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The PEPA project

I The PEPA project started in Edinburgh in 1991.

I It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

I Process algebras offered a compositional description
technique supported by apparatus for formal reasoning.

I Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

I The project has sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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PEPA Case Studies (1)

I Multiprocessor access-contention protocols (Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Multimedia traffic characteristics (Bowman et al, Kent)
I Database systems (The STEADY group, Heriot-Watt

University)
I Software Architectures (Pooley, Bradley and Thomas,

Heriot-Watt and Durham)
I Switch behaviour in active networks (Hillston, Kloul and

Mokhtari, Edinburgh and Versailles)
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PEPA Case Studies (2)

I Locks and movable bridges in
inland shipping in Belgium
(Knapen, Hasselt)

I Robotic workcells (Holton,
Gilmore and Hillston, Bradford
and Edinburgh)

I Cellular telephone networks
(Kloul, Fourneau and Valois,
Versailles)

I Automotive diagnostic expert
systems (Console, Picardi and
Ribaudo, Turin)

........................

............

............
............
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Motivation

Systems Biology

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of
the processes involved.

I It involves taking a systems theoretic view of biological
processes — analysing inputs and outputs and the
relationships between them.

I A radical shift from earlier reductionist approaches, systems
biology aims to provide a conceptual basis and a
methodology for reasoning about biological phenomena.
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Motivation

Formal Systems

There are two alternative approaches to contructing dynamic
models of biochemical pathways commonly used by biologists:

I Ordinary Differential Equations:
I continuous time,
I continuous behaviour (concentrations),
I deterministic.

I Stochastic Simulation:
I continuous time,
I discrete behaviour (no. of molecules),
I stochastic.
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Motivation

Limitations of Ordinary Differential Equations

I Given knowledge of initial molecular concentrations, the law of
mass action provides a complete picture of the component
concentrations at all future time points.

I This is based on the assumption that chemical reactions to be
macroscopic under convective or diffusive stirring, continuous
and deterministic.

I This is a simplification, because in reality chemical reactions
involve discrete, random collisions between individual
molecules.

I As we consider smaller and smaller systems, the validity of a
continuous approach becomes ever more tenuous.
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Motivation

Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) gives a
numerical simulation of the time evolution of a well-stirred
chemically reacting system by taking proper account of the
randomness inherent in such a system.

It is derived from the chemical master equation and gives a more
realistic representation of a system’s evolution than the
deterministic reaction rate equation (RRE) represented
mathematically by ODEs.

Since each molecule is represented explicitly the number of
generated states can be extremely large.
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Motivation

Systems Analysis

I In biochemical signalling pathways the events of interests are:
I when reagent concentrations start to increase;
I when concentrations pass certain thresholds;
I when a peak of concentration is reached.

I E.g. in a gene network the delay from the activation of one
gene until the next promoter reaches an effective level to
activate the next gene depends on the rate of protein
accumulation.

I The accumulation of protein is a stochastic process affected
by several factors in the cell (temperature, pH, etc.).

I Thus it is a distribution rather than a deterministic time.
I Models should match wet lab experimental data.

Jane Hillston. LFCS, University of Edinburgh.
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Challenges

Individual vs. Population behaviour
I Biochemistry is concerned with the reactions between

individual molecules and so it is often more natural to model
at this level.

I However experimental data is usually more readily available in
terms of populations rather than individual molecules cf.
average reaction rates rather than the forces at play on an
individual molecule in a particular physical context.

I These should be regarded as alternatives, each being
appropriate for some models. The challenge then becomes
when to use which approach.

I Note that given a large enough number of molecules an
“individuals” model will (in many circumstances) be
indistinguishable from the a “population” level model.
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Challenges

Noise vs. Determinism

I With perfect knowledge the behaviour of a biochemical
reaction would be deterministic.

I However, in general, we do not have the requisite knowledge
of thermodynamic forces, exact relative positions,
temperature, velocity etc.

I Thus a reaction appears to display stochastic behaviour.
I When a large number of such reactions occur, the

randomness of the individual reactions can cancel each other
out and the apparent behaviour exhibits less variability.

I However, in some systems the variability in the stochastic
behaviour plays a crucial role in the dynamics of the system.

