Case Studies

0000000000000 0000000000 000000 Summary

Calculi for Systems Biology

Jane Hillston. LFCS, University of Edinburgh

18th October 2007

Joint work with Federica Ciocchetta

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

000000000000 000000000 000000 Summary

The PEPA project

► The PEPA project started in Edinburgh in 1991.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 0000000 Summary

The PEPA project

- The PEPA project started in Edinburgh in 1991.
- It was motivated by problems encountered when carrying out performance analysis of large computer and communication systems, based on numerical analysis of Markov processes.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Case Studies

0000000000000 000000000 000000 Summary

The PEPA project

- The PEPA project started in Edinburgh in 1991.
- It was motivated by problems encountered when carrying out performance analysis of large computer and communication systems, based on numerical analysis of Markov processes.
- Process algebras offered a compositional description technique supported by apparatus for formal reasoning.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

The PEPA project

- The PEPA project started in Edinburgh in 1991.
- It was motivated by problems encountered when carrying out performance analysis of large computer and communication systems, based on numerical analysis of Markov processes.
- Process algebras offered a compositional description technique supported by apparatus for formal reasoning.
- Performance Evaluation Process Algebra (PEPA) sought to address these problems by the introduction of a suitable process algebra.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

The PEPA project

- The PEPA project started in Edinburgh in 1991.
- It was motivated by problems encountered when carrying out performance analysis of large computer and communication systems, based on numerical analysis of Markov processes.
- Process algebras offered a compositional description technique supported by apparatus for formal reasoning.
- Performance Evaluation Process Algebra (PEPA) sought to address these problems by the introduction of a suitable process algebra.
- The project has sought to investigate and exploit the interplay between the process algebra and the continuous time Markov chain (CTMC).

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

PEPA Case Studies (1)

- Multiprocessor access-contention protocols (Gilmore, Hillston and Ribaudo, Edinburgh and Turin)
- Protocols for fault-tolerant systems (Clark, Gilmore, Hillston and Ribaudo, Edinburgh and Turin)
- Multimedia traffic characteristics (Bowman et al, Kent)
- Database systems (The STEADY group, Heriot-Watt University)
- Software Architectures (Pooley, Bradley and Thomas, Heriot-Watt and Durham)
- Switch behaviour in active networks (Hillston, Kloul and Mokhtari, Edinburgh and Versailles)

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽٩℃

Case Studies

0000000000000 000000000 000000 Summary

PEPA Case Studies (2)

 Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

PEPA Case Studies (2)

- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲三▶▲三▶ 三 少へ⊙

Case Studies

0000000000000 000000000 000000 Summary

PEPA Case Studies (2)

- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)
- Cellular telephone networks (Kloul, Fourneau and Valois, Versailles)

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

PEPA Case Studies (2)

- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)
- Cellular telephone networks (Kloul, Fourneau and Valois, Versailles)
- Automotive diagnostic expert systems (Console, Picardi and Ribaudo, Turin)

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Outline

Introduction to Systems Biology

Motivation Challenges

Stochastic Process Algebra

Abstract Modelling Case Study Bio-PEPA

Case Studies

Simple genetic network Goldbeter's model Extended model

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□▼

Introduction to Systems Biology

000000

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Outline

Introduction to Systems Biology

Motivation Challenges

Stochastic Process Algebra

Abstract Modelling Case Study Bio-PEPA

Case Studies

Simple genetic network Goldbeter's model Extended model

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 + 4 日 + 4 三 + 4 日 + 4 0

Case Studies

Summary

Motivation

Systems Biology

 Biological advances mean that much more is now known about the components of cells and the interactions between them.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology

- Biological advances mean that much more is now known about the components of cells and the interactions between them.
- Systems biology aims to develop a better understanding of the processes involved.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology

- Biological advances mean that much more is now known about the components of cells and the interactions between them.
- Systems biology aims to develop a better understanding of the processes involved.
- It involves taking a systems theoretic view of biological processes — analysing inputs and outputs and the relationships between them.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology

- Biological advances mean that much more is now known about the components of cells and the interactions between them.
- Systems biology aims to develop a better understanding of the processes involved.
- It involves taking a systems theoretic view of biological processes — analysing inputs and outputs and the relationships between them.
- A radical shift from earlier reductionist approaches, systems biology aims to provide a conceptual basis and a methodology for reasoning about biological phenomena.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ 4 団 ▶ 4 目 ▶ 4 団 ▶ 4 回 ▶

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ 4 団 ▶ 4 目 ▶ 4 団 ▶ 4 回 ▶

Case Studies

Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ 4 団 ▶ 4 트 ▶ 4 団 ▶ 4 回 ▶

Case Studies

Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ 4 団 ▶ 4 目 ▶ 4 団 ▶ 4 回 ▶

Case Studies

Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Motivation

Systems Biology Methodology

Jane Hillston. LFCS, University of Edinburgh.

Motivation

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Formal Systems

There are two alternative approaches to contructing dynamic models of biochemical pathways commonly used by biologists:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□▶

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Formal Systems

There are two alternative approaches to contructing dynamic models of biochemical pathways commonly used by biologists:

- Ordinary Differential Equations:
 - continuous time,
 - continuous behaviour (concentrations),
 - deterministic.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ペロト 4 回 ト 4 三 ト 4 三 り へ ()

Case Studies

000000000000 000000000 000000 Summary

Motivation

Formal Systems

There are two alternative approaches to contructing dynamic models of biochemical pathways commonly used by biologists:

- Ordinary Differential Equations:
 - continuous time,
 - continuous behaviour (concentrations),
 - deterministic.
- Stochastic Simulation:
 - continuous time,
 - discrete behaviour (no. of molecules),
 - stochastic.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ 日 ・ ・ 画 ・ ・ 画 ・ ・ 日 ・

Motivation

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Limitations of Ordinary Differential Equations

 Given knowledge of initial molecular concentrations, the law of mass action provides a complete picture of the component concentrations at all future time points.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000

Motivation

Limitations of Ordinary Differential Equations

- Given knowledge of initial molecular concentrations, the law of mass action provides a complete picture of the component concentrations at all future time points.
- This is based on the assumption that chemical reactions to be macroscopic under convective or diffusive stirring, continuous and deterministic.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Limitations of Ordinary Differential Equations

- Given knowledge of initial molecular concentrations, the law of mass action provides a complete picture of the component concentrations at all future time points.
- This is based on the assumption that chemical reactions to be macroscopic under convective or diffusive stirring, continuous and deterministic.
- This is a simplification, because in reality chemical reactions involve discrete, random collisions between individual molecules.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Limitations of Ordinary Differential Equations

- Given knowledge of initial molecular concentrations, the law of mass action provides a complete picture of the component concentrations at all future time points.
- This is based on the assumption that chemical reactions to be macroscopic under convective or diffusive stirring, continuous and deterministic.
- This is a simplification, because in reality chemical reactions involve discrete, random collisions between individual molecules.
- As we consider smaller and smaller systems, the validity of a continuous approach becomes ever more tenuous.

Jane Hillston. LFCS, University of Edinburgh.
Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Stochastic simulation algorithms

Gillespie's Stochastic Simulation Algorithm (SSA) gives a numerical simulation of the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Stochastic simulation algorithms

Gillespie's Stochastic Simulation Algorithm (SSA) gives a numerical simulation of the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system.

It is derived from the chemical master equation and gives a more realistic representation of a system's evolution than the deterministic reaction rate equation (RRE) represented mathematically by ODEs.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Stochastic simulation algorithms

Gillespie's Stochastic Simulation Algorithm (SSA) gives a numerical simulation of the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system.

It is derived from the chemical master equation and gives a more realistic representation of a system's evolution than the deterministic reaction rate equation (RRE) represented mathematically by ODEs.

