on reagent Impact on reaction rate

Producer decreases concentration has a positive impact,
i.e. proportional to cur-
rent concentration

Product increases concentration has no impact on the
rate, except at saturation

Enzyme concentration unchanged has a positive impact,
i.e. proportional to cur-
rent concentration

Inhibitor concentration unchanged has a negative impact,
i.e. inversely proportional
to current concentration
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Alternative Representations
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Abstraction, Modularity and Reasoning

Discretising the population view

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the reagent.
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Case Study

Example: The Ras/Raf-1/MEK/ERK pathway

m12
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MEK−PP ERK RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*
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k6/k7

k3/k4
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Case Study

PEPA components of the reagent-centric model

m 3

m 4

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

k3/k4

k5

Raf-1∗/RKIP/ERK-PPH
def
=

(k5product, k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react, k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
=

(k3react, k3).Raf-1∗/RKIP/ERK-PPH

Each reagent gives rise to a pair of PEPA definitions, one for high
concentration and one for low concentration.
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Case Study

Commentary on the model

I I have shown the model with only high and low levels of
concentration. In general we would discretise the
concentration more coarsely with say 6 or 7 levels. As we add
levels we are capturing the concentration at finer levels of
granularity.

I The two levels (high/low) are sufficient to generate the ODEs
or stochastic simulation.

I For this model stochastic simulation and ODE analysis
coincide.

I We also considered an alternative model of the pathway with
subpathways as components, and we were able to use the
process algebra equivalence to show that our two models have
the same behaviour.
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Case Study

Reasoning and Model Checking

The original published model of the Ras/Raf-1/MEK/ERK
pathway had a structure which allowed MEK to grow unboudedly
which had not been detected in the ODE model.

Model checking using the PRISM probabilistic model checker
allowed us to check properties such as whether one protein will
exhibit a peak of concentration before another.

To do this we considered models with 6 levels of concentration, i.e.
the range of possible values of concentration are split into 6
discrete levels — this shows good agreement with the ODE
solution for transient behaviour.
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Case Study

Markovian analysis

Numerical analysis of the CTMC can yield detailed information
about the dynamic behaviour of the model.

A steady state analysis provides statistics for average behaviour
over a long run of the system, when the bias introduced by the
initial state has been lost.

A transient analysis provides statistics relating to the evolution of
the model over a fixed period. This will be dependent on the
starting state.

Note, however, that a transient Markovian analysis is exact because
it takes account of all possible evolutions, unlike a stochastic
simulation which considers only one possible evolution in each run.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

Quantified analysis – k8product

Approximating a variation in the initial concentration of RKIP by
varying the rate constant k1, we can assess the impact on the
production of ERK-PP.
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Case Study

Quantified analysis – k14product

Similarly we can assess the impact on the production of MEK-PP.
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Case Study

ODE analysis

Solving a system of ODEs will show how the concentrations of
reagents vary over time.

Solution is (relatively) fast and definitive but no variability is
captured, unlike Markovian analyses (and real systems).

There are advantages to be gained by using a process algebra
model as an intermediary to the derivation of the ODEs.

I The ODEs can be automatically generated from the
descriptive process algebra model, thus reducing human error.

I We can derive properties of the process algebra model, eg.
freedom from deadlock, before numerical analysis is carried
out.

I The algebraic formulation of the model emphasises
interactions between the biochemical entities.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

ODE Analysis of the MAPK example
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Conclusions

I Ultimately we want to understand the functioning of cells as
useful levels of abstraction, and to predict unknown behaviour.

I It remains an open and challenging problem to define a set of
basic and general primitives for modelling biological systems,
inspired by biological processes.

I Achieving this goal is anticipated to have two broad benefits:

I Better models and simulations of living phenomena
I New models of computations that are biologically inspired.
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