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The PEPA project

I The PEPA project started in Edinburgh in 1991.

I It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

I Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

I Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

I The project has sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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Motivation

Systems Biology

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of the
processes involved.

I It involves taking a systems theoretic view of biological
processes — analysing inputs and outputs and the
relationships between them.

I A radical shift from earlier reductionist approaches, systems
biology aims to provide a conceptual basis and a methodology
for reasoning about biological phenomena.
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Motivation

Biological Phenomena

I As an approach systems biology can be applied to many
different biological systems at different scales.

I For example, from gene regulation within the nucleus of a cell,
to whole organs, or even complete organisms.

I The biological phenomena to be studied will clearly depend on
the type of system being investigated.

I A grand challenge for systems biology is to develop multi-scale
models which seek to account for high-level behaviour (at the
level of the whole organisms) at all levels down to the
intra-cellular processes.
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Motivation

Biochemical Pathways

At the intra-cellular level we can distinguish three distinct types of
pathways or networks

Gene networks: Genes control the production of proteins but are
themselves regulated by the same or different
proteins.

Signal transduction networks: External stimuli initiate messages
that are carried through a cell via a cascade of
biochemical reactions.

Metabolic pathways: The survival of the cell depends on its ability
to transform nutrients into energy.

But these distinctions are to some extent arbitrary as models may
include elements of more than one pathway type.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Signal transduction pathways

I All signalling is biochemical:

I Increasing protein concentration
broadcasts the information about
an event.

I The message is “received” by a
concentration dependent response
at the protein signal’s site of
action.

I This stimulates a response at the
signalling protein’s site of action.

I Signals propagate through a series
of protein accumulations.
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Motivation

Formal Systems

There are two alternative approaches to contructing dynamic
models of biochemical pathways commonly used by biologists:

I Ordinary Differential Equations:
I continuous time,
I continuous behaviour (concentrations),
I deterministic.

I Stochastic Simulation:
I continuous time,
I discrete behaviour (no. of molecules),
I stochastic.
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Motivation

Ordinary Differential Equations

I This deterministic approach has at its core the law of mass
action. This states that for a reaction in a homogeneous, free
medium, the reaction rate will be proportional to the
concentrations of the individual reactants involved.

For example, for a reaction A + B
k−→ C :

d [A]

dt
=

d [B]

dt
= −k[A][B]

d [C ]

dt
= k[A][B]

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Limitations of Ordinary Differential Equations

I Given knowledge of initial molecular concentrations, the law
of mass action provides a complete picture of the component
concentrations at all future time points.

I This is based on the assumption that chemical reactions to be
macroscopic under convective or diffusive stirring, continuous
and deterministic.

I This is a simplification, because in reality chemical reactions
involve discrete, random collisions between individual
molecules.

I As we consider smaller and smaller systems, the validity of a
continuous approach becomes ever more tenuous.
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Motivation

Stochastic: Propensity function

As explicitly derived by Gillespie, the stochastic model uses basic
Newtonian physics and thermodynamics to arrive at a form often
termed the propensity function that gives the probability aµ of
reaction µ occurring in time interval (t, t + dt).

aµdt = hµcµdt

where the M reaction mechanisms are given an arbitrary index µ
(1 ≤ µ ≤ M), hµ denotes the number of possible combinations of
reactant molecules involved in reaction µ, and cµ is a stochastic
rate constant.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Stochastic: Chemical Master Equation

Applying this, and re-arranging the former, leads us to an
important partial differential equation (PDE) known as the
Chemical Master Equation (CME).

∂ Pr(X; t)

∂t
=

M∑
µ=1

aµ(X− vµ) Pr(X− vµ; t)− aµ(X) Pr(X; t)

Does not lend itself to either analytic nor numerical solutions.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) is essentially an
exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of
the randomness inherent in such a system.

It is rigorously based on the same microphysical premise that
underlies the chemical master equation and gives a more realistic
representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically by ODEs.