Since each molecule is represented explicitly the number of generated states can be extremely large.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Systems Analysis

- In biochemical signalling pathways the events of interests are:
 - when reagent concentrations start to increase;
 - when concentrations pass certain thresholds;
 - when a peak of concentration is reached.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロマ・山 マ・山 マ・山 マ・日マ

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Systems Analysis

- In biochemical signalling pathways the events of interests are:
 - when reagent concentrations start to increase;
 - when concentrations pass certain thresholds;
 - when a peak of concentration is reached.
- E.g. in a gene network the delay from the activation of one gene until the next promoter reaches an effective level to activate the next gene depends on the rate of protein accumulation.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Systems Analysis

- In biochemical signalling pathways the events of interests are:
 - when reagent concentrations start to increase;
 - when concentrations pass certain thresholds;
 - when a peak of concentration is reached.
- E.g. in a gene network the delay from the activation of one gene until the next promoter reaches an effective level to activate the next gene depends on the rate of protein accumulation.
- The accumulation of protein is a stochastic process affected by several factors in the cell (temperature, pH, etc.).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・山下・ ・日・ ・日・

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Analysis

- In biochemical signalling pathways the events of interests are:
 - when reagent concentrations start to increase;
 - when concentrations pass certain thresholds;
 - when a peak of concentration is reached.
- E.g. in a gene network the delay from the activation of one gene until the next promoter reaches an effective level to activate the next gene depends on the rate of protein accumulation.
- The accumulation of protein is a stochastic process affected by several factors in the cell (temperature, pH, etc.).
- Thus it is a distribution rather than a deterministic time.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Motivation

Systems Analysis

- In biochemical signalling pathways the events of interests are:
 - when reagent concentrations start to increase;
 - when concentrations pass certain thresholds;
 - when a peak of concentration is reached.
- E.g. in a gene network the delay from the activation of one gene until the next promoter reaches an effective level to activate the next gene depends on the rate of protein accumulation.
- The accumulation of protein is a stochastic process affected by several factors in the cell (temperature, pH, etc.).
- Thus it is a distribution rather than a deterministic time.
- Models should match wet lab experimental data.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Individual vs. Population behaviour

 Biochemistry is concerned with the reactions between individual molecules and so it is often more natural to model at this level.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Individual vs. Population behaviour

- Biochemistry is concerned with the reactions between individual molecules and so it is often more natural to model at this level.
- However experimental data is usually more readily available in terms of populations rather than individual molecules cf. average reaction rates rather than the forces at play on an individual molecule in a particular physical context.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・山下・山下・ 山下・ (日)・

Stochastic Process Algebra

Case Studies

0000000000000 0000000000 000000 Summary

Individual vs. Population behaviour

- Biochemistry is concerned with the reactions between individual molecules and so it is often more natural to model at this level.
- However experimental data is usually more readily available in terms of populations rather than individual molecules cf. average reaction rates rather than the forces at play on an individual molecule in a particular physical context.
- These should be regarded as alternatives, each being appropriate for some models. The challenge then becomes when to use which approach.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロ・・四・・川・・日・ 山・ ひゃう

Stochastic Process Algebra

Case Studies

Summary

Individual vs. Population behaviour

- Biochemistry is concerned with the reactions between individual molecules and so it is often more natural to model at this level.
- However experimental data is usually more readily available in terms of populations rather than individual molecules cf. average reaction rates rather than the forces at play on an individual molecule in a particular physical context.
- These should be regarded as alternatives, each being appropriate for some models. The challenge then becomes when to use which approach.
- Note that given a large enough number of molecules an "individuals" model will (in many circumstances) be indistinguishable from the a "population" level model.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Noise vs. Determinism

With perfect knowledge the behaviour of a biochemical reaction would be deterministic.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ エリ・ エリ・ ・ 白 ・ ・ コ ・

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Noise vs. Determinism

- With perfect knowledge the behaviour of a biochemical reaction would be deterministic.
- However, in general, we do not have the requisite knowledge of thermodynamic forces, exact relative positions, temperature, velocity etc.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Noise vs. Determinism

- With perfect knowledge the behaviour of a biochemical reaction would be deterministic.
- However, in general, we do not have the requisite knowledge of thermodynamic forces, exact relative positions, temperature, velocity etc.
- Thus a reaction appears to display stochastic behaviour.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Noise vs. Determinism

- With perfect knowledge the behaviour of a biochemical reaction would be deterministic.
- However, in general, we do not have the requisite knowledge of thermodynamic forces, exact relative positions, temperature, velocity etc.
- Thus a reaction appears to display stochastic behaviour.
- When a large number of such reactions occur, the randomness of the individual reactions can cancel each other out and the apparent behaviour exhibits less variability.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Noise vs. Determinism

- With perfect knowledge the behaviour of a biochemical reaction would be deterministic.
- However, in general, we do not have the requisite knowledge of thermodynamic forces, exact relative positions, temperature, velocity etc.
- Thus a reaction appears to display stochastic behaviour.
- When a large number of such reactions occur, the randomness of the individual reactions can cancel each other out and the apparent behaviour exhibits less variability.
- However, in some systems the variability in the stochastic behaviour plays a crucial role in the dynamics of the system.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and compositionality. When it comes to biochemical pathways opinion amongst biologists is divided about whether is makes sense to take a modular view of cellular pathways.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and compositionality. When it comes to biochemical pathways opinion amongst biologists is divided about whether is makes sense to take a modular view of cellular pathways.

Some biologists (e.g. Leibler) argue that there is modularity, naturally occuring, where they define a module relative to a biological function.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and compositionality. When it comes to biochemical pathways opinion amongst biologists is divided about whether is makes sense to take a modular view of cellular pathways.

Some biologists (e.g. Leibler) argue that there is modularity, naturally occuring, where they define a module relative to a biological function.

Others such as Cornish-Bowden are much more skeptical and cite the problem of infinite regress as being insurmountable.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲□▶

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

4日×4団×4三×4三×三、940

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・西・・川・・西・・日・

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 母 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0 </p>

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 回 > < 三 > < 三 > < 回 > < 三 > < 三 > < ○</p>

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 母 > < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0 </p>

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ④ ● ●

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 1 回 への</p>

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□▶

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000

Challenges

The problem of Infinite Regress

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Dealing with the Unknown

There is a fundamental challenge when modelling cellular pathways that little is known about some aspects of cellular processes.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Dealing with the Unknown

There is a fundamental challenge when modelling cellular pathways that little is known about some aspects of cellular processes.

In some cases this is because no experimental data is available, or that the experimental data that is available is inconsistent.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□

Case Studies

0000000000000 000000000 000000 Summary

Challenges

Dealing with the Unknown

There is a fundamental challenge when modelling cellular pathways that little is known about some aspects of cellular processes.

In some cases this is because no experimental data is available, or that the experimental data that is available is inconsistent.

In other cases the data is unknowable because experimental techniques do not yet exist to collect the data, or those that do involve modification to the system.

Jane Hillston. LFCS, University of Edinburgh.
Case Studies

0000000000000 000000000 000000 Summary

Challenges

Dealing with the Unknown

There is a fundamental challenge when modelling cellular pathways that little is known about some aspects of cellular processes.

In some cases this is because no experimental data is available, or that the experimental data that is available is inconsistent.

In other cases the data is unknowable because experimental techniques do not yet exist to collect the data, or those that do involve modification to the system.

Even when data exists the quality is often very poor.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Challenges

Formal Systems Revisited

In most current work mathematics is being used directly as the formal system.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□

Case Studies

000000000000 000000000 000000 Summary

Challenges

Formal Systems Revisited

- In most current work mathematics is being used directly as the formal system.
- Previous experience in the performance arena has shown us that there can be benefits to interposing a formal model between the system and the underlying mathematical model.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Challenges

Formal Systems Revisited

- In most current work mathematics is being used directly as the formal system.
- Previous experience in the performance arena has shown us that there can be benefits to interposing a formal model between the system and the underlying mathematical model.
- Moreover taking this "high-level programming" style approach offers the possibility of different "compilations" to different mathematical models.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Outline

Introduction to Systems Biology

Motivation Challenges

Stochastic Process Algebra

Abstract Modelling Case Study Bio-PEPA

Case Studies

Simple genetic network Goldbeter's model Extended model

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▼ ④ ◆○

Case Studies

0000000000000 000000000 000000 Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ペロト 4 回 ト 4 三 ト 4 回 ト 4 回 ト

Case Studies

0000000000000 000000000 000000 Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

 Process algebraic formulations are compositional and make interactions/constraints explicit.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 団 > < 三 > < 三 > の < で</p>

Case Studies

0000000000000 000000000 000000 Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.
- Equivalence relations allow formal comparison of high-level descriptions.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Using Stochastic Process Algebras

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.
- Equivalence relations allow formal comparison of high-level descriptions.
- There are well-established techniques for reasoning about the behaviours and properties of models, supported by software. These include qualitative and quantitative analysis, and model checking.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Molecular processes as concurrent computations

Concurrency	Molecular Biology	Metabolism	Signal Transduction
Concurrent computational processes	Molecules	Enzymes and metabolites	Interacting proteins
Synchronous communica-	Molecular	Binding and	Binding and
tion	interaction	catalysis	catalysis
Transition or mobility	Biochemical modification or relocation	Metabolite synthesis	Protein binding, modification or sequestration

[Regev et al 2000]

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Molecular processes as concurrent computations

Concurrency	Molecular Biology	Metabolism	Signal Transduction
Concurrent computational processes	Molecules	Enzymes and metabolites	Interacting proteins
Synchronous communica-	Molecular	Binding and	Binding and
tion	interaction	catalysis	catalysis
Transition or mobility	Biochemical modification or relocation	Metabolite synthesis	Protein binding, modification or sequestration

[Regev et al 2000]

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 000000 Summary

Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Case Studies

Summary

Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

Summary

Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented with more abstract mappings between process algebra constructs and elements of signalling pathways.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□ ♥ ④ ♥ ●

Case Studies

Summary

Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented with more abstract mappings between process algebra constructs and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an instance, or a class rather than an object).

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Abstract Modelling

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented with more abstract mappings between process algebra constructs and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an instance, or a class rather than an object).

Alternative mappings from the process algebra to underlying mathematics are then readily available.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra models for systems biology are:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□

Case Studies

Summary

Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra models for systems biology are:

Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Summary

Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra models for systems biology are:

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.
- The data that we have available to parameterise models is sometimes speculative rather than precise.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト (四) (日) (日) (日) (日) (日) (日)

Summary

Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra models for systems biology are:

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.
- The data that we have available to parameterise models is sometimes speculative rather than precise. This suggests that it can be useful to use semiquantitative models rather than quantitative ones.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト (四) (日) (日) (日) (日) (日) (日)

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

Alternative Representations

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summarv

Abstract Modelling

Alternative Representations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ふちゃくゆ そうやく ひょう しょうしょう

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

Discretising the population view

We can discretise the continuous range of possible concentration values into a number of distinct states. These form the possible states of the component representing the reagent.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

Alternative Representations

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 0000000000 0000000

Abstract Modelling

Alternative Representations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲□▶

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

Alternative Representations

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

SPA Languages

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 + 4 日 + 4 三 + 4 日 + 4 0

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

SPA Languages

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

A ロ ト 4 目 ト 4 目 ト 4 日 ト 1 日 ト 1 日 ト

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 ト 4 目 ト 4 目 ト 4 日 ト - 9 0 0 0

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

*ロト * 団 ト * 三 * * 三 * の へ ()

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Summary

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

*ロト * 団 ト * 三 * * 三 * の へ ()

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 + 4 0 + 4 0

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.
Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ ・ 川 ・ ・ ● ・ ・ ● ・ シック・

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{I} P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲ ● ●

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie P | P/L$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

SPA MODEL

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

4日×4日×4日×4日×4日×4日×40
 4日×4日×4日×40
 4日×40
 4日×40<

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

A ロ ト 4 目 ト 4 目 ト 4 日 ト 1 日 ト 1 日 ト

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a Markov Process (CTMC).

Q is the infinitesimal generator matrix characterising the CTMC.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Case Studies

0000000000000 0000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

SPA MODEL

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲三▶▲三▶ ④�?

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

SPA syntactic MODEL analysis

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

A ロ ト 4 目 ト 4 目 ト 4 日 ト 1 日 ト 1 日 ト

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language may be used to generate a system of ordinary differential equations (ODEs).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ふちゃ 4 回 ト 4 回 ト 4 回 ト 4 日 ト

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

SPA MODEL

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日・

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

4日 + 4日 + 4 三 + 4 三 ・ 9 4 (0)

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□▶

Case Studies

Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

PEPA: Performance Evaluation Process Algebra

$$S ::= (\alpha, r).S | S + S | A$$
$$P ::= S | P \bowtie_{L} P | P/L$$

The language also may be used to generate a stochastic simulation.

Each of these has tool support so that the underlying model is derived automatically according to the predefined rules.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Abstract Modelling

Reagent-centric modelling [CGH04]

Reagent role	Impact on reagent	Impact on reaction rate
Producer	decreases concentration	has a positive impact,
		i.e. proportional to cur-
		rent concentration
Product	increases concentration	has no impact on the
		rate, except at saturation
Enzyme	concentration unchanged	has a positive impact,
		i.e. proportional to cur-
		rent concentration
Inhibitor	concentration unchanged	has a negative im-
		pact, i.e. inversely
		proportional to current
		concentration

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Abstract Modelling

PEPA reagent-centric example

A_{H}	def	$(ab_{-}c, \alpha).A_{L}$
A_L	def =	$(b_{-}a,\beta).A_{\mathrm{H}}+(c_{-}a,\gamma).A_{\mathrm{H}}$
B_{H}	def =	$(ab_c, \alpha).B_L + (b_a, \beta).B_L$
B_{L}	def =	$(c_b, \delta).B_H$
$C_{\rm H}$	def =	$(c_a, \gamma).C_L + (c_b, \delta).C_L$
C_{L}	def =	$(ab_{-}c, \alpha).C_{H}$

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Stochastic Process Algebra

A_H

A_L

B_H

B_L C_H

C_L

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

PEPA reagent-centric example

def =	$(ab_{-}c, \alpha).A_{L}$
def =	$(b_{-}a,\beta).A_{H}+(c_{-}a,\gamma).A_{H}$
def =	$(ab_{c}, \alpha).B_{L}+(b_{a}, \beta).B_{L}$
def =	$(c_b, \delta).B_H$
def =	$(c_a, \gamma).C_L + (c_b, \delta).C_L$
def =	$(\textit{ab}_\textit{c}, \alpha).\textit{C}_{H}$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲ロト 4 団 ト 4 三 ト 4 三 9 0 0 0

Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

PEPA reagent-centric example

A_{H}	def =	$(ab_{-}c, \alpha).A_{L}$
A_L	def =	$(b_{-}a,\beta).A_{\mathrm{H}}+(c_{-}a,\gamma).A_{\mathrm{H}}$
B_{H}	def	$(ab_c, \alpha).B_L + (b_a, \beta).B_L$
BL	def	$(c_b, \delta).B_H$
C_{H}	def =	$(c_a, \gamma).C_L + (c_b, \delta).C_L$
C_{L}	def =	$(ab_{-}c, \alpha).C_{H}$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲ロト 4 団 ト 4 三 ト 4 三 9 Q (~)

Case Studies

Abstract Modelling

PEPA reagent-centric example

A_{H}	def =	$(ab_{-}c, \alpha).A_{L}$
A_{L}	def	$(b_{-}a,\beta).A_{H}+(c_{-}a,\gamma).A_{H}$
B_{H}	def	$(ab_c, \alpha).B_L + (b_a, \beta).B_L$
B_{L}	def =	$(c_b, \delta).B_H$
C _H	def =	$(c_a, \gamma).C_L + (c_b, \delta).C_L$
C_L	def =	$(ab_{-}c, \alpha).C_{H}$

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Abstract Modelling

PEPA reagent-centric example

$A_{\rm H}$	def =	$(ab_{-}c, \alpha).A_{L}$
A_L	def =	$(b_a, \beta).A_H + (c_a, \gamma).A_H$
B_{H}	def =	$(ab_{-}c, \alpha).B_{L}+(b_{-}a, \beta).B_{L}$
BL	def =	$(c_b, \delta).B_H$
С _Н	def =	$(c_a, \gamma).C_L + (c_b, \delta).C_L$
C_L	def =	$(ab_{-}c, \alpha).C_{H}$
(A _H	⊠ {ab_c,b_	$_{a} B_{\mathrm{H}}) \underset{\scriptscriptstyle \{ab.c.c.a.c.b\}}{\bowtie} C_{\mathrm{L}}$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

メロト 4 団 ト 4 三 ト 4 三 り へ (や)

Case Studies

0000000000000 000000000 000000

Summar

Case Study

Example: The Ras/Raf-1/MEK/ERK pathway

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロ・・母・・ヨ・・ヨ・ シタの

Case Studies

0000000000000 000000000 000000 Summary

Case Study

PEPA components of the reagent-centric model

 $\begin{aligned} \text{Raf-1}^*/\text{RKIP}/\text{ERK-PP}_\text{H} \stackrel{\text{def}}{=} \\ (k5 product, k_5).\text{Raf-1}^*/\text{RKIP}/\text{ERK-PP}_\text{L} \\ &+ (k4 react, k_4).\text{Raf-1}^*/\text{RKIP}/\text{ERK-PP}_\text{L} \end{aligned}$

Raf-1*/RKIP/ERK-PP_L $\stackrel{\text{def}}{=}$ (*k3react*, k_3).Raf-1*/RKIP/ERK-PP_H

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Case Study

PEPA components of the reagent-centric model

Each reagent gives rise to a pair of PEPA definitions, one for high concentration and one for low concentration.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Case Study

Commentary on the model

Here we have shown the model with only high and low levels of concentration.

Jane Hillston. LFCS, University of Edinburgh.
Case Studies

Summary

Case Study

Commentary on the model

- Here we have shown the model with only high and low levels of concentration.
- In general we would discretise the concentration into more levels, say 6 or 7 levels. As we add levels we are capturing the concentration at finer levels of granularity.

Jane Hillston. LFCS, University of Edinburgh.

Summary

Case Study

Commentary on the model

- Here we have shown the model with only high and low levels of concentration.
- In general we would discretise the concentration into more levels, say 6 or 7 levels. As we add levels we are capturing the concentration at finer levels of granularity.
- In fact to generate ODE and SSA models we only need two levels as this is sufficient to record the impact of each reaction on each reagent.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Introduction to Systems Biology

Stochastic Process Algebra

000000000000

Case Studies

0000000000000 000000000 000000

Case Study

The state space

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Case Studies

0000000000000 000000000 000000 Summary

Case Study

Alternative models

When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ ・ エー・ ・ 白 ・ ・ シック・

Case Study

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Alternative models

- When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.
- The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・山下・ 山下・ 山下・

Summary

Case Study

Alternative models

- When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.
- The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic.
- In reagent PEPA models with levels, each level of granularity gives rise to a CTMC, and the behaviour of this sequence of Markov processes converges to the behaviour of the system of ODEs.

Jane Hillston. LFCS, University of Edinburgh.

