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Modelling with Markov chains

In his lecture on Monday Billy Stewart said that there are three
steps to modelling with Markov chains:

1. Conceptualise your system as a Markov chain;

2. Construct your Markov chain — construct an infinitesimal
generator matrix Q.

3. Solve your Markov chain to derive quantitative information
about the system.
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Process Algebra

I Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

I The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

WEB
def
=

(
Browser ‖ Browser

)
| Server
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Dynamic behaviour

I The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

I The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

I This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

I The language is also equipped with observational equivalence
which can be used to compare models.
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Qualitative Analysis

I The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?
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Performance Evaluation Process Algebra

I Models are constructed from components which engage in
activities.

(α, r).P
���* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

I The language is used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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PEPA

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L concurrent activity

(individual actions)
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

Hillston and Tribastone. LFCS, University of Edinburgh.
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Example revisited

The behaviour of the server is the same but now quantitative
information is recorded for each operation:

Server
def
= (get,>).(download , µ).(rel ,>).Server

In addition to duration we also incorporate information about the
relative frequencies of the different actions which take place after a
display request:

Browser
def
= (display , p1λ).(cache,m).Browser +

(display , p2λ).(get, g).(download ,>).(rel , r).Browser

The configuration is recorded as before; using the PEPA
cooperation the actions which must be shared are explicitly named:

WEB
def
=

(
Browser ‖ Browser

)
BC

L
Server

L = {get, download , rel}
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Integrated analysis

I Qualitative verification can now be complemented by
quantitative verification:

Reachability analysisSpecification matchingModel checking
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The Importance of Being Exponential
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The memoryless property of the negative exponential distribution
means that residual times do not need to be recorded.
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The Importance of Being Exponential
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We retain the expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =

(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the negative exponential distribution is assumed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Parallel Composition

I Parellel composition is the basis of the compositionality in a
process algebra

— it defines which components interact and
how.

I In classical process algebra is it often associated with
communication.

I When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.
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Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

I Actions are partitioned into
input and output pairs.

I Communication or
synchronisation takes places
between conjugate pairs.

I The resulting action has
silent type τ .

CSP-style

I No distinction between input
and output actions.

I Communication or
synchronisation takes place
on the basis of shared names.

I The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.
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Cooperation in PEPA

I In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

I Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

I Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.
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PEPA Case Studies (1)

I Multiprocessor access-contention protocols (Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

I Multimedia traffic characteristics (Bowman et al, Kent)

I Database systems (The STEADY group, Heriot-Watt
University)

I Software Architectures (Pooley, Bradley and Thomas,
Heriot-Watt and Durham)

I Switch behaviour in active networks (Hillston, Kloul and
Mokhtari, Edinburgh and Versailles)
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PEPA Case Studies (2)

I Locks and movable bridges in
inland shipping in Belgium
(Knapen, Hasselt)

I Robotic workcells (Holton,
Gilmore and Hillston, Bradford
and Edinburgh)

I Cellular telephone networks
(Kloul, Fourneau and Valois,
Versailles)

I Automotive diagnostic expert
systems (Console, Picardi and
Ribaudo, Turin)

........................

............

............
............
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Möbius modelling
platform

(University of Illinois)

PRISM
model checker

(Birmingham University)

PRISM
model checker

(Birmingham University)

Imperial PEPA
Compiler/Dnamaca

and Hydra
(Imperial College)

Imperial PEPA
Compiler/Dnamaca

and Hydra
(Imperial College)

PEPA
Workbench

(Edinburgh University)

PEPA
Workbench

(Edinburgh University)

PEPAroni
simulation engine

(Edinburgh University)

PEPAroni
simulation engine

(Edinburgh University)

-�

?

@
@@I

�
���

PEPA

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Roland the Gunslinger

I This sequence of small examples are based around a character
called Roland Deschain.

I Roland is a gunslinger and his life consists of wandering
around firing his gun.

I We will consider Roland in a number of different scenarios.
I These are not intended to be serious but they serve to

I illustrate the main features of the language,
I give you some experience of how models are constructed, and
I demonstrate a variety of solution techniques.
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Roland alone
In the first scenario we consider Roland alone, with the single
activity of firing his gun which is a six-shooter. When his gun is
empty Roland will reload the gun and then continue shooting.