As with the chemical master equation, the SSA converges, in the
limit of large numbers of reactants, to the same solution as the law
of mass action.
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Motivation

Systems Analysis

I In biochemical signalling pathways the events of interests are
I when reagent concentrations start to increase;
I when concentrations pass certain thresholds;
I when a peak of concentration is reached.

I For example, delay from the activation of a gene promoter
until reaching an effective level to control the next promoter
in a pathway depends on the rate of protein accumulation.

I These are the data that can be collected from wet lab
experiments.

I The accumulation of protein is a stochastic process affected
by several factors in the cell (temperature, pH, etc.).

I Thus it is more realistic to talk about a distribution rather
than a deterministic time.
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Case Studies

Case Study: Circadian Rhythms – Overview

The study by Locke et al. (Extension of a genetic network model
by iterative experimentation and mathematical analysis. Molecular
Systems Biology) focuses on the circadian rhythms in plants,
combining mathematical models and molecular biology.

Their objective is to identify the genes (and proteins) responsible
for maintaining the daily rhythms observed in the plants.

The research exploits an interplay between mathematical models,
experiments in the laboratory and literature search.

It is held up as an exemplar of what systems biology is trying to
achieve, and the breakthroughs that it can bring about when it is
successful.

Jane Hillston. LFCS, University of Edinburgh.
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Case Studies

Case Study: Circadian Rhythms – Initial Model

From initial experiments Locke et al. identified a two genes and
two proteins which appeared to operate in a simple loop:

TOC1 LHY

LHY

TOC1

An initial mathematical model (ODEs) was constructed to capture
this model.

Jane Hillston. LFCS, University of Edinburgh.
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Case Studies

Case Study: Circadian Rhythms – Role of Mathematics

Initial simulations with the mathematical model showed good
agreement with the experimental data for some of the observed
phenomena but significant discrepancies for others.

Experiments were then undertaken with the mathematical model
to find an alternative model which was biologically plausible but
produced a better fit.

These mathematical experiments conjectured a network with two
interacting loops.
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Case Studies

Case Study: Circadian Rhythms – Elaborated Model

LHY

TOC1

Y

TOC1

X

Y

X

LHY

Two “new” genes were
introduced to the model
which now has
interlocking loops and
more complex feedback.

The simulation results
from this model showed
much better agreement
with the observed data.
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Case Studies

Case Study: Circadian Rhythms – Validating the Model

The researchers then sought to identify the “new” genes X and Y .

Searching the literature elicited several candidate genes which
previous experimental studies had suggested were implicated in the
circadian rhythm.

In particular, “knockout” data for one, GIGANTEA (GI), coincided
with the pattern from simulation experiments of the original model
with a single loop.

Subsequent wet lab experiments have reinforced this impression
that GI is gene Y .

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

Case Studies

Case Study: The VICE project – Overview

I There is an open problem in evolutionary theory to find LUCA
— the Last Unknown Common Ancestor.

I Based on various bacterial genomes previous work had
conjectured a Minimal Gene Set (MGS) containing 254 genes.

I Chiarugi et al. carried out in silico experiments to test the
viability of this gene set.

D. Chiarugi, M. Curti, P. Degano and R. Marangoni

VICE: A VIrtual CEll

in Proceedings of the 2nd International Workshop on Computational

Methods in Systems Biology Paris, France, April 2004.
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Case Studies

Case Study: The VICE project – Initial model

I An initial model was developed using the pi-calculus.

I The model focussed on the metabolic behaviour of the cell
(no reproduction). Thus the π-calculus model was intended to
behave as a simplified single cell organism.

I Each reactant was modelled as a distinct component in the
model, capturing how each reaction changed the state of that
reactant.

I The experiments showed that MGS was not viable: the cell
could not survive in simulation.

I 76 genes were found to be functionally duplicated and 7
additional genes were added to form VICE.