Summary

Case Study

Alternative models

- When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.
- The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic.
- In reagent PEPA models with levels, each level of granularity gives rise to a CTMC, and the behaviour of this sequence of Markov processes converges to the behaviour of the system of ODEs.
- Some analyses which can be carried out via numerical solution of the CTMC are not readily available from ODEs or stochastic simulation.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Case Study

Markovian analysis

Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Case Study

Markovian analysis

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.

Jane Hillston. LFCS, University of Edinburgh.

Summarv

Case Study

Markovian analysis

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.

Jane Hillston. LFCS, University of Edinburgh.

Summarv

Case Study

Markovian analysis

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
- Stochastic model checking is available via the PRISM model checker, assessing the probable validity of properties expressed in CSL (Continuous Stochastic Logic).

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Case Study

Stochastic Process Algebra

Case Studies

0000000000000 0000000000 000000 Summary

Quantified analysis – k8product

Approximating a variation in the initial concentration of RKIP by varying the rate constant k1, we can assess the impact on the production of ERK-PP.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロ・・ ロ・・ 川・・ 日・ ・ 日・

Case Study

Stochastic Process Algebra

Case Studies

Summary

Quantified analysis – k14product

Similarly we can assess the impact on the production of MEK-PP.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summarv

Case Study

Solving a system of ODEs will show how the concentrations of reagents vary over time.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summarv

Case Study

Solving a system of ODEs will show how the concentrations of reagents vary over time.

Solution is (relatively) fast and definitive....

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000

Summary

Case Study

Solving a system of ODEs will show how the concentrations of reagents vary over time.

Solution is (relatively) fast and definitive....

... but no variability is captured, unlike Markovian analyses (and real systems).

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra model as an intermediary to the derivation of the ODEs.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□

Case Studies

0000000000000 000000000 000000 Summary

Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra model as an intermediary to the derivation of the ODEs.

 The ODEs can be automatically generated from the descriptive process algebra model, thus reducing human error.

Jane Hillston. LFCS, University of Edinburgh.

Summary

Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra model as an intermediary to the derivation of the ODEs.

- The ODEs can be automatically generated from the descriptive process algebra model, thus reducing human error.
- The process algebra model allow us to derive properties of the model, such as freedom from deadlock, before numerical analysis is carried out.

Jane Hillston. LFCS, University of Edinburgh.

Summary

Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra model as an intermediary to the derivation of the ODEs.

- The ODEs can be automatically generated from the descriptive process algebra model, thus reducing human error.
- The process algebra model allow us to derive properties of the model, such as freedom from deadlock, before numerical analysis is carried out.
- The algebraic formulation of the model emphasises interactions between the biochemical entities.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 単 エヨッ エリ・ カー・

Summary

Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra model as an intermediary to the derivation of the ODEs.

- The ODEs can be automatically generated from the descriptive process algebra model, thus reducing human error.
- The process algebra model allow us to derive properties of the model, such as freedom from deadlock, before numerical analysis is carried out.
- The algebraic formulation of the model emphasises interactions between the biochemical entities.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 単 エヨッ エリ・ カー・

Case Study

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000

Summary

ODE Analysis of the MAPK example

Jane Hillston. LFCS, University of Edinburgh.

Case Study

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

ODE Analysis of the MAPK example

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Some drawbacks of PEPA

Not all the features of biological systems can be represented into PEPA.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Some drawbacks of PEPA

Not all the features of biological systems can be represented into PEPA.

stoichiometry is not represented explicitly

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Some drawbacks of PEPA

Not all the features of biological systems can be represented into PEPA.

- stoichiometry is not represented explicitly
- general kinetic laws different from Mass Action are not considered.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Some drawbacks of PEPA

Not all the features of biological systems can be represented into PEPA.

- stoichiometry is not represented explicitly
- general kinetic laws different from Mass Action are not considered.

The latter assumption is restrictive since general kinetic laws are widely-used in the models.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 000000 Summary

Bio-PEPA

The aim of the work

In order to overcome the drawbacks above, we have defined **Bio-PEPA**.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 0000000000 000000 Summary

Bio-PEPA

The aim of the work

In order to overcome the drawbacks above, we have defined **Bio-PEPA**.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The aim of the work

In order to overcome the drawbacks above, we have defined **Bio-PEPA**.

The main field of application is the one of biochemical networks.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The aim of the work

In order to overcome the drawbacks above, we have defined **Bio-PEPA**.

The main field of application is the one of biochemical networks.

Schema Biochemical networks \rightarrow Bio-PEPA system \rightarrow Analysis

Jane Hillston. LFCS, University of Edinburgh.

ra (

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Bio-PEPA: main features

it is based on the reagent-centric view

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

Summary

Bio-PEPA

Bio-PEPA: main features

- it is based on the reagent-centric view
- it considers general kinetic laws and expresses them as functional rates

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Bio-PEPA: main features

- it is based on the reagent-centric view
- it considers general kinetic laws and expresses them as functional rates
- the PEPA activities are replaced by new ones with stoichiometry and the information about the role of the species (enzyme, inhibitor,...)

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Bio-PEPA: main features

- it is based on the reagent-centric view
- it considers general kinetic laws and expresses them as functional rates
- the PEPA activities are replaced by new ones with stoichiometry and the information about the role of the species (enzyme, inhibitor,...)
- parameters represent concentration levels

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロ・・母・・ヨ・・ロ・ もくろ

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Bio-PEPA: main features

- it is based on the reagent-centric view
- it considers general kinetic laws and expresses them as functional rates
- the PEPA activities are replaced by new ones with stoichiometry and the information about the role of the species (enzyme, inhibitor,...)
- parameters represent concentration levels
- it can be mapped for the analysis by means of ODEs, stochastic simulation, CTMC, model checking (PRISM)

Jane Hillston. LFCS, University of Edinburgh.
Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The syntax

Sequential component (species component)

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

Summary

Bio-PEPA

The syntax

Sequential component (species component)

$$S \stackrel{\text{def}}{=} (\alpha, \kappa) \text{ op } S \mid S + S \mid C$$
 where $\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The syntax

Sequential component (species component)

$$S \stackrel{\text{\tiny def}}{=} (\alpha, \kappa) \text{ op } S \mid S + S \mid C$$
 where $\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot$

Model component

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The syntax

Sequential component (species component)

$$S \stackrel{\text{\tiny def}}{=} (\alpha, \kappa) \text{ op } S \mid S + S \mid C$$
 where $\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot$

Model component

$$P \stackrel{\text{\tiny def}}{=} P \bowtie_{\mathcal{L}} P \mid S(I)$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The syntax

Sequential component (species component)

$$S \stackrel{\text{def}}{=} (\alpha, \kappa) \text{ op } S \mid S + S \mid C$$
 where $\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot$

Model component

$$P \stackrel{\text{\tiny def}}{=} P \bowtie_{\mathcal{L}} P \mid S(I)$$

Each action α_i is associated with a rate f_{α_i}

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

Summary

Bio-PEPA

The syntax

Sequential component (species component)

$$S \stackrel{\text{def}}{=} (\alpha, \kappa) \text{ op } S \mid S + S \mid C$$
 where $\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot$

Model component

$$P \stackrel{\text{\tiny def}}{=} P \bowtie_{\mathcal{L}} P \mid S(l)$$

Each action α_i is associated with a rate f_{α_i}

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: prefix rules

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ エリ・ エリ・ ・ 白 ・ ・ コ ・

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: prefix rules

prefixReac

 $((\alpha, \kappa) \downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow (l, \kappa)])} S(l-1) \quad 0 < l \le N$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: prefix rules

prefixReac
$$((\alpha, \kappa) \downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow (l, \kappa)])} S(l-1) \quad 0 < l \le N$$

prefixProd
$$((\alpha, \kappa)\uparrow S)(l) \xrightarrow{(\alpha, [S:\uparrow(l,\kappa)])} S(l+1) \quad 0 \le l < N$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000

Bio-PEPA

Semantics: prefix rules

prefixReac
$$((\alpha, \kappa) \downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow(l,\kappa)])} S(l-1) \quad 0 < l \le N$$

$$prefixProd \qquad ((\alpha,\kappa)\uparrow S)(l) \xrightarrow{(\alpha,[S:\uparrow(l,\kappa)])} S(l+1) \quad 0 \le l < N$$

prefixMod
$$((\alpha, \kappa) \text{ op } S)(I) \xrightarrow{(\alpha, [S:op(l,\kappa)])} S(I) \quad 0 \le I \le N$$

with $op = \odot, \oplus, or \ominus$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ ▲□▶ ▲ 三 ● ▲ 三 ● 9 Q Q

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: constant and choice rules

Jane Hillston. LFCS, University of Edinburgh.

 $\frac{S_1(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}$

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: constant and choice rules

Choice1

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

4日×4日×4日×4日×4日×

Case Studies

Summary

Bio-PEPA

Semantics: constant and choice rules

Choice1 $\frac{S_1(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}$

Choice2
$$\frac{S_2(l) \xrightarrow{(\alpha,\nu)} S'_2(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha,\nu)} S'_2(l')}$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲三▶▲三▶ ④�?