Roland6
def
= (fire, rfire).Roland5

Roland5
def
= (fire, rfire).Roland4

Roland4
def
= (fire, rfire).Roland3

Roland3
def
= (fire, rfire).Roland2

Roland2
def
= (fire, rfire).Roland1

Roland1
def
= (fire, rfire).Rolandempty

Rolandempty
def
= (reload, rreload).Roland6

Hillston and Tribastone. LFCS, University of Edinburgh.
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Roland with two guns

All self-respecting gun-slingers have one gun in each hand. A
simplistic way to model this is two instances of Roland in parallel:

Roland6 ‖ Roland6

But this model does not capture the fact that Roland needs both
hands in order to reload either gun. Thus we might assume that
Roland only reloads both guns when both are empty.

Roland6 BC
{reload}

Roland6

From now on we restrict Roland to his shotgun, which has two
bullets and requires both hands for firing.

Hillston and Tribastone. LFCS, University of Edinburgh.
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Roland meets an Enemy

I Upon his travels Roland encounters some enemies and when
he does so he must fight them.

I Roland is the wildest gunslinger in the west so we assume that
no enemy has the skill to seriously harm Roland.

I Each time Roland fires he might miss or hit his target.

I But with nothing to stop him he will keep firing until he
successfully hits (and kills) the enemy.

I We assume that some sense of cowboy honour prevents any
enemy attacking Roland if he is already involved in a gun
fight.

Hillston and Tribastone. LFCS, University of Edinburgh.
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The model

Rolandidle
def
= (attack, rattack).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Roland1

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

Rolandempty
def
= (reload, rreload).Roland2

Hillston and Tribastone. LFCS, University of Edinburgh.
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Parameter settings for the Roland2 model

parameter value explanation

rfire 1.0 Roland can fire the gun once
per-second

phit-success 0.8 Roland has an 80% success rate
rhit 0.8 rfire × phit-success

rmiss 0.2 rfire × (1− phit-success)
rreload 0.3 It takes Roland about 3 seconds

to reload
rattack 0.01 Roland is attacked once every

100 seconds

Hillston and Tribastone. LFCS, University of Edinburgh.
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Steady state analysis

We can calculate the probability that at arbitrary time Roland is
involved in a battle based on the steady state probability that
Roland is in any of the states in which a battle is on-going, i.e.
Roland2, Roland1 and Rolandempty .

Or we can calculate the probability that Roland is in the state
Rolandidle and subtract it from 1.

State Measure ’roland peaceful’
mean 9.5490716180e-01
State Measure ’roland in battle’
mean 0.0450928382e-01

Hillston and Tribastone. LFCS, University of Edinburgh.
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Passage-Time Analysis

Passage-time analysis allows us to calculate measures such as the
probability that Roland has killed his enemy at a given time after
he is attacked.

This would involve calculating the probability that the model
performs a hit action within the given time after performing an
attack action.
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Passage-Time Analysis results
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Cooperation

I In the previous model Roland’s enemies were represented only
implicitly.

I We now consider a model in which the enemies appear
explicitly and allow them to fight back.

I However for now we still assume that there are rather
ineffectual and so they never seriously injure Roland.

I This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Cooperation

I In the previous model Roland’s enemies were represented only
implicitly.

I We now consider a model in which the enemies appear
explicitly and allow them to fight back.

I However for now we still assume that there are rather
ineffectual and so they never seriously injure Roland.

I This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Cooperation

I In the previous model Roland’s enemies were represented only
implicitly.

I We now consider a model in which the enemies appear
explicitly and allow them to fight back.

I However for now we still assume that there are rather
ineffectual and so they never seriously injure Roland.

I This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Cooperation

I In the previous model Roland’s enemies were represented only
implicitly.

I We now consider a model in which the enemies appear
explicitly and allow them to fight back.

I However for now we still assume that there are rather
ineffectual and so they never seriously injure Roland.