Jane Hillston. LFCS, University of Edinburgh.
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Case Studies

Case Study: The VICE project – In silico experimentation

I Many different alternative gene sets were possible on the basis
of the original model and experiments.

I Subsequent models were developed in stochastic pi-calculus
so that comparison with dynamic biological data was possible.

I A bespoke simulator was written to simulate the behaviour of
the alternative gene sets and the VICE gene set was chosen as
the most promising.

I The steady state distribution of the concentrations of virtual
metabolites was similar to that measured for bacteria
experimentally.

Jane Hillston. LFCS, University of Edinburgh.
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Case Studies

Formal Systems Revisited

I Currently mathematics is being used directly as the formal
system — even the work with the stochastic π-calculus only
uses the π-calculus to describe a continuous time Markov
chain (CTMC) for simulation.

I Previous experience in the performance arena has shown us
that there can be benefits to interposing a formal model
between the system and the underlying mathematical model.

I Moreover taking this “high-level programming” style approach
offers the possibility of different “compilations” to different
mathematical models.

Jane Hillston. LFCS, University of Edinburgh.
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Individual vs. Population

Individual vs. Population behaviour

I Biochemistry is concerned with the reactions between
individual molecules and so it is often more natural to model
at this level.

I However experimental data is usually more readily available in
terms of populations rather than individual molecules cf.
average reaction rates rather than the forces at play on an
individual molecule in a particular physical context.

I These should be regarded as alternatives, each being
appropriate for some models. The challenge then becomes
when to use which approach.

I Note that given a large enough number of molecules an
“individuals” model will (in many circumstances) be
indistinguishable from the a “population” level model.

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Noise vs. Determinism

I With perfect knowledge the behaviour of a biochemical
reaction would be deterministic.

I However, in general, we do not have the requisite knowledge
of thermodynamic forces, exact relative positions,
temperature, velocity etc.

I Thus a reaction appears to display stochastic behaviour.

I When a large number of such reactions occur, the randomness
of the individual reactions can cancel each other out and the
apparent behaviour exhibits less variability.

I However, in some systems the variability in the stochastic
behaviour plays a crucial role in the dynamics of the system.

Jane Hillston. LFCS, University of Edinburgh.
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Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Comparing stochastic simulation and ODEs

Consider a Michaelis Menten reaction in which a substrate S is
transformed to a product S via a complex C formed with an
enzyme E .

b/
u C c S

E

S

It is relatively straightforward to contrast the results of the two
methods. We compare the results of 2000 runs of the stochastic
algorithm simulating a system with initial molecular populations
S0 = 100,E0 = 10,C0 = 0,S0 = 0 and a volume of 1000 units.

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Results for S0 = 100, E0 = 10, C0 = 0, S0 = 0 (vol 1000)

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

In vivo behaviour compared with model behaviour

However, it is worth bearing in mind that an actual in vivo
biochemical reaction would follow just one of the many random
curves that average together producing the closely fitting mean.
This curve may deviate significantly from that of the deterministic
approach, and thus call into question its validity.

But this does not mean that the randomness exhibited by a
particular stochastic simulation trajectory will be the same as the
randomness of a particular in vivo reaction. Indeed, a set of
stochastic simulation trajectories (ensemble) is usually averaged
before any conclusions are drawn.

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Comparing results at lower population sizes

S0 = 10,E0 = 1,C0 = 0,S0 = 0 (vol 100)

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Mean results for 11, 110 and 1100 molecules

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Circadian clock

I The Vilar-Kueh-Barkai-Leibler (VKBL in short) description of
the circadian oscillator incorporates an abstraction of a
minimal set of mechanisms for a circadian system.

I The VKBL model involves two genes, an activator A and a
repressor R, which are transcribed into mRNA and
subsequently translated into proteins.

I The activator A binds to the A and R promoters and increases
their expression rate. Thus, A implements a positive loop
acting on its own transcription.