Jane Hillston. LFCS, University of Edinburgh.
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Modularity vs. Infinite Regress

As computer scientists we are firm believers in modularity and
compositionality. When it comes to biochemical pathways opinion
amongst biologists is divided about whether is makes sense to
take a modular view of cellular pathways.

Some biologists (e.g. Leibler) argue that there is modularity,
naturally occuring, where they define a module relative to a
biological function.

Others such as Cornish-Bowden are much more skeptical and cite
the problem of infinite regress as being insurmountable.
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Challenges

Dealing with the Unknown

There is a fundamental challenge when modelling cellular
pathways that little is known about some aspects of cellular
processes.

In some cases this is because no experimental data is available, or
that the experimental data that is available is inconsistent.

In other cases the data is unknowable because experimental
techniques do not yet exist to collect the data, or those that do
involve modification to the system.

Even when data exists the quality is often very poor.
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Formal Systems Revisited

I In most current work mathematics is being used directly as
the formal system.

I Previous experience in the performance arena has shown us
that there can be benefits to interposing a formal model
between the system and the underlying mathematical model.

I Moreover taking this “high-level programming” style approach
offers the possibility of different “compilations” to different
mathematical models.
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Using Stochastic Process Algebras

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit.

I Structure can also be apparent.
I Equivalence relations allow formal comparison of high-level

descriptions.
I There are well-established techniques for reasoning about the

behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.
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Molecular processes as concurrent computations
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[Regev et al 2000]
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Abstract Modelling

Mapping biological systems to process algebra
The work using the stochastic π-calculus and related calculi, maps
a molecule to a process in the process algebra description.

This is an inherently individuals-based view of the system and
analysis will generally be via stochastic simulation.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).

Alternative mappings from the process algebra to underlying
mathematics are then readily available.
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Abstract Modelling

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra
models for systems biology are:

I Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible is the state space is not prohibitively large.

I The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that
it can be useful to use semiquantitative models rather than
quantitative ones.
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Alternative Representations
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Abstract Modelling

Discretising the population view

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the reagent.
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PEPA: Performance Evaluation Process Algebra
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P ::= S | P BC
L

P | P/L

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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Reagent-centric modelling [CGH04]
Reagent role Impact on reagent Impact on reaction rate
Producer decreases concentration has a positive impact,

i.e. proportional to cur-
rent concentration

Product increases concentration has no impact on the
rate, except at saturation

Enzyme concentration unchanged has a positive impact,
i.e. proportional to cur-
rent concentration

Inhibitor concentration unchanged has a negative im-
pact, i.e. inversely
proportional to current
concentration
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PEPA reagent-centric example

BA

C

b_a

c_b

ab_c

c_a

AH
def
= (ab c, α).AL

AL
def
= (b a, β).AH+(c a, γ).AH

BH
def
= (ab c, α).BL+(b a, β).BL

BL
def
= (c b , δ).BH

CH
def
= (c a, γ).CL+(c b , δ).CL

CL
def
= (ab c, α).CH

(AH BC
{ab c,b a}

BH) BC
{ab c,c a,c b}

CL
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Example: The Ras/Raf-1/MEK/ERK pathway

m12

m 1 m 2

m 3

m 9

m 8

m 7 m 5 m 6 m 10

m 11

m 4

m13

k14

k15

MEK−PP ERK RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*

k12/k13

k8

k6/k7

k3/k4

k1/k2

k11

k9/k10

k5
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Case Study

PEPA components of the reagent-centric model
m 3

m 4

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

k3/k4

k5

Raf-1∗/RKIP/ERK-PPH
def
=

(k5product , k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react , k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
=

(k3react , k3).Raf-1∗/RKIP/ERK-PPH

Each reagent gives rise to a pair of PEPA definitions, one for high
concentration and one for low concentration.
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Case Study

Commentary on the model

I Here we have shown the model with only high and low levels
of concentration.

I In general we would discretise the concentration into more
levels, say 6 or 7 levels. As we add levels we are capturing the
concentration at finer levels of granularity.