I This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Revised Model

Rolandidle
def
= (attack,>).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Roland1

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

Rolandempty
def
= (reload, rreload).Roland2

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (fire, re-miss).Enemiesattack

+ (hit,>).Enemiesidle

Roland2 BC
{hit}

Enemiesidle
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Additional parameters

parameter value explanation

rattack 0.01 Roland is attacked once every
100 seconds

re-miss 0.3 Enemies can fire only once every
3 seconds
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Levels of abstraction

I Notice that in this model the behaviour of the enemy has
been simplified.

I There is no running out of bullets or reloading.

I This model can be thought of as an approximation to a more
complicated component similar to the one which models
Roland.

I Here the rate at which the enemy fires encompasses all of the
actions, including the reloading of an empty gun.

I We may choose to model a component in such an abstract
way when the focus of our modelling is really elsewhere in the
model.
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Model Validation

It is also sometimes useful to carry out a validation of the model by
calculating a metric which we believe we already know the value of.

For example in this model we could make such a sanity check by
calculating the probability that the model is in a state in which
Roland is idle but the enemies are not, or vice versa.

This should never occur and hence the probability should be zero.
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Sensitivity Analysis

I Sensitivity analysis studies how much influence particular
parameter values, such as activity rates, have on performance
metrics calculated for the system as a whole.

I A single activity in a PEPA model may have a significant
impact on the dynamics of the model, or, conversely, may
exert very little influence.

I Sensitivity analysis is performed by solving the model many
times while varying the rates slightly.

I For this model we chose to vary three of the rates involved
and measured the passage time between an attack and a hit
activity, for each combination of rates.
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Sensitivity Analysis: Results
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Sensitivity Analysis: Results
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Accurate Enemies

I We now allow the enemies of Roland to actually hit him. This
means that Roland may die. It is important to note that this
has the consequence that the model will always deadlock. The
underlying Markov process is no longer ergodic.

I We assume that the enemies can only hit Roland once every
50 seconds. This rate approximates the rate of a more detailed
model in which we would assign a process to the enemies
which is much like that of the process which describes Roland.

I The only new parameter is re-hit which is assigned a value 0.02
to reflect this assumption.
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New Roland

Rolandidle
def
= (attack,>).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Roland1

+ (e-hit,>).Rolanddead

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

+ (e-hit,>).Rolanddead

Rolandempty
def
= (reload, rreload).Roland2

+ (e-hit,>).Rolanddead

Rolanddead
def
= Stop
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New Enemy

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (e-hit, re-hit).Enemiesidle

+ (hit,>).Enemiesidle

Rolandidle BC
{hit,attack,e-hit}

Enemiesidle
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Model Analysis

Steady-State Analysis Since there is an infinite supply of enemies
eventually Roland will always die and the model will
deadlock.

Transient Analysis Transient analysis on this model can be used to
calculate the probability that Roland is dead after a
given amount of time. As time increases this should
tend towards probability 1.

Passage-Time Analysis Passage-time analysis could be used to
calculate the probability of a given event happening
at a given time after another given event, e.g. from
an attack on Roland until he dies or wins the gun
fight.
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Roland makes a friend

In the next revision of the model we introduce an accomplice who
is befriended by Roland and who, when Roland is attacked, fights
alongside him.

In this scenario cooperation is used to synchronise between
components of the model such that they observe events which they
neither directly cause nor are directly affected by.

Whenever either Roland or the accomplice kills the enemy the
other must witness this action, so as to stop firing at a dead
opponent (it would be a waste of ammunition!).
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A new component for Roland

Rolandidle
def
= (attack,>).Roland2

+ (befriend, rbefriend).Rolandidle

Roland2
def
= (hit, rhit).Rolandhit + (miss, rmiss).Roland1

+ (a-hit,>).Rolandidle

Roland1
def
= (hit, rhit).Rolandhit

+ (miss, rmiss).Rolandempty

+ (a-hit,>).Rolandidle

Rolandhit
def
= (reload, rreload).Rolandidle

Rolandempty
def
= (reload, rreload).Roland2

+ (a-hit,>).Rolandhit
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Synchronising Roland and the Accomplice

I When there is an accomplice, he and Roland fight together
against the enemy — this involves some cooperation.