I Conversely, R sequesters A to form a complex C , therefore
inhibiting it from binding to the gene promoter and acting as
a negative feedback loop.

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Circadian clock (cartoon)

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Circadian clock (deterministically . . . )

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Circadian clock (. . . and stochastically)

Jane Hillston. LFCS, University of Edinburgh.
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Noise vs. Determinism

Conclusions from the Circadian Clock

I For some parameter values a differential equation model
exhibits autonomous oscillations.

I These oscillations disappear from the deterministic model as
the degradation rate of the repressor δR is decreased.

I The system of ODEs undergoes a bifurcation at this point and
exhibits a unique stable deterministic equilibrium.

I However, if the effects of molecular noise are incorporated the
oscillations in the stochastic system pertain.

I This phenomenon is a manifestation of coherence resonance,
and illustrates the crucial interplay between noise and
dynamics.

Jane Hillston. LFCS, University of Edinburgh.
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Modularity vs. Infinite Regress

Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and
compositionality. When it comes to biochemical pathways opinion
amongst biologists is divided about whether is makes sense to take
a modular view of cellular pathways.

Some biologists (e.g. Leibler) argue that there is modularity,
naturally occuring, where they define a module relative to a
biological function.

Others such as Cornish-Bowden are much more skeptical and cite
the problem of infinite regress as being insurmountable.

Jane Hillston. LFCS, University of Edinburgh.
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Modularity vs. Infinite Regress

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.
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Dealing with the Unknown

Dealing with the Unknown

There is a fundamental challenge when modelling cellular pathways
that little is known about some aspects of cellular processes.

In some cases this is because no experimental data is available, or
that the experimental data that is available is inconsistent.

In other cases the data is unknowable because experimental
techniques do not yet exist to collect the data, or those that do
involve modification to the system.

Even when data exists the quality is often very poor.

Jane Hillston. LFCS, University of Edinburgh.
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Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.

Jane Hillston. LFCS, University of Edinburgh.

Modelling Biochemical Pathways with Stochastic Process Algebra



Introduction to Systems Biology Challenges Stochastic Process Algebra Summary

PEPA: Performance Evaluation Process Algebra

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

The language may be used to generate a Markov Process (CTMC).

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Q is the infinitesimal generator matrix characterising the CTMC.

Jane Hillston. LFCS, University of Edinburgh.
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Markovian analysis

I Analysis of the Markov process can yield quite detailed
information about the dynamic behaviour of the model.

I A steady state analysis provides statistics for average
behaviour over a long run of the system, when the bias
introduced by the initial state has been lost.

I A transient analysis provides statistics relating to the
evolution of the model over a fixed period. This will be
dependent on the starting state.

I Note, transient Markovian analysis is exact because it takes
account of all possible evolutions, unlike a stochastic
simulation which considers only one possible evolution in each
run.

Jane Hillston. LFCS, University of Edinburgh.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra
models for systems biology comes from both key aspects of
modelling:

I The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that
we should use semiquantitative models rather than
quantitative ones.

I Process algebra based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible is the state space is not prohibitively large.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π-calculus and related calculi, for
modelling biochemical signalling within cells maps a molecule in a
pathway to a process in the process algebra description.

This is an inherently individuals-based view of the system and
assumes analysis will be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Discretising the population view

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the reagent.

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Reagent-centric modelling [CGH04]

Reagent role Impact on reagent Impact on reaction rate

Producer decreases concentration has a positive impact,
i.e. proportional to cur-
rent concentration

Product increases concentration has no impact on the
rate, except at saturation

Enzyme concentration unchanged has a positive impact,
i.e. proportional to cur-
rent concentration

Inhibitor concentration unchanged has a negative impact,
i.e. inversely proportional
to current concentration

Jane Hillston. LFCS, University of Edinburgh.
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Abstract Modelling

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Jane Hillston. LFCS, University of Edinburgh.
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The language may be used to generate a Markov Process (CTMC).
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Case Study

Case Study: Schoeberl et al.’s model of the MAPK
Cascade [CDGH06]

I Published in Nature Biotechnology 20:370-375 in 2002.