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: constant and choice rules

Choice1 $\frac{S_1(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha,\nu)} S'_1(l')}$

Choice2
$$\frac{S_2(l) \xrightarrow{(\alpha,\nu)} S'_2(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha,\nu)} S'_2(l')}$$

Constant $\frac{S(l) \xrightarrow{(\alpha, S': [op(l,\kappa))]}}{C(l) \xrightarrow{(\alpha, C: [op(l,\kappa))]}} S'(l')} \quad \text{with } C \stackrel{\text{def}}{=} S$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: cooperation rules

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

0000000000000 000000000 000000

Bio-PEPA

Semantics: cooperation rules

$$\operatorname{coop1} \quad \frac{P_1 \xrightarrow{(\alpha, \nu)} P'_1}{P_1 \bigotimes_{\mathcal{L}} P_2 \xrightarrow{(\alpha, \nu)} P'_1 \bigotimes_{\mathcal{L}} P_2} \quad \text{with } \alpha \notin \mathcal{L}$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: cooperation rules

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ □ のへで

Case Studies

Summarv

Bio-PEPA

Semantics: cooperation rules

 $\frac{P_1 \xrightarrow{(\alpha, \nu)} P'_1}{P_1 \boxtimes P_2 \xrightarrow{(\alpha, \nu)} P'_1 \boxtimes P_2} \quad \text{with } \alpha \notin \mathcal{L}$ coop1 $\operatorname{coop2} \quad \frac{P_2 \xrightarrow{(\alpha, \nu)} P'_2}{P_1 \boxtimes P_2 \xrightarrow{(\alpha, \nu)} P_1 \boxtimes P'_2} \quad \text{with } \alpha \notin \mathcal{L}$ $\operatorname{coopFinal} \quad \frac{P_1 \xrightarrow{(\alpha, v_1)} P'_1 \quad P_2 \xrightarrow{(\alpha, v_2)} P'_2}{P_1 \bowtie P_2 \xrightarrow{(\alpha, v_1 \circledast v_2)} P'_1 \bowtie P'_2} \quad \text{with } \alpha \in \mathcal{L}$

Jane Hillston. LFCS, University of Edinburgh.

Bio-PEPA

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Semantics: rates and transition system

In order to associate the rates we consider a new relation $r \in C \times \Gamma \times C$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

Jane Hillston. LFCS, University of Edinburgh.

Bio-PEPA

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Semantics: rates and transition system

In order to associate the rates we consider a new relation $r \in C \times \Gamma \times C$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Semantics: rates and transition system

In order to associate the rates we consider a new relation $r \in C \times \Gamma \times C$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶ 4 団 ▶ 4 트 ▶ 4 団 ▶ 4 回 ▶

Case Studies

0000000000000 0000000000 000000 Summary

Bio-PEPA

Semantics: rates and transition system

In order to associate the rates we consider a new relation $r \in C \times \Gamma \times C$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

 $f_{\alpha_j}(v, N)$ represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 1 4 H 1 4 H

Case Studies

Summary

Bio-PEPA

Semantics: rates and transition system

In order to associate the rates we consider a new relation $r \in C \times \Gamma \times C$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

 $f_{\alpha_j}(v, N)$ represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition.

The transition system and the CTMC are defined as in PEPA.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ペロト 4 回 ト 4 三 ト 4 三 り へ ()

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The abstraction

• each species *i* is described by a species component C_i

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

Summary

Bio-PEPA

The abstraction

- each species *i* is described by a species component C_i
- each reaction *j* is associated with an action type α_j and its dynamics is described by a specific function f_{α_i}

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

The abstraction

- each species *i* is described by a species component C_i
- each reaction *j* is associated with an action type α_j and its dynamics is described by a specific function f_{α_i}
- compartments are not represented explicitly

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 000000 Summary

Bio-PEPA

The abstraction

- each species *i* is described by a species component C_i
- each reaction *j* is associated with an action type α_j and its dynamics is described by a specific function f_{α_i}
- compartments are not represented explicitly

The species components are then composed together to describe the behaviour of the system.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆母▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

Summary

Bio-PEPA

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate *S* to the product *P* with enzyme *E*.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Bio-PEPA

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate *S* to the product *P* with enzyme *E*.

The dynamics is described by the law $f_{MM}((v, K), S, E) = \frac{v \cdot E \cdot S}{(K+S)}$.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

Case Studies

000000

Summarv

Bio-PEPA

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate *S* to the product *P* with enzyme *E*.

The dynamics is described by the law $f_{MM}((v, K), S, E) = \frac{v \cdot E \cdot S}{(K+S)}$.

$$S \stackrel{def}{=} (\alpha, 1) \downarrow S$$
$$E \stackrel{def}{=} (\alpha, 1) \oplus E$$
$$P \stackrel{def}{=} (\alpha, 1) \uparrow P$$

 $(S(I_{S0}) \bowtie_{\{\alpha\}} E(I_{E0})) \bowtie_{\{\alpha\}} P(I_{P0})$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆母▶ ▲目▶ ▲目▶ ▲□▶

Bio-PEPA

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Example: Competitive Inhibition

Binding of the inhibitor to the enzyme prevents binding of the substrate and vice versa.

$$S + E + I \iff SE \Longrightarrow P + E$$
$$\ddagger EI$$

Under QSSA (the intermediate species *SE* and *EI* are constant) we can approximate the reactions above by a unique reaction

$$S \xrightarrow{E,l:f_l} P$$
 with rate $f_l = \frac{w * S * E}{S + K_M (1 + \frac{l}{K_l})}$

where w: turnover number (catalytic constant), K_M : Michaelis-constant and K_I : inhibition constant.

Jane Hillston. LFCS, University of Edinburgh.

Bio-PEPA

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

$$S = (\alpha, 1) \downarrow S$$
 $P = (\alpha, 1) \uparrow P$ $E = (\alpha, 1) \oplus E$ $I = (\alpha, 1) \ominus I$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Bio-PEPA

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

 $S = (\alpha, 1) \downarrow S$ $P = (\alpha, 1) \uparrow P$ $E = (\alpha, 1) \oplus E$ $I = (\alpha, 1) \ominus I$

The system is described by

$$(S(I_{S0}) \underset{\alpha}{\boxtimes} E(I_{E0})) \underset{\alpha}{\boxtimes} I(I_{l0}) \underset{\alpha}{\boxtimes} P(I_{P0})$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 州 エル・エッ・トリー しゃ

Case Studies

000000

Summarv

Bio-PEPA

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

 $S = (\alpha, 1) \downarrow S$ $P = (\alpha, 1) \uparrow P$ $E = (\alpha, 1) \oplus E$ $I = (\alpha, 1) \ominus I$

The system is described by

$$(S(I_{S0}) \underset{\alpha}{\boxtimes} E(I_{E0})) \underset{\alpha}{\boxtimes} I(I_{I0}) \underset{\alpha}{\boxtimes} P(I_{P0})$$

with functional rate

$$f_{\alpha} = f_{Cl}((w, K_M, K_l), S, E, l) = \frac{w * S * E}{S + K_M(1 + \frac{l}{K_l})}$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 0000000000 0000000 Summary

Bio-PEPA

Equivalence relations

We are seeking to define a number of equivalence relations for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□ ♥ ④ ♥ ●

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Equivalence relations

We are seeking to define a number of equivalence relations for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

From the computer science perspective we have defined an isomorphism and a (strong) bisimulation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□
Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Equivalence relations

We are seeking to define a number of equivalence relations for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

From the computer science perspective we have defined an isomorphism and a (strong) bisimulation.

From a biological perspective we are investigating the situations in which biologists regard models or elements of models to be equivalent, particularly when this is employed for model simplification.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Bio-PEPA

Bisimulation

Definition

A binary relation $\mathcal{R} \subseteq C \times C$ is a strong bisimulation with respect to \leftrightarrow , if $(P, Q) \in \mathcal{R}$ implies for all $\alpha \in \mathcal{A}$:

▶ if $P \xrightarrow{\gamma_1} P'$ then, for some Q' and γ_2 , $Q \xrightarrow{\gamma_2} Q'$ with $(P', Q') \in \mathcal{R}$ and

1.
$$action(\gamma_1) = action(\gamma_2) = \alpha$$

- **2**. $rate(\gamma_1) = rate(\gamma_2)$
- symmetric definition for $Q \xrightarrow{\gamma_2} Q'$

Jane Hillston. LFCS, University of Edinburgh.

000000000000000

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

000000000000000

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system. From it we can obtain

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

000000000000000

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

a CTMC (with levels)

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 叫 (エット・ 山下・ (日 ト

s Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation
- a PRISM model for model checking

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・山下・山下・ 山下・

s Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation
- a PRISM model for model checking

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・山下・山下・ 山下・

000000000000

Summary

Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- ► a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation
- a PRISM model for model checking

Each of these kinds of analysis can be of help for studying different aspects of the biological model

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・エー・ 日本・ 日本・ シャクト

Stochastic Process Algebra

Case Studies

Summary

Outline

Introduction to Systems Biology

Motivation

Challenges

Stochastic Process Algebra

Abstract Modelling Case Study Bio-PEPA

Case Studies

Simple genetic network Goldbeter's model Extended model

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□▼

 Summary

Simple genetic network

The biological model

Consider a **genetic network** with negative feedback through dimers.

Jane Hillston. LFCS, University of Edinburgh.

Simple genetic network

Stochastic Process Algebra

 Summary

The biological model

Consider a **genetic network** with negative feedback through dimers.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Simple genetic network

Simple genetic network model

The biological entities are:

- ▶ the mRNA molecule (M),
- the protein in monomer form (P) and
- the protein in dimeric form (P2).

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 州 エル・エッ・ キャー・

Case Studies

Summary

Simple genetic network

Simple genetic network model

The biological entities are:

- ▶ the mRNA molecule (M),
- ▶ the protein in monomer form (P) and
- ▶ the protein in dimeric form (*P2*).

All the reactions are described by mass action kinetics with the exception of the first reaction, that has an inhibition kinetics.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・山下・ 山下・ 日下

Case Studies

Summary

Simple genetic network

Translation into Bio-PEPA

1-Definition of the list $\ensuremath{\mathcal{N}}$

 $[M: N_M, M_M; P: N_P, M_P; P2: N_{P2}, M_{P2}]$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies ○○●○○○○○○○○○ ○○○○○○○ Summary

Simple genetic network

Translation into Bio-PEPA

1-Definition of the list $\ensuremath{\mathcal{N}}$

 $[M: N_M, M_M; P: N_P, M_P; P2: N_{P2}, M_{P2}]$

2-Definition of functional rates

$$\begin{array}{lll} f_{\alpha_1} &=& fl((v,K_M),[P2,CF]) = \frac{v*CF}{K_M+P2};\\ f_{\alpha_2} &=& fMA(k_2,[M]); & f_{\alpha_3} = fMA(k_3,[M]); & f_{\alpha_4} = fMA(k_4,[P]);\\ f_{\alpha_5} &=& fMA(k_5,[P]); & f_{\alpha_{5i}} = fMA(k_{5i},[P2]); \end{array}$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Simple genetic network

Translation into Bio-PEPA (cont.)

3-Definition of the system components

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ = のへで

Case Studies

Summary

Simple genetic network

Translation into Bio-PEPA (cont.)

3-Definition of the system components

4-Definitions of the system

$$((((CF(1) \underset{{}_{\{\alpha_1\}}}{\bowtie} M(0)) \underset{{}_{\{\alpha_2\}}}{\bowtie} P(0)) \underset{{}_{\{\alpha_5,\alpha_{5}\}}}{\bowtie} P2(0)) \underset{{}_{\{\alpha_3,\alpha_4\}}}{\bowtie} Res(0)$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Simple genetic network

The CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

The CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ 日 ・ ・ 画 ・ ・ 画 ・ ・ 日 ・

Stochastic Process Algebra

Case Studies

Summary

The CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.

The states are $(CF(I_1), M(I_2), P(I_3), P2(I_4), RES(I_5))$, where I_i represents the level of each species component.

Jane Hillston.	LFCS. Universi	tv of Edinburah.

Stochastic Process Algebra

Case Studies

Summary

Derivation of ODEs and Gillespie model

The stoichiometry matrix D associated with the system is

	R1	R2	R3	R4	R5	R6	
CF	0	0	0	0	0	0	XCF
Res	0	0	0	0	0	0	x _{Res}
Μ	+1	0	-1	0	0	0	<i>x</i> ₁
Р	0	+1	0	-1	-2	+2	<i>x</i> ₂
P2	0	0	0	0	+1	-1	<i>X</i> 3

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Derivation of ODEs and Gillespie model

The stoichiometry matrix D associated with the system is

	R1	R2	R3	R4	R5	R6	
CF	0	0	0	0	0	0	X _{CF}
Res	0	0	0	0	0	0	x _{Res}
М	+1	0	-1	0	0	0	<i>x</i> ₁
Р	0	+1	0	-1	-2	+2	<i>x</i> ₂
P2	0	0	0	0	+1	-1	<i>x</i> 3

The kinetic-law vector is

$$w^{T} = (\frac{v \times x_{CF}}{K + x_{3}}; k_{2} \times x_{1}; k_{3} \times x_{1}; k_{4} \times x_{2}; k_{5} \times x_{2}^{2}; k_{1} \times x_{3})$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト 4 団 ト 4 臣 ト 4 臣 ト 臣 9 Q ()</p>

 Summary

Simple genetic network

Derivation of ODEs (2)

The system of ODEs is obtained as $\frac{d\bar{x}}{dt} = D \times w$:

$$\frac{dx_1}{dt} = \frac{v \times 1}{K + x_3} - k3 \times x_1$$

$$\frac{dx_2}{dt} = k2 \times x_1 - k4 \times x_2 - 2 \times k5 \times x_2^2 + 2 \times ki5 \times x_3$$

$$\frac{dx_2}{dt} = k5 \times x_2^2 - ki5 \times x_3$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ □ のへで

Stochastic Process Algebra

Case Studies

Summary

Simple genetic network

Derivation of Gillespie model

The derivation of the Gillespie model is made by creating molecules corresponding to each species and defining the possible reactions with appropriate adjustment of kinetic rates.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Stochastic Process Algebra

Case Studies

Summary

000

Simple genetic network

Simulation results

ODE results

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・日本・日本・日本・

Stochastic Process Algebra

Case Studies

Summary

Simple genetic network

Simulation results

Stochastic simulation results (10 runs)

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Simple genetic network

PRISM model

Each species is represented as a PRISM module.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Case Studies

Simple genetic network

PRISM model

Each species is represented as a PRISM module. For example, the protein is represented as:

> **module p** p : [0..Np] **init** 0; $[a2]p < Np \rightarrow (p' = p + 1);$ $[a4]p > 0 \rightarrow (p' = p - 1);$ $[a5]p > 0 \rightarrow (p' = p - 2);$ $[a5i]p < Np \rightarrow (p' = p + 2);$ **endmodule**

Jane Hillston. LFCS, University of Edinburgh.

PRISM model (2)

An additional (dummy) module is needed to capture the kinetic rates.

module Functional_rates

dummy: bool **init** true; [a1]dummy = true $\rightarrow \frac{v}{(1+(pd/k))}$: (dummy' = dummy); [a2]dummy = true $\rightarrow r2$: (dummy' = dummy); [a3]dummy = true $\rightarrow r3$: (dummy' = dummy); [a4]dummy = true $\rightarrow r4$: (dummy' = dummy); [a5]dummy = true $\rightarrow r5$: (dummy' = dummy); [a5i]dummy = true $\rightarrow r5i$: (dummy' = dummy); [a5i]dummy = true $\rightarrow r5i$: (dummy' = dummy);

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies ○○○○○○○○○○○○ ○○○○○○○○ Summary

PRISM analysis

Frequency of monomer P over total P (in terms of levels). We need to define a reward structure in the PRISM file as:

> rewards true : $\frac{p}{(p+pd)}$; endrewards

We can ask for the frequency of monomer P (in terms of levels) by using the query:

R=?[I=T]

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies ○○○○○○○○○○○○ ○○○○○○○○ Summary

PRISM analysis

Frequency of monomer P over total P (in terms of levels). We need to define a reward structure in the PRISM file as:

> rewards true : $\frac{p}{(p+pd)}$; endrewards

We can ask for the frequency of monomer P (in terms of levels) by using the query:

R = ?[I = T]

Probability that P is at level i at time T

P = ?[trueU[T, T]p = i]

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Sumn

Simple genetic network

PRISM results

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

ふちゃ 4 回 ト 4 回 ト 4 回 ト 4 日 ト

Stochastic Process Algebra

Case Studies

Summarv

Simple genetic network

PRISM results

Probability monomer protein is at high level over time

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆昼▶ ▲目▶ ▲目▶ ▲□▶

Case Studies

Summarv 0000000000

Goldbeter's model

Goldbeter's model [Goldbeter 91]

Goldbeter's model describes the activity of the cyclin in the cell cycle.

Jane Hillston. LFCS, University of Edinburgh.
Case Studies

Summary

Goldbeter's model

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

Summary

Goldbeter's model

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・山下・山下・ 山下・

Case Studies

Summarv

000000000

Goldbeter's model

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.
- This leads to a negative feedback loop.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.
- This leads to a negative feedback loop.
- In the model most of the kinetic laws are of kind Michaelis-Menten and this can be reflected in the Bio-PEPA model

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲三▶▲三▶ 三 少へ⊙

Case Studies

Summarv

000000000

Goldbeter's model

The biological model

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summarv

0000000000

Goldbeter's model

The biological model (2)

There are three different species involved:

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

The biological model (2)

There are three different species involved:

cyclin, the protein protagonist of the cycle;

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

The biological model (2)

There are three different species involved:

- cyclin, the protein protagonist of the cycle;
- cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phosphorylated). The variables used to represent them are *M* and *M*', respectively;

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

The biological model (2)

There are three different species involved:

- cyclin, the protein protagonist of the cycle;
- cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phosphorylated). The variables used to represent them are *M* and *M*', respectively;
- cyclin protease, in both active (i.e. phosphorylated) and inactive form (i.e. phosphorylated). The variable are X and X'.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Goldbeter's model

Reactions

id	name	react.	prod.	mod.	kinetic laws
R1	creation of cyclin	-	С	-	vi
R2	degradation of cyclin	С	-	-	kd imes C
R3	activation of cdc2 kinase	M΄	М	-	$\frac{C*V_{M1}}{(K_c+C)}\frac{M'}{(K_1+M')}$
R4	deactivation of cdc2 kinase	М	M′	-	$\frac{M \times V_2}{(K_2 + M)}$
R5	activation of cyclin protease	Χ′	х	М	$\frac{X' \times M \times V_{M3}}{(K_3 + X')}$
R6	deactivation of cyclin protease	Х	Χ′	-	$\frac{X \times V_4}{K_4 + X}$
R7	X triggered degradation of cyclin	С	-	Х	$\frac{C \times v_d \times X}{C + K_d}$

R1 and R2 have Mass-Action kinetics, whereas all others are Michaelis-Menten.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

The Bio-PEPA model

Definition of the list \mathcal{N} :.

 $\mathcal{N} = [Res: 0, 1; CF: 1, 1; C: M_C, N_C; M: M_M, N_M;$ $M': M_{M'}, N_{M'}; X: M_X, N_X; X': M_{X'}, N_{X'}]$ (1)

Res and CF represent degradation and synthesis respectively.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Goldbeter's model

Stochastic Process Algebra

Case Studies

Summarv

0000000000

The Bio-PEPA model

Definition of the list \mathcal{N} :.

$$\mathcal{N} = [Res: 0, 1; CF: 1, 1; C: M_C, N_C; M: M_M, N_M; \\ M': M_{M'}, N_{M'}; X: M_X, N_X; X': M_{X'}, N_{X'}]$$
(1)

Res and *CF* represent degradation and synthesis respectively. Definition of functional rates (\mathcal{F} :)

$$\begin{array}{rcl} f_{\alpha_1} &=& fMA(v_i); & f_{\alpha_2} &=& fMA(k_d); \\ f_{\alpha_3} &=& fMM'((V_1, K_c, K_1), M', C) = \frac{v_1 * C}{K_c + C} \frac{M'}{K1 + M'}; \\ f_{\alpha_4} &=& fMM(V_2, K_2); & f_{\alpha_5} &=& fMM(V_3, K_3) \\ f_{\alpha_6} &=& fMM(V_4, K_4); & f_{\alpha_7} &=& fMM(V_d, K_d) \end{array}$$

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

Goldbeter's model

The Bio-PEPA model (2)

Definition of species components (*Comp***):**

$$\begin{array}{lll} C & = & (\alpha_1, 1) \uparrow C + (\alpha_2, 1) \downarrow C + (\alpha_7, 1) \downarrow C + (\alpha_3, 1) \oplus C; \\ M' & = & (\alpha_4, 1) \uparrow M' + (\alpha_3, 1) \downarrow M'; \\ M & = & (\alpha_3, 1) \uparrow M + (\alpha_4, 1) \downarrow M + (\alpha_5, 1) \oplus M; \\ X' & = & (\alpha_6, 1) \uparrow X' + (\alpha_5, 1) \downarrow X'; \\ X & = & (\alpha_5, 1) \uparrow X + (\alpha_6, 1) \downarrow X + (\alpha_7, 1) \oplus X; \\ Res & = & (\alpha_2, 1) \odot Res; \quad CF = (\alpha_1, 1) \odot CF; \end{array}$$

Definition of the model component (*P*):

$$C(I_{0C}) \underset{\scriptscriptstyle \{\alpha_3\}}{\boxtimes} M(I_{0M}) \underset{\scriptscriptstyle \{\alpha_3,\alpha_4\}}{\boxtimes} M'(I_{0M'}) \underset{\scriptscriptstyle \{\alpha_5,\alpha_7\}}{\boxtimes} X(I_{0X}) \underset{\scriptscriptstyle \{\alpha_5,\alpha_6\}}{\boxtimes} X'(I_{0X'}) \underset{\scriptscriptstyle \{\alpha_1\}}{\boxtimes} Deg(0) \underset{\scriptscriptstyle \{\alpha_1\}}{\boxtimes} CF(1)$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Introduction to Systems Biology	Stochastic Process Algebra	Case Studies	Summary
000000	00000000 0000000000 000000000000	000000000000 0000000000 000000	
Goldbeter's model			

Analysis

Assume two levels for each species and initially *C*, *M* and *X* present (level 1) and the other elements not present (level 0). The initial state is $(I_C(1), I_{M'}(0), I_M(1), I_{X'}(0), I_X(1))$.

Jane Hillston. LFCS, University of Edinburgh.

Introduction	Systems	Biology

Case Studies

Summary

Goldbeter's model

ODEs

The stoichiometry matrix D:

	R1	R2	R3	R4	R5	R6	R7	
С	+1	0	0	0	0	0	-1	XC
M′	0	0	-1	+1	0	0	0	Х _{М'}
Μ	0	0	+1	-1	0	0	0	XM
X'	0	0	0	0	-1	+1	0	<i>х_{X′}</i>
Х	0	0	0	0	+1	-1	0	XX

Jane Hillston. LFCS, University of Edinburgh.

Introduction	Systems	Biology

Case Studies

Summary

Goldbeter's model

ODEs

The stoichiometry matrix D:

	R1	R2	R3	R4	R5	R6	R7	
С	+1	0	0	0	0	0	-1	XC
M′	0	0	-1	+1	0	0	0	X _{M'}
Μ	0	0	+1	-1	0	0	0	Х _М
X'	0	0	0	0	-1	+1	0	x _{X'}
Х	0	0	0	0	+1	-1	0	XX

The vector that contains the kinetic laws is:

$$w = \left(v_i * 1, k_d * x_C, \frac{V_{M1} * x_C}{K_c + x_C} \frac{x_{M'}}{(K_1 + x_{M'})}, \frac{V_2 * x_M}{(K_2 + x_M)}, \frac{V_{M3} * x_M * x_{X'}}{(K_3 + x_{X'})}, \frac{V_4 * x_X}{(K_4 + x_X)}, \frac{V_d * x_C * x_X}{(K_d + x_C)}\right)$$

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Goldbeter's model

ODEs (2)

The system of ODEs is obtained as $\frac{d\bar{x}}{dt} = D \times w$, where $\bar{x}^T =: (x_C, x_{M'}, x_M, x_{X'}, x_X)$ is the vector of the species variables:

$\frac{dx_C}{dt}$	=	$v_i * 1 - k_d * x_C - \frac{v_d * x_C * x_X}{(K_d + x_C)}$
$\frac{dx_{M'}}{dt}$	=	$-\frac{V_{M1} * x_C}{K_{L} + x_C} \frac{x_{M'}}{(K_{L} + x_C)} + \frac{V_2 * x_M}{(K_{L} + x_C)}$
dv		$\mathbf{A}_{c} + \mathbf{X}_{C} \left(\mathbf{A}_{1} + \mathbf{X}_{M'} \right) \left(\mathbf{A}_{2} + \mathbf{X}_{M} \right)$
$\frac{dx_M}{dt}$	=	$+\frac{v_{M1}*x_C}{K_c+x_C}\frac{x_{M'}}{(K_1+x_{M'})}-\frac{v_2*x_M}{(K_2+x_M)}$
$dx_{X'}$	=	$-\frac{V_{M3} * x_M * x_{X'}}{V_4 * x_X} + \frac{V_4 * x_X}{V_4 * x_X}$
dt		$(K_3 + x_{X'}) \qquad (K_4 + x_X)$
dx_X	=	$\frac{V_{M3} * x_M * x_{X'}}{V_4 * x_X}$
dt		$(K_3 + x_{X'})$ $(K_4 + x_X)$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・エー・ キャー・ キャー ショー

Stochastic Process Algebra

Case Studies

Summary

ODE results

Goldbeter's model

 $K_1 = K_2 = K_3 = K_4 = 0.02 \mu M$

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

000 000000

Goldbeter's model

ODE results

 $K_1 = K_2 = K_3 = K_4 = 40 \mu M$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

- 4 日 ト 4 昼 ト 4 亘 ト 4 亘 - りへで

Case Studies

Summary

000000000000 000000000 000000

Extended model

Extended model

 Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

000000000000 000000000 000000

Extended model

Extended model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

000000000000 000000000 000000

Extended model

Extended model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.
- This influences the start and the stop of the cell division and modulates the frequency of oscillations.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

Summary

000000000000 000000000 000000

Extended model

Extended model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.
- This influences the start and the stop of the cell division and modulates the frequency of oscillations.

Several possible extension were presented; we consider one of them.

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Extended model

Extension of Goldbeter's model

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

<ロト < 四 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Case Studies

Summary

000000000000 000000000 000000

Extended model

Extended Bio-PEPA model

$$C = \dots + (\alpha_{8}, 1) \downarrow C + (\alpha_{9}, 1) \uparrow C + (\alpha_{12}, 1) \uparrow C;$$

$$\vdots \qquad \vdots$$

$$Res = \dots + (\alpha_{11}, 1) \odot Res; \quad CF = \dots + (\alpha_{10}, 1) \odot CF;$$

$$I = (\alpha_{8}, 1) \downarrow I + (\alpha_{9}, 1) \uparrow I + (\alpha_{10}, 1) \uparrow I + (\alpha_{11}, 1) \downarrow I + (\alpha_{13}, 1) \uparrow I;$$

$$IC = (\alpha_{8}, 1) \uparrow IC + (\alpha_{9}, 1) \downarrow IC + (\alpha_{12}, 1) \downarrow IC + (\alpha_{13}, 1) \downarrow IC;$$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 州 ・ ・ 川 ・ ・ 一 ・ ・ ・ ・ ・ ・

Case Studies

000000

Extended model

New functional rates

f_{α_8}	=	V _s ;
f_{α_9}	=	$fMA(d_1);$
$f_{\alpha_{10}}$	=	fMA(a ₁);
$f_{\alpha_{11}}$	=	fMA(a ₂);
$f_{\alpha_{12}}$	=	$fMA(\theta * d_1);$
$f_{\alpha_{13}}$	=	$fMA(\theta * k_d)$

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Summary

Extended model

Complete Bio-PEPA model

$$C(I_{0C}) \underset{\scriptscriptstyle \{\alpha_3\}}{\boxtimes} M(I_{0M}) \underset{\scriptscriptstyle \{\alpha_3,\alpha_4\}}{\boxtimes} M'(I_{0M'}) \underset{\scriptscriptstyle \{\alpha_5,\alpha_7\}}{\boxtimes} X(I_{0X}) \underset{\scriptscriptstyle \{\alpha_5,\alpha_6\}}{\boxtimes} X'(I_{0X'}) \underset{\scriptscriptstyle \{\alpha_2\}}{\boxtimes} Deg(0) \underset{\scriptscriptstyle \{\alpha_1\}}{\boxtimes} CF(1) \underset{\scriptscriptstyle \{\alpha_8,\alpha_9,\alpha_{10},\alpha_{11}\}}{\boxtimes} I(I_{0I}) \underset{\scriptscriptstyle \{\alpha_8,\alpha_9,\alpha_{12},\alpha_{13}\}}{\boxtimes} IC(I_{0IC})$$

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

Sumn

Extended model

New ODE results

 $a_1 = a_2 = 0.3$ and $v_s = 0.6$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

●●● 単一 ●●● ● ● ● ● ● ●

Stochastic Process Algebra

Case Studies

Summary

000000000000 000000000 000000

Extended model

New ODE results

 $a_1 = a_2 = 0.7$ and $v_s = 1.4$

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲日▼▲□▼▲□▼▲□▼▲□▼

Stochastic Process Algebra

Case Studies

000000000000 0000000000 000000

Extended model

New ODE results

 $a_1 = a_2 = 0.05$ and $v_s = 0.1$

Jane Hillston. LFCS, University of Edinburgh.

Stochastic Process Algebra

Case Studies

0000000000000 000000000 000000 Summary

Outline

Introduction to Systems Biology

Motivation

Challenges

Stochastic Process Algebra

Abstract Modelling Case Study Bio-PEPA

Case Studies

Simple genetic network Goldbeter's model Extended model

Summary

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶ ▲□▼

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000 Summary

Conclusions

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological networks, such as **stoichiometry** and **general kinetic laws**.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・ 山田・ 山田・ 山下・

Case Studies

0000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological networks, such as **stoichiometry** and **general kinetic laws**.

Some future investigations concern:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

0000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological networks, such as **stoichiometry** and **general kinetic laws**.

Some future investigations concern:

the definition of bisimulations and equivalences;

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□ ▶
Case Studies

0000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological networks, such as **stoichiometry** and **general kinetic laws**.

Some future investigations concern:

- the definition of bisimulations and equivalences;
- the study of properties of CTMC with levels;

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日下・山下・山下・ 山下・

Case Studies

0000000000000 000000000 000000 Summary

Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the *modelling* and the *analysis* of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological networks, such as **stoichiometry** and **general kinetic laws**.

Some future investigations concern:

- the definition of bisimulations and equivalences;
- the study of properties of CTMC with levels;
- the application of *model checking techniques*.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

4日 * 4日 * 4日 * 4日 * 4日 *

Case Studies

0000000000000 000000000 000000

Summary

Challenges

Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ エリ・ エリ・ ・ 白 ・

Case Studies

0000000000000 000000000 000000 Summary

Challenges

- Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.
- Moveover we can undertake additional analysis based on the discretised population view.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges

- Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.
- Moveover we can undertake additional analysis based on the discretised population view.
- Further work is needed to establish a better relationship between this view and the population view — empirical evidence has shown that 6 or 7 levels are often sufficient to capture exactly the same behaviour as the ODE model.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト (四) (三) (三) (日) (日) (日)

Case Studies

0000000000000 000000000 000000 Summary

Challenges

- Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.
- Moveover we can undertake additional analysis based on the discretised population view.
- Further work is needed to establish a better relationship between this view and the population view — empirical evidence has shown that 6 or 7 levels are often sufficient to capture exactly the same behaviour as the ODE model.
- In the future we hope to investigate the extent to which the process algebra compositional structure can be exploited during model analysis.

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

0000000000000 000000000 000000 Summary

Challenges cont.

The issue of unknown and uncertain data remains to be addressed.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ エリ・ エリ・ ・ 白 ・ ・ コー・

Case Studies

0000000000000 000000000 000000 Summary

Challenges cont.

- The issue of unknown and uncertain data remains to be addressed.
- The abstract Markovian models allow quantities of interest such as "response times" to be expressed as probability distributions rather than single estimates. This may allow better reflection of wet lab data which showns variability.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・山下・ 山下・ 山下・

0000000000000 000000000 000000

Summary

Challenges cont.

- The issue of unknown and uncertain data remains to be addressed.
- The abstract Markovian models allow quantities of interest such as "response times" to be expressed as probability distributions rather than single estimates. This may allow better reflection of wet lab data which showns variability.
- Promising recent work by Girolami *et al.* on assessing candidates models which attempt to cover both unknown structure and unknown kinetic rates with respect to experimental data, using Bayesian reasoning.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック 川 ・ ・ 川 ・ ・ 一 ・ ・ ー・

Case Studies

0000000000000 000000000 000000

Summary

Conclusions

 Ultimately we want to understand the functioning of cells as useful levels of abstraction, and to predict unknown behaviour.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

シック・ 州 ・ エリ・ エリ・ ・ コー

Case Studies

000000000000 000000000 000000

Summary

Conclusions

- Ultimately we want to understand the functioning of cells as useful levels of abstraction, and to predict unknown behaviour.
- It remains an open and challenging problem to define a set of basic and general primitives for modelling biological systems, inspired by biological processes.

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

・ロト・日本・山下・山下・山下・山下・

Case Studies

000000000000 000000000 000000

Summary

Conclusions

- Ultimately we want to understand the functioning of cells as useful levels of abstraction, and to predict unknown behaviour.
- It remains an open and challenging problem to define a set of basic and general primitives for modelling biological systems, inspired by biological processes.
- Achieving this goal is anticipated to have two broad benefits:

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Case Studies

000000000000 000000000 000000

Summary

Conclusions

- Ultimately we want to understand the functioning of cells as useful levels of abstraction, and to predict unknown behaviour.
- It remains an open and challenging problem to define a set of basic and general primitives for modelling biological systems, inspired by biological processes.
- Achieving this goal is anticipated to have two broad benefits:
 - Better models and simulations of living phenomena

Jane Hillston. LFCS, University of Edinburgh.

Case Studies

000000000000 000000000 000000

Summary

Conclusions

- Ultimately we want to understand the functioning of cells as useful levels of abstraction, and to predict unknown behaviour.
- It remains an open and challenging problem to define a set of basic and general primitives for modelling biological systems, inspired by biological processes.
- Achieving this goal is anticipated to have two broad benefits:
 - Better models and simulations of living phenomena
 - New models of computations that are biologically inspired.

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

000000000000 000000000 000000

Summary

Thank You!

Jane Hillston. LFCS, University of Edinburgh.

Introduction to Systems Biology

Stochastic Process Algebra

Case Studies

0000000000000 0000000000 000000 Summary

Thank You!

Collaborators: Muffy Calder, Federica Ciocchetta, Adam Duguid, Nil Geisweiller, Stephen Gilmore and Marco Stenico. Acknowledgements: Engineering and Physical Sciences Research Council (EPSRC) and Biotechnology and Biological Sciences Research Council (BBSRC)

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology

▲ロト▲母 ▶▲目 ▶▲目 ▶▲日 ▶