I This could leave Roland vulnerable when there is no
accomplice present.

I To prevent this we introduce a dummy component
representing the absence of an accomplice.

I In this state the accomplice component will passively
participate in any attack which Roland makes.

Acmplabs
def
= (befriend, rbefriend).Acmplidle

+ (hit,>).Acmplabs + (attack,>).Acmplabs
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Component for the Accomplice

Acmplidle
def
= (attack,>).Acmpl2

Acmpl2
def
= (a-hit, ra-hit).Acmplhit + (hit,>).Acmplidle

+ (miss, rmiss).Acmpl1 + (enemy-hit,>).Acmplabs

Acmpl1
def
= (a-hit, ra-hit).Acmplhit + (hit,>).Acmplhit

+ (miss, rmiss).Acmplempty + (enemy-hit,>).Acmplabs

Acmplhit
def
= (reload, ra-reload).Acmplidle

Acmplempty
def
= (reload, ra-reload).Acmpl2 + (hit,>).Acmplhit
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Parameter Settings for the Accomplice

parameter value explanation

rbefriend 0.001 Roland befriends a stranger
once every 1000 seconds

ra-fire 1.0 the accomplice can also fire once
per second

pa-hit-success 0.6 the accomplice has a 60 percent
accuracy

ra-hit 0.6 rfire × phit-success

ra-miss 0.4 rfire × (1.0− phit-success)
ra-reload 0.25 it takes the accomplice 4 seconds

to reload
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Component for the Enemy

The component representing the enemy is similar to before.

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (enemy-hit, re-hit).Enemiesattack

+ (hit,>).(enemy-die, re-die).Enemiesidle

+ (a-hit,>).(enemy-die, re-die).Enemiesidle

The system equation is as follows:

(Rolandidle BC
{attack,hit,a-hit,befriend}

Acmplabs) BC
{attack,hit,a-hit,enemy-hit}

Enemiesidle
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Model Analysis
Steady-State Analysis

I As before we can determine the probability that Roland is
involved in a gun battle at an arbitrary time.

I We could also determine the likelihood that Roland has an
accomplice at an arbitrary time.

I Since Roland cannot perform a befriending action while
currently involved in a battle, the probabilty that Roland is in
such a battle clearly affects the probability that he is alone in
his quest.

I For example, if Roland’s success rate is reduced, gun battles
will take longer to resolve and Roland will be involved in a
gun battle more often. Consequently he will befriend fewer
accomplices.
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Model Analysis
Transient Analysis

An example transient analysis would be to determine the expected
time after Roland has set off before he meets his first accomplice.
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Model Analysis
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Model Analysis
Passage-Time Analysis

I An example analysis would be to calculate the passage-time
from an attack action until the death of the enemy or of the
accomplice.

I Since all gun battles now end in the enemy being killed
stopping the analysis there would give us the expected
duration of any one gun battle.

I There is also the possibility to start the analysis from the
befriend action and stop it with the death of the accomplice.
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Hiding

I Currently there is nothing in the model to stop an enemy from
disrupting the interaction between Roland and his accomplice,
e.g. by performing a befriend action.

I One way to avoid this is to ‘hide’ those actions only Roland
and the accomplice should cooperate on.

I To do this for our model we can simply change the system
equation:

((Rolandidle BC
L1

Acmpl)/{befriend}) BC
L2

Enemiesidle

where L1 = {attackhit, a-hit, befriend} and
L2 = {attack, hit, a-hit, enemy-hit}.
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SPA Tool Support

Several software tools supporting Stochastic Process Algebras have
been developed over the years:

I MoDeST

I TIPP-Tool

I TwoTowers
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PEPA Tool Support

PEPA is amenable to several analysis techniques through a number
of supporting tools.

I The PEPA Workbench offers support for Markovian
steady-state analysis, allowing computation of performance
measures such as throughput and utilisation.

I The Imperial PEPA Compiler translates PEPA models into the
input format for Dnamaca, providing both steady-state and
passage time analysis.