I Influential, cited by more than 150 subsequent published
papers.

I Consists of 94 reagent species involved in 125 reactions.

I Substantial ODE model consisting of 94 state variables and 95
parameters.

I Original model constructed “by hand”, with help of a
graphical representation.

I Original analysis based on numerical integration platform of
the Matlab numerical computing platform.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

The MAP Kinase Cascade
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Case Study

The MAP Kinase Cascade

There are many ambiguities in the graphical representation, e.g.

I An infinite supply of EGF is assumed;

I Reaction v7 is uni-directional whereas all others are reversible.
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Case Study

Extracts from the model of the MAP Kinase Cascade

EGFH
def
= (v1, k1).EGFH

EGFRH
def
= (v1, k1).EGFRL + (v6, k6).EGFRL

EGFRL
def
= (v -1, k-1).EGFRH + (v -6, k-6).EGFRH + (v13, k13).EGFRH

EGF-EGFRH
def
= (v2, k2).EGF-EGFRL + (v -1,k -1).EGF-EGFRL

EGF-EGFRL
def
= (v1, k1).EGF-EGFRH + (v -2,k-2).EGF-EGFRH

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

The PEPA model

Similar PEPA definitions were constructed for each of the 94
species in the pathway.

This was tedious, but not difficult, although care was needed to
handle the points of ambiguity in the graphical representation.

In order to complete the model we also needed to capture the
interactions (i.e. cooperations) between the reagents. In this case
we assumed that whenever reagents participated in reactions with
the same name they did so in cooperation.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

Validation of the PEPA model

I Once the PEPA model was constructed, we wanted to ensure
that it was generating the same mathematical representation
of the system.

I In the first instance we derived a set of ODEs in a format
suitable for Matlab.

I These could not be compared directly with Schoeberl et al’s
ODEs due to different representations being used, but we
compared them empirically in terms of the results.

I Then we used an alternative mapping from the PEPA to
generate a stochastic simulation of the system.

Jane Hillston. LFCS, University of Edinburgh.
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Case Study

Comparing Original Results and PEPA Derived ODEs
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The PEPA derived ODEs return the same results as the Schoeberl
et al. Matlab model.
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Case Study

Comparing Original Results and PEPA Derived Stochastic
Simulation
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Case Study

Comparing Original Results and PEPA Derived Stochastic
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Case Study

Corrected Time Step in Matlab Model
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Schoeberl et al. model - smaller steps

The original parameters for the Matlab model stepped over the
true peak.
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Alternative Representations

Alternative Representations
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Challenges

I Abstract modelling offers a compromise between the
individual-based and population-based views of systems which
biologists commonly take.

I Moveover we can undertake additional analysis based on the
discretised population view.

I Further work is needed to establish a better relationship
between this view and the population view — empirical
evidence has shown that 6 or 7 levels are often sufficient to
capture exactly the same behaviour as the ODE model.

I In the future we hope to investigate the extent to which the
process algebra compositional structure can be exploited
during model analysis.
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Challenges cont.

I The issue of unknown and uncertain data remains to be
addressed.

I The abstract Markovian models allow quantities of interest
such as “response times” to be expressed as probability
distributions rather than single estimates. This may allow
better reflection of wet lab data which showns variability.

I Promising recent work by Girolami et al. on assessing
candidates models which attempt to cover both unknown
structure and unknown kinetic rates with respect to
experimental data, using Bayesian reasoning.
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Conclusions

I Ultimately we want to understand the functioning of cells as
useful levels of abstraction, and to predict unknown behaviour.

I It remains an open and challenging problem to define a set of
basic and general primitives for modelling biological systems,
inspired by biological processes.

I Achieving this goal is anticipated to have two broad benefits:

I Better models and simulations of living phenomena
I New models of computations that are biologically inspired.
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