
Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra for Collective Dynamics

Jane Hillston

Laboratory for Foundations of Computer Science
University of Edinburgh

29th March 2009

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

- -
SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Performance Evaluation Process Algebra
PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�

�	
(reset, r4)

@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A

A
A

A
A

AK (reset, r4)

R = min(r1, r3)

Q =

−R R 0 0
0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�

�	
(reset, r4)

@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A

A
A

A
A

AK (reset, r4)

R = min(r1, r3)

Q =

−R R 0 0
0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�

�	
(reset, r4)

@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A

A
A

A
A

AK (reset, r4)

R = min(r1, r3)

Q =

−R R 0 0
0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Simple example revisited [QEST’05]

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Simple example revisited [QEST’05]

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP +NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Simple example revisited [QEST’05]

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x1

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x1

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (simulation run A)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (simulation run B)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (simulation run C)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (simulation run D)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (average of 10 runs)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 Processors and 80 resources (average of 100 runs)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (average of 1000 runs)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (average of 10000 runs)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

100 processors and 80 resources (ODE solution)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

Nevertheless we are able to define a structured operational
semantics which defines the possible transitions of an abitrary
abstract state and from this derive the ODEs.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

Nevertheless we are able to define a structured operational
semantics which defines the possible transitions of an abitrary
abstract state and from this derive the ODEs.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

Nevertheless we are able to define a structured operational
semantics which defines the possible transitions of an abitrary
abstract state and from this derive the ODEs.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Location Dependency

System
def
= Proc0 [N ′

C] ��
{task1}

Res0 [NS] ‖ Proc0 [N ′′
C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Location Dependency

System
def
= Proc0 [N ′

C] ��
{task1}

Res0 [NS] ‖ Proc0 [N ′′
C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Location Dependency

System
def
= Proc0 [N ′

C] ��
{task1}

Res0 [NS] ‖ Proc0 [N ′′
C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ4

r3ξ4
min

(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ4

r3ξ4
min

(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�

�
�

�
�

�
��7r

�
�

�
�

��>
r

������:r

XXXXXXz
rZ

Z
Z

Z
ZZ~
r

S
S

S
S

S
S

S
Sw

r

r = r1
2r1

r3
3r3

min(2r1, 3r3) = 1
6 min(2r1, 3r3)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�

�
�

�
�

�
��7r

�
�

�
�

��>
r

������:r

XXXXXXz
rZ

Z
Z

Z
ZZ~
r

S
S

S
S

S
S

S
Sw

r

r = r1
2r1

r3
3r3

min(2r1, 3r3) = 1
6 min(2r1, 3r3)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�

�
�

�
�

�
��7r

�
�

�
�

��>
r

������:r

XXXXXXz
rZ

Z
Z

Z
ZZ~
r

S
S

S
S

S
S

S
Sw

r

r = r1
2r1

r3
3r3

min(2r1, 3r3) = 1
6 min(2r1, 3r3)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�

�
�

�
�

�
��7

�
�

�
�

��>

������:

XXXXXXz
Z

Z
Z

Z
ZZ~

S
S

S
S

S
S

S
Sw

r = r1
2r1

r3
3r3

min(2r1, 3r3) = 1
6 min(2r1, 3r3)

(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)
f (ξ, (+1,−1, 0, 0), task2) = ξ2r2
f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx1

dt
= −min (r1x1, r3x3) + r2x2

dx2

dt
= min (r1x1, r3x3)− r2x2

dx3

dt
= −min (r1x1, r3x3) + r4x4

dx4

dt
= min (r1x1, r3x3)− r4x4

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) ��

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) ��

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I) ��

L
Net[M]

where L = { infectI , infectS }

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Patch rate γ = 0.1. Connection failure rate δ = 0.5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Worm infection dynamics for gamma=0.1, delta=0.5

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Patch rate γ = 0.3. Connection failure rate δ = 0.5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Worm infection dynamics for gamma=0.3

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Increasing machine patch rate γ from 0.1 to 0.3

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Nu
m

be
r

Time, t

Infected machines for different values of gamma

gamma=0.1
gamma=0.2
gamma=0.3

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) ��

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) ��

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I) ��

L
Net[M]

where L = {infectI , infectS}

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Unsecured SIR model (200 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=200

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Unsecured SIR model (50 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=50

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Unsecured SIR model (20 network channels)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

Nu
m

be
r

Time, t

Worm infection dynamics for N=20

Infected machines
Network connections

Susceptible machines

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Outline

1 Introduction
Collective Dynamics
Stochastic Process Algebra

2 Continuous Approximation
State variables
Numerical illustration

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics

4 Example
Internet worms

5 On-going and Future Work
Alternative Models

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Alternative Representations

ODEs

population view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

��
���

���
���

����*

H
HHH

HHH
HHHH

HHHHj

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Alternative Representations

ODEs population view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

��
���

���
���

����*

H
HHH

HHH
HHHH

HHHHj

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico,
Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico,
Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico,
Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa

Introduction Continuous Approximation Fluid-Flow Semantics Example On-going and Future Work

Thanks!

Acknowledgements: collaborators
Thanks to many co-authors and collaborators: Jeremy Bradley,
Muffy Calder, Federica Ciocchetta, Allan Clark, Adam Duguid,
Vashti Galpin, Nil Gesweiller, Stephen Gilmore, Marco Stenico,
Mirco Tribastone, and others.

Acknowledgements: funding
Thanks to EPRSC for the Process Algebra for Collective
Dynamics grant and the CEC IST-FET programme for the
SENSORIA project which have supported this work.

More information:
http://www.dcs.ed.ac.uk/pepa

	Introduction
	Collective Dynamics
	Stochastic Process Algebra

	Continuous Approximation
	State variables
	Numerical illustration

	Fluid-Flow Semantics
	Fluid Structured Operational Semantics

	Example
	Internet worms

	On-going and Future Work
	Alternative Models