I Model checking via Continuous Stochastic Logic is available
in PRISM which has built-in support for PEPA.

I PEPA has been integrated into the Möbius multi-paradigm
modelling tool.

I The PEPA Plug-in Project permits Markovian steady-state
analysis and stochastic simulation.
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The PEPA Plug-in Project

I The PEPA Plug-in Project is built on top of the Eclipse
technology and it is deployed as a collection of plug-ins for the
Eclipse IDE released under GPL.

I It has been successfully tested on Eclipse 3.2 running on
various Linux distributions, Mac OS X, and Windows XP

I The tool is available for download at:
http://homepages.inf.ed.ac.uk/mtribast/

I The examples discussed throughout this presentation are
available at the PEPA Home Page:
http://www.dcs.ed.ac.uk/pepa/
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Key Plug-ins

I PEPAto provides core services for PEPA. It can be used as a
library by third-party applications.

I Eclipse Core makes PEPA tools available within the Eclipse
framework.

I Eclipse UI implements a rich graphical user interface including
an editor for PEPA descriptions and views for performance
evaluation.
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Services Available in PEPAto

I In-memory model representation either programmatically or
through parsing.

I Static analysis.

I State space derivation.

I Calculation of steady-state probability distribution.

I Throughput and utilisation analysis.
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Static Analysis

Static analysis checks the well-formedness of a model prior to
inferring the derivation graph of the system.

The output of this tool is a list of messages grouped into two
categories:

I Error messages prevent further model analysis (e.g. state
space derivation)

I Warning messages are less severe and allow further processing
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Basic Analysis

An Error message is reported for:

I Rate not declared

I Process not defined

I Multiple rate definitions

I Multiple process definitions

A Warning message is reported for:

I Rate not used

I Process definition not used
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Local Deadlock

A local deadlock is a condition that may occur in a synchronisation
when a shared action can never be performed by one of the
involved components.

P1
def
= (α, r).P2

P2
def
= (γ, t).P1

Q1
def
= (β, s).Q2

Q2
def
= (ε, v).Q1

P1 BC
{α}

Q1
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Complete Action Type Set

The complete action type set A(P) of a component P is the set of
all the action types which may be performed by the component
during its evolution.

I Constant A
def
= P:

A(A) = A(P)

I Choice P + Q:
A(P + Q) = A(P) ∪ A(Q)

I Cooperation P BC
L

Q:

A(P BC
L

Q) = A(P) ∪ A(Q)

I Prefix (α, r).P:
A

(
(α, r).P

)
= {α} ∪ A(P)

I Hiding P\{L}:
A

(
P\{L}

)
= A(P)− L
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Example

P1
def
= (α, r).P2

P2
def
= (γ, t).P1

Q1
def
= (β, s).Q2

Q2
def
= (ε, v).Q1

P1 BC
{α}

Q1

A(P1) = {α, γ}
A(P2) = {α, γ}
A(Q1) = {β, ε}
A(Q2) = {β, ε}

Local Deadlock Detection

A cooperation P BC
L

Q gives rise to a local deadlock if

∃α ∈ L : α 6∈ A(P) ∩ A(Q), α ∈ A(P) ∪ A(Q)
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Redundant Action
A redundant action is an action type specified in a cooperation set
which cannot be carried out by either of the components involved.
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Non-guarded Recursive Definition

Consider the following model snippet:

. . .

P1
def
= P2 ‖ P3

P2
def
= (γ, t).P1

. . .

The derivation graph of component P1 gives rise to infinite-depth
left recursion:

P1
(γ,t)→ P2 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ · · ·
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Used Definition Set
The used definition set U(P) of a component P is the set of all the
constants used by P during its evolution.
It is computed as follows:

I Constant A
def
= P:

U(A) = {A} ∪ U(P)

I Choice P + Q:
U(P + Q) = U(P) ∪ U(Q)

I Cooperation P BC
L

Q:

U(P BC
L

Q) = U(P) ∪ U(Q)

I Prefix (α, r).P:
U

(
(α, r).P

)
= U(P)

I Hiding P\{L}:
U

(
P\{L}

)
= U(P)
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Example

. . .