I In fact to generate ODE and SSA models we only need two
levels as this is sufficient to record the impact of each reaction
on each reagent.
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The state space

s21 s22 s15 s17

s16s14s20s19

s7 s8 s10 s12

s9 s11 s13

s6

s18s25 s23 s1 s3

s4s2s24s26

s28 s27 s5

k5product

k5product

k6react k6react k6react k6reactk7react k7react k7react k7react

k11product

k11product

k11product

k11productk11product

k11product

k11product

k15productk15productk15productk15productk15productk15product

k8product k8product k8product k8product

k9react

k9react

k9react

k9react

k10react

k10react

k10react

k10react

k10react

k10react

k10react

k9react

k9react

k9react k1react

k2react

k3react

k4react

k3react

k4react

k1react

k2react

k1react

k2react

k1react

k2react

k1react

k2react

k15productk15productk15product

k12react k12react k12react k12react k12react k12react

k13react k13reactk13reactk13reactk13react
k14product k14productk14product k14productk14product k14product
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Case Study

Alternative models
I When a molecular mapping is used in general a CTMC state

space is too large to permit anything but stochastic simulation.

I The ODE model can be regarded as an approximation of a
CTMC in which the number of molecules is large enough that
the randomness averages out and the system is essentially
deterministic.

I In reagent PEPA models with levels, each level of granularity
gives rise to a CTMC, and the behaviour of this sequence of
Markov processes converges to the behaviour of the system
of ODEs.

I Some analyses which can be carried out via numerical
solution of the CTMC are not readily available from ODEs or
stochastic simulation.
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Case Study

Markovian analysis

I Analysis of the Markov process can yield quite detailed
information about the dynamic behaviour of the model.

I A steady state analysis provides statistics for average
behaviour over a long run of the system, when the bias
introduced by the initial state has been lost.

I A transient analysis provides statistics relating to the evolution
of the model over a fixed period. This will be dependent on
the starting state.

I Stochastic model checking is available via the PRISM model
checker, assessing the probable validity of properties
expressed in CSL (Continuous Stochastic Logic).
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Case Study

Quantified analysis – k8product
Approximating a variation in the initial concentration of RKIP by
varying the rate constant k1, we can assess the impact on the
production of ERK-PP.
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Case Study

Quantified analysis – k14product

Similarly we can assess the impact on the production of MEK-PP.
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Case Study

ODE analysis

Solving a system of ODEs will show how the concentrations of
reagents vary over time.

Solution is (relatively) fast and definitive....

... but no variability is captured, unlike Markovian analyses (and
real systems).
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Case Study

ODEs from SPA

There are advantages to be gained by using a process algebra
model as an intermediary to the derivation of the ODEs.

I The ODEs can be automatically generated from the
descriptive process algebra model, thus reducing human
error.

I The process algebra model allow us to derive properties of
the model, such as freedom from deadlock, before numerical
analysis is carried out.

I The algebraic formulation of the model emphasises
interactions between the biochemical entities.
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Case Study

ODE Analysis of the MAPK example
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ODE Analysis of the MAPK example
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Bio-PEPA

Some drawbacks of PEPA

Not all the features of biological systems can be represented into
PEPA.

I stoichiometry is not represented explicitly
I general kinetic laws different from Mass Action are not

considered.

The latter assumption is restrictive since general kinetic laws are
widely-used in the models.
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Bio-PEPA

The aim of the work

In order to overcome the drawbacks above, we have defined
Bio-PEPA.

The main field of application is the one of biochemical networks.

Schema
Biochemical networks −→ Bio-PEPA system −→ Analysis
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Bio-PEPA

Bio-PEPA: main features

I it is based on the reagent-centric view

I it considers general kinetic laws and expresses them as
functional rates

I the PEPA activities are replaced by new ones with
stoichiometry and the information about the role of the
species (enzyme, inhibitor,...)

I parameters represent concentration levels
I it can be mapped for the analysis by means of ODEs,

stochastic simulation, CTMC, model checking (PRISM)
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Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations
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Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

The syntax

Sequential component (species component)

S def
= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P def
= P BC

L
P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum concentrations

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])
−−−−−−−−−−→S(l − 1) 0 < l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])
−−−−−−−−−−→S(l + 1) 0 ≤ l < N

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])
−−−−−−−−−−→S(l) 0 ≤ l ≤ N

with op = �,⊕, or 	

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])
−−−−−−−−−−→S(l − 1) 0 < l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])
−−−−−−−−−−→S(l + 1) 0 ≤ l < N

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])
−−−−−−−−−−→S(l) 0 ≤ l ≤ N

with op = �,⊕, or 	

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])
−−−−−−−−−−→S(l − 1) 0 < l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])
−−−−−−−−−−→S(l + 1) 0 ≤ l < N

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])
−−−−−−−−−−→S(l) 0 ≤ l ≤ N

with op = �,⊕, or 	

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])
−−−−−−−−−−→S(l − 1) 0 < l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])
−−−−−−−−−−→S(l + 1) 0 ≤ l < N

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])
−−−−−−−−−−→S(l) 0 ≤ l ≤ N

with op = �,⊕, or 	

Jane Hillston. LFCS, University of Edinburgh.

Calculi for Systems Biology



Introduction to Systems Biology Stochastic Process Algebra Case Studies Summary

Bio-PEPA

Semantics: constant and choice rules

Choice1
S1(l)

(α,v)
−−−→S

′

1(l′)

(S1 + S2)(l)
(α,v)
−−−→S

′

1(l′)

Choice2
S2(l)

(α,v)
−−−→S

′

2(l′)

(S1 + S2)(l)
(α,v)
−−−→S

′

2(l′)

Constant
S(l)

(α,S′:[op(l,κ))]
−−−−−−−−−−→S′(l′)

C(l)
(α,C:[op(l,κ))]
−−−−−−−−−−→S′(l′)

with C
def
= S
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Bio-PEPA

Semantics: cooperation rules

coop1
P1

(α,v)
−−−→P′1

P1 BC
L

P2
(α,v)
−−−→P′1 BC

L
P2

with α < L

coop2
P2

(α,v)
−−−→P′2

P1 BC
L

P2
(α,v)
−−−→P1 BC

L
P′2

with α < L

coopFinal
P1

(α,v1)
−−−−→P′1 P2

(α,v2)
−−−−→P′2

P1 BC
L

P2
(α,v1@v2)
−−−−−−−→P′1 BC

L
P′2

with α ∈ L
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Bio-PEPA

Semantics: rates and transition system

In order to associate the rates we consider a new relation
7−→ ⊆ C × Γ × C, with γ ∈ Γ := (α, r) and r ∈ R+.

The relation is defined in terms of the previous one:

Final
P

(αj ,v)
−−−−→P′

P
(αj ,fαj (v ,N))
7−−−−−−−−−→P′

fαj (v ,N) represents the parameter of an exponential distribution
and the dynamic behaviour is determined by a race condition.

The transition system and the CTMC are defined as in PEPA.
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Bio-PEPA

The abstraction

I each species i is described by a species component Ci

I each reaction j is associated with an action type αj and its
dynamics is described by a specific function fαj

I compartments are not represented explicitly

The species components are then composed together to describe
the behaviour of the system.
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Bio-PEPA

Example: Michaelis-Menten

The reaction S
E
−→P represents the enzymatic reaction from the

substrate S to the product P with enzyme E.

The dynamics is described by the law fMM((v ,K ),S,E) = v∗E∗S
(K+S) .

S def
= (α, 1)↓S

E def
= (α, 1) ⊕ E

P def
= (α, 1)↑P

(S(lS0) BC
{α}

E(lE0)) BC
{α}

P(lP0)
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Bio-PEPA

Example: Competitive Inhibition
Binding of the inhibitor to the enzyme prevents binding of the
substrate and vice versa.

S + E + I ⇐⇒ SE =⇒ P + E
m

EI

Under QSSA (the intermediate species SE and EI are constant)
we can approximate the reactions above by a unique reaction

S
E,I:fI
===⇒P with rate fI = w∗S∗E

S+KM(1+ I
KI

)

where w: turnover number (catalytic constant),
KM : Michaelis-constant and KI: inhibition constant.
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Bio-PEPA

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

S = (α, 1)↓S P = (α, 1)↑P E = (α, 1) ⊕ E I = (α, 1) 	 I

The system is described by

(S(lS0) BC
{α}

E(lE0)) BC
{α}

I(lI0) BC
{α}

P(lP0)

with functional rate

fα = fCI((w,KM ,KI),S,E, I) =
w ∗ S ∗ E

S + KM(1 + I
KI

)

Jane Hillston. LFCS, University of Edinburgh.
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Bio-PEPA

Equivalence relations

We are seeking to define a number of equivalence relations for
BioPEPA — both those that are expected from the computer
science perspective and those that are useful from the biological
perspective.

From the computer science perspective we have defined an
isomorphism and a (strong) bisimulation.

From a biological perspective we are investigating the situations in
which biologists regard models or elements of models to be
equivalent, particularly when this is employed for model
simplification.
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Bio-PEPA

Bisimulation

Definition
A binary relation R ⊆ C × C is a strong bisimulation with respect to
7−→ , if (P,Q) ∈ R implies for all α ∈ A:

I if P
γ1
7−−→P′ then, for some Q ′ and γ2, Q

γ2
7−−→Q ′ with (P′,Q ′) ∈ R

and
1. action(γ1) = action(γ2) = α
2. rate(γ1) = rate(γ2)

I symmetric definition for Q
γ2
7−−→Q ′

Jane Hillston. LFCS, University of Edinburgh.
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Bio-PEPA

Analysis

A Bio-PEPA system is a formal, intermediate and compositional
representation of the system.

From it we can obtain
I a CTMC (with levels)
I a ODE system for simulation and other kinds of analysis
I a Gillespie model for stochastic simulation
I a PRISM model for model checking

Each of these kinds of analysis can be of help for studying different
aspects of the biological model
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Simple genetic network

The biological model

Consider a genetic network with negative feedback through
dimers.

Dimer protein (P2)

Protein (P)

mRNA  (M)
Degradation (3)

Degradation (4)

Translation (1)

Transcription (2)

Dimerisation (5− 5i)
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Simple genetic network

Simple genetic network model

The biological entities are:
I the mRNA molecule (M),
I the protein in monomer form (P) and
I the protein in dimeric form (P2).

All the reactions are described by mass action kinetics with the
exception of the first reaction, that has an inhibition kinetics.
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Simple genetic network

Translation into Bio-PEPA

1-Definition of the list N

[M : NM ,MM; P : NP ,MP ; P2 : NP2,MP2]

2-Definition of functional rates

fα1 = fI((v ,KM), [P2,CF]) = v∗CF
KM+P2 ;

fα2 = fMA (k2, [M]); fα3 = fMA (k3, [M]); fα4 = fMA (k4, [P]);
fα5 = fMA (k5, [P]); fα5i = fMA (k5i , [P2]);

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

Translation into Bio-PEPA (cont.)

3-Definition of the system components

M = (α2,1) ⊕ M + (α3,1) ↓ M + (α1,1) ↑ M;
P = (α4,1) ↓ P + (α5,2) ↓ P + (α5i ,2) ↑ P) + (α2,0) ↑ P;
P2 = (α1,1) 	 P2 + (α5i ,1) ↓ P2 + (α5,1) ↑ P2;
Res = (α3,1) � Res + (α4,1) � Res;
CF = (α1,1) � CF;

4-Definitions of the system

((((CF(1) BC
{α1}

M(0)) BC
{α2}

P(0)) BC
{α5 ,α5i }

P2(0)) BC
{α3 ,α4}

Res(0)

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

The CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.

1

 

STATE 1 STATE 2 STATE 3 STATE 4 STATE 5

STATE 6

STATE 7

STATE 8

11 12

13 14

15 16

1

2

3

4

5

6

 7

8

10

18

9

17

The states are (CF(l1),M(l2),P(l3),P2(l4),RES(l5)),
where li represents the level of each species component.
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Simple genetic network

Derivation of ODEs and Gillespie model

The stoichiometry matrix D associated with the system is

R1 R2 R3 R4 R5 R6
CF 0 0 0 0 0 0 xCF

Res 0 0 0 0 0 0 xRes

M +1 0 -1 0 0 0 x1

P 0 +1 0 -1 -2 +2 x2

P2 0 0 0 0 +1 -1 x3

The kinetic-law vector is

wT = (
v × xCF

K + x3
; k2 × x1; k3 × x1; k4 × x2; k5 × x2

2; ki5 × x3)

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

Derivation of ODEs (2)

The system of ODEs is obtained as dx̄
dt = D × w:

dx1

dt
=

v × 1
K + x3

− k3 × x1

dx2

dt
= k2 × x1 − k4 × x2 − 2 × k5 × x2

2 + 2 × ki5 × x3

dx2

dt
= k5 × x2

2 − ki5 × x3

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

Derivation of Gillespie model

The derivation of the Gillespie model is made by creating
molecules corresponding to each species and defining the
possible reactions with appropriate adjustment of kinetic rates.
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Simple genetic network

Simulation results

ODE results
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Simple genetic network

Simulation results

Stochastic simulation results (10 runs)
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Simple genetic network

PRISM model

Each species is represented as a PRISM module.

For example, the protein is represented as:

module p
p : [0..Np] init 0;
[a2]p < Np → (p′ = p + 1);
[a4]p > 0→ (p′ = p − 1);
[a5]p > 0→ (p′ = p − 2);
[a5i]p < Np → (p′ = p + 2);
endmodule

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

PRISM model (2)

An additional (dummy) module is needed to capture the kinetic
rates.

module Functional rates
dummy: bool init true;
[a1]dummy = true → v

(1+(pd/k )) : (dummy′ = dummy);
[a2]dummy = true → r2 : (dummy′ = dummy);
[a3]dummy = true → r3 : (dummy′ = dummy);
[a4]dummy = true → r4 : (dummy′ = dummy);
[a5]dummy = true → r5 : (dummy′ = dummy);
[a5i]dummy = true → r5i : (dummy′ = dummy);
endmodule

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

PRISM analysis

I Frequency of monomer P over total P (in terms of levels).
We need to define a reward structure in the PRISM file as:

rewards
true : p

(p+pd) ;
endrewards

We can ask for the frequency of monomer P (in terms of
levels) by using the query:

R =?[I = T ]

I Probability that P is at level i at time T

P =?[trueU[T ,T ]p = i]

Jane Hillston. LFCS, University of Edinburgh.
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Simple genetic network

PRISM results

monomer frequency
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Simple genetic network

PRISM results

Probability monomer protein is at high level over time
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Goldbeter’s model

Goldbeter’s model [Goldbeter 91]

I Goldbeter’s model describes the activity of the cyclin in the
cell cycle.

I The cyclin promotes the activation of a cdk (cdc2) which in
turn activates a cyclin protease.

I This protease promotes cyclin degradation.
I This leads to a negative feedback loop.
I In the model most of the kinetic laws are of kind

Michaelis-Menten and this can be reflected in the Bio-PEPA
model
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Goldbeter’s model

The biological model

CYCLIN (C)

cdc2 inactive (M’)  

  Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5
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Goldbeter’s model

The biological model (2)

There are three different species involved:

I cyclin, the protein protagonist of the cycle;
I cdc2 kinase, in both active (i.e. dephosphorylated) and

inactive form (i.e. phosphorylated). The variables used to
represent them are M and M′, respectively;

I cyclin protease, in both active (i.e. phosphorylated) and
inactive form (i.e. phosphorylated). The variable are X and X ′.
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Goldbeter’s model

Reactions

id name react. prod. mod. kinetic laws
R1 creation of cyclin - C - vi
R2 degradation of cyclin C - - kd × C
R3 activation of cdc2 kinase M′ M - C∗VM1

(Kc+C)
M′

(K1+M′)

R4 deactivation of cdc2 kinase M M′ - M×V2
(K2+M)

R5 activation of cyclin protease X ′ X M X ′×M×VM3
(K3+X ′)

R6 deactivation of cyclin protease X X ′ - X×V4
K4+X

R7 X triggered degradation of cyclin C - X C×vd×X
C+Kd

R1 and R2 have Mass-Action kinetics, whereas all others are
Michaelis-Menten.
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Goldbeter’s model

The Bio-PEPA model
Definition of the list N:.

N = [Res : 0, 1; CF : 1, 1; C : MC ,Nc ; M : MM ,NM;

M′ : MM′ ,NM′ ; X : MX ,NX ; X ′ : MX ′ ,NX ′] (1)

Res and CF represent degradation and synthesis respectively.

Definition of functional rates (F :)

fα1 = fMA (vi); fα2 = fMA (kd);

fα3 = fMM′((V1,Kc ,K1),M′,C) =
v1 ∗ C
Kc + C

M′

K1 +M′
;

fα4 = fMM(V2,K2); fα5 = fMM(V3,K3);
fα6 = fMM(V4,K4); fα7 = fMM(Vd ,Kd);

Jane Hillston. LFCS, University of Edinburgh.
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Goldbeter’s model

The Bio-PEPA model (2)
Definition of species components (Comp):

C = (α1, 1)↑C + (α2, 1)↓C + (α7, 1)↓C + (α3, 1) ⊕ C;
M′ = (α4, 1)↑M′ + (α3, 1)↓M′;
M = (α3, 1)↑M + (α4, 1)↓M + (α5, 1) ⊕M;
X ′ = (α6, 1)↑X ′ + (α5, 1)↓X ′;
X = (α5, 1)↑X + (α6, 1)↓X + (α7, 1) ⊕ X ;
Res = (α2, 1) � Res; CF = (α1, 1) � CF ;

Definition of the model component (P):

C(l0C ) BC
{α3}

M(l0M) BC
{α3 ,α4}

M
′

(l0M′ ) BC{α5 ,α7}
X(l0X ) BC

{α5 ,α6}
X
′

(l0X ′ )

BC
{α2}

Deg(0) BC
{α1}

CF(1)
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Goldbeter’s model

Analysis
Assume two levels for each species and initially C, M and X present
(level 1) and the other elements not present (level 0).
The initial state is (lC (1), lM′ (0), lM(1), lX ′ (0), lX (1)).

(0,0,1,1,0)(0,1,0,1,0)

(0,1,0,0,1)(1,0,1,1,0)

(1,1,0,1,0) (0,0,1,0,1)

(1,0,1,0,1) (1,1,0,0,1)

4

1 2

3

5 6 9 10 11

12 13

14 15

16

7

17

8

22
21

20

19

18

23Jane Hillston. LFCS, University of Edinburgh.
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Goldbeter’s model

ODEs
The stoichiometry matrix D:

R1 R2 R3 R4 R5 R6 R7
C +1 0 0 0 0 0 -1 xC

M′ 0 0 -1 +1 0 0 0 xM′

M 0 0 +1 -1 0 0 0 xM

X ′ 0 0 0 0 -1 +1 0 xX ′

X 0 0 0 0 +1 -1 0 xX

The vector that contains the kinetic laws is:

w =
(
vi ∗ 1, kd ∗ xC ,

VM1 ∗ xC

Kc + xC

xM′

(K1 + xM′ )
,

V2 ∗ xM

(K2 + xM)
,

VM3 ∗ xM ∗ xX ′

(K3 + xX ′ )
,

V4 ∗ xX

(K4 + xX )
,

vd ∗ xC ∗ xX

(Kd + xC )

)

Jane Hillston. LFCS, University of Edinburgh.
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Goldbeter’s model

ODEs (2)
The system of ODEs is obtained as dx̄

dt = D × w, where
x̄T =: (xC , xM′ , xM , xX ′ , xX ) is the vector of the species variables:

dxC

dt
= vi ∗ 1 − kd ∗ xC −

vd ∗ xC ∗ xX

(Kd + xC )
dxM′

dt
= −

VM1 ∗ xC

Kc + xC

xM′

(K1 + xM′ )
+

V2 ∗ xM

(K2 + xM)
dxM

dt
= +

VM1 ∗ xC

Kc + xC

xM′

(K1 + xM′ )
−

V2 ∗ xM

(K2 + xM)
dxX ′

dt
= −

VM3 ∗ xM ∗ xX ′

(K3 + xX ′ )
+

V4 ∗ xX

(K4 + xX )
dxX

dt
=

VM3 ∗ xM ∗ xX ′

(K3 + xX ′ )
−

V4 ∗ xX

(K4 + xX )
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Goldbeter’s model

ODE results

K1 = K2 = K3 = K4 = 0.02µM
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Goldbeter’s model

ODE results

K1 = K2 = K3 = K4 = 40µM
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Extended model

Extended model

I Gardner et al. [Gardner 98] proposed an extension of the
Goldbeter’s model in order to represent a control mechanism
for the cell division cycle.

I They introduce a protein that binds to and inhibits one of the
proteins involved in the cell division cycle.

I This influences the start and the stop of the cell division and
modulates the frequency of oscillations.

Several possible extension were presented; we consider one of
them.
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Extended model

Extension of Goldbeter’s model

 

  

Protease inactive (X’) Protease active (X)

R7

R6

cdc2 active (M)
R4

cdc2 inactive (M’)

CYCLIN (C)
R1

INHIBITOR−CYCLIN (IC)

INHIBITOR (I)
R11R10

R3

R5

R2

R8R9

R13

R12
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Extended model

Extended Bio-PEPA model

C = · · · + (α8, 1)↓C + (α9, 1)↑C + (α12, 1)↑C;

...
...

Res = · · · + (α11, 1) � Res; CF = · · · + (α10, 1) � CF ;

I = (α8, 1)↓I + (α9, 1)↑I + (α10, 1)↑I + (α11, 1)↓I + (α13, 1)↑I;

IC = (α8, 1)↑IC + (α9, 1)↓IC + (α12, 1)↓IC + (α13, 1)↓IC;

Jane Hillston. LFCS, University of Edinburgh.
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Extended model

New functional rates

fα8 = vs ;
fα9 = fMA (d1);
fα10 = fMA (a1);
fα11 = fMA (a2);
fα12 = fMA (θ ∗ d1);
fα13 = fMA (θ ∗ kd)

Jane Hillston. LFCS, University of Edinburgh.
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Extended model

Complete Bio-PEPA model

C(l0C ) BC
{α3}

M(l0M) BC
{α3 ,α4}

M
′

(l0M′ ) BC{α5 ,α7}
X(l0X ) BC

{α5 ,α6}
X
′

(l0X ′ ) BC{α2}

Deg(0) BC
{α1}

CF(1)

BC
{α8 ,α9 ,α10 ,α11}

I(l0I) BC
{α8 ,α9 ,α12 ,α13}

IC(l0IC )
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Extended model

New ODE results

a1 = a2 = 0.3 and vs = 0.6
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Extended model

New ODE results

a1 = a2 = 0.7 and vs = 1.4
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Extended model

New ODE results

a1 = a2 = 0.05 and vs = 0.1
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Outline
Introduction to Systems Biology
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Challenges

Stochastic Process Algebra
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Simple genetic network
Goldbeter’s model
Extended model

Summary
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Conclusions

Bio-PEPA is a modification of the process algebra PEPA for the
modelling and the analysis of biochemical networks.

Bio-PEPA allows us to represent explicitly some features of biological
networks, such as stoichiometry and general kinetic laws.

Some future investigations concern:

I the definition of bisimulations and equivalences;

I the study of properties of CTMC with levels;

I the application of model checking techniques.
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Challenges

I Abstract modelling offers a compromise between the
individual-based and population-based views of systems
which biologists commonly take.

I Moveover we can undertake additional analysis based on the
discretised population view.

I Further work is needed to establish a better relationship
between this view and the population view — empirical
evidence has shown that 6 or 7 levels are often sufficient to
capture exactly the same behaviour as the ODE model.

I In the future we hope to investigate the extent to which the
process algebra compositional structure can be exploited
during model analysis.
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Challenges cont.

I The issue of unknown and uncertain data remains to be
addressed.

I The abstract Markovian models allow quantities of interest
such as “response times” to be expressed as probability
distributions rather than single estimates. This may allow
better reflection of wet lab data which showns variability.

I Promising recent work by Girolami et al. on assessing
candidates models which attempt to cover both unknown
structure and unknown kinetic rates with respect to
experimental data, using Bayesian reasoning.
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Conclusions

I Ultimately we want to understand the functioning of cells as
useful levels of abstraction, and to predict unknown behaviour.

I It remains an open and challenging problem to define a set of
basic and general primitives for modelling biological systems,
inspired by biological processes.

I Achieving this goal is anticipated to have two broad benefits:

I Better models and simulations of living phenomena
I New models of computations that are biologically inspired.
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