P1
def
= P2 ‖ P3

P2
def
= (γ, t).P1

. . .

Non-guarded Definition Detection

For each process definition A
def
= P compute

U(P).
A has infinite recursion if it defines a
cooperation and A ∈ U(P)

U
(
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= {P1 ,P2 ,P3 , . . .}
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Web Service Composition: Introduction

We consider an example of a business application which is
composed from a number of offered web services.

A user accesses the application via an SMS message requesting
directions to the nearest facility (post-office, restaurant, bank etc.)
and receives a response as an MMS message containing a map.

Since the application involves a users’ current location there is an
access control issue since it must be ensured that the web service
consumer has the requisite authority to execute the web service it
requests.

Moreover the service provider imposes a restriction that only one
request may be handled for each SMS message received.
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The PEPA model

The PEPA model of the system consists of four components:

I The user;

I The web service provider;

I The web service consumer, and

I The policy access provider.

The Web Service Provider consists of three distinct elements but
the web service consumer is associated with a session which
accesses each element in sequence.

Concurrency is introduced into the model by allowing multiple
sessions rather than by representing the constituent web services
separately.
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Component Customer

The customer’s behaviour is simply modelled with two local states.

Customer
def
= (getSMS , r1).Customer1

Customer1
def
= (getMap,>).Customer

+ (get404 ,>).Customer

We associate the user-perceived system performance with the
throughput of the getMap action which can be calculated directly
from the steady state probability distribution of the underlying
Markov chain.
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Component WSConsumer

Once a session has been started, it initiates a request for the user’s
current location and waits for a response.

For valid requests, location is returned and used to compute the
appropriate map, which is then sent via an MMS message, using
the web service.

WSConsumer
def
= (notify ,>).WSConsumer2

WSConsumer2
def
= (locReq, r4).WSConsumer3

WSConsumer3
def
= (locRes,>).WSConsumer4

+ (locErr ,>).WSConsumer

WSConsumer4
def
= (compute, r7).WSConsumer5

WSConsumer5
def
= (sendMMS , r9).WSConsumer
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Component WSProvider
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Component WSProvider

WSProvider
def
= (getSMS ,>).WSProvider2

WSProvider2
def
= (startSession, r2).WSProvider3

WSProvider3
def
= (notify , r3).WSProvider4

WSProvider4
def
= (locReq,>).WSProvider5

WSProvider5
def
= (checkValid , 99 · >).WSProvider6

+ (checkValid ,>).WSProvider10
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Component WSProvider cont.

WSProvider6
def
= (locRes, r6).WSProvider7

WSProvider7
def
= (sendMMS ,>).WSProvider8

WSProvider8
def
= (getMap, r8).WSProvider9

WSProvider9
def
= (stopSession, r2).WSProvider

WSProvider10
def
= (locErr , r6).WSProvider11

WSProvider11
def
= (get404 , r8).WSProvider9
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Component PAProvider

We consider a stateless implementation of the policy access
provider.

PAProvider
def
= (startSession,>).PAProvider

+ (checkValid , r5).PAProvider

+ (stopSession,>).PAProvider
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Model Component WSComp

The complete system is composed of some number of instances of
the components interacting on their shared activities:

WSComp
def
=

(
(Customer [NC ] BC

L1
WSProvider [NWSP ])

BC
L2

WSConsumer [NWSC ]
)

BC
L3

PAProvider [NPAP ]

where the cooperation sets are

L1 = {getSMS , getMap, get404}
L2 = {notify , locReq, locRes, locErr , sendMMS}
L3 = {startSession, checkValid , stopSession}

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Parameter Values

param value explanation
r1 0.0010 rate customers request maps
r2 0.5 rate session can be started
r3 0.1 notification exchange between consumer

and provider
r4 0.1 rate requests for location can be satisfied
r5 0.05 rate the provider can check the validity

of the request
r6 0.1 rate location information can be returned

to consumer
r7 0.05 rate maps can be generated
r8 0.02 rate MMS messages can be sent from provider

to customer
r9 10.0 ∗ r8 rate MMS messages can be sent via the Web Service
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Steady State Analysis for System Tuning

I Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

I Some parameters such as the network delays may be
constrained by the available technology.

I However, there are a number of degrees of freedom which let
her vary, for example, the number of threads of control of the
components of the system.

I The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

I The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Steady State Analysis for System Tuning

I Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

I Some parameters such as the network delays may be
constrained by the available technology.

I However, there are a number of degrees of freedom which let
her vary, for example, the number of threads of control of the
components of the system.

I The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

I The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Steady State Analysis for System Tuning

I Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

I Some parameters such as the network delays may be
constrained by the available technology.

I However, there are a number of degrees of freedom which let
her vary, for example, the number of threads of control of the
components of the system.

I The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

I The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Steady State Analysis for System Tuning

I Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

I Some parameters such as the network delays may be
constrained by the available technology.

I However, there are a number of degrees of freedom which let
her vary, for example, the number of threads of control of the
components of the system.

I The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

I The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Steady State Analysis for System Tuning

I Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

I Some parameters such as the network delays may be
constrained by the available technology.

I However, there are a number of degrees of freedom which let
her vary, for example, the number of threads of control of the
components of the system.

I The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

I The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Throughput of the getMap action

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  5  10  15  20  25  30

T
hr

ou
gh

pu
t g

et
M

ap

Number of Customers

Number of WSProviders=1
Number of WSProviders=2
Number of WSProviders=3
Number of WSProviders=4

as the number of customers varies between 1 and 30 for various
numbers of copies of the WSProvider component.

Hillston and Tribastone. LFCS, University of Edinburgh.

Stochastic Process Algebras



Introduction Model Analysis Tool Support Conclusion

Throughput of the getMap action

I Under heavy load increasing the number of providers initially
leads to a sharp increase in the throughput. However the gain
deteriorates so that the system with four copies is just 8.7%
faster than the system with three.

I In the following we settle on three copies of WSProvider .
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Throughput of getMap action
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Throughput of getMap action

I Every line starts to plateau at approximately r1 = 0.010
following an initial sharp increase. This suggests that the user
is the bottle next in the system when the arrival rate is lower.
Conversely, at high rates the system becomes congested.

I Whilst having two copies of WSConsumer , corresponding to
two operating threads of control, improves performance
significantly, the subsequent increase with three copies is less
pronounced.

I So we set the number of copies of WSConsumer to 2.
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Optimising the number of copies of PAProvider

I Here we are particularly interested in the overall impact of the
rate at which the validity check is performed.

I Slower rates may mean more computationally expensive
validation.

I Faster rates may involve less accuracy and lower security of
the system.
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Throughput of getMap action

I A sharp increase followed by a constant levelling off suggests
that optimal rate values lie on the left of the plateau, as faster
rates do not improve the system considerably.

I As for the optimal number of copies of PAProvider , deploying
two copies rather than one can increase the quality of service
of the overall system.

I With a similar approach as previously discussed, the modeller
may want to consider the trade-off between the cost of adding
a third copy and the throughput increase.
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An alternative design for PAProvider

I The original design of PAProvider is stateless.

I Any of its services can be called at any point, the correctness
of the system being guaranteed by implementation-specific
constrainsts such as session identifiers being uniquely assigned
to the clients and passed as parameters of the method calls.

I Alternatively we may consider a stateful implementation,
modelled as a sequential component with three local states.

I This implementation has the consequence that there can
never be more than NPAP WSProvider which have started a
session with a PAProvider
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Component PAProvider — Stateful Version

It maintains a thread for each session and carries out the validity
check on behalf of the Web Service Provider.

PAProvider
def
= (startSession,>).PAProvider2

PAProvider2
def
= (checkValid , r5).PAProvider3

PAProvider3
def
= (stopSession,>).PAProvider
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Throughput of getMap action

I In this case the incremental gain in adding more copies has
become more marked.

I However, the modeller may want to prefer the original version,
as three copies of the stateful provider deliver about as much
as the throughput of only one copy of the stateless
implementation.
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Some concluding remarks...

The incorporation of stochastic quantitative information into
process algebras has been extremely fruitful:

I For performance modelling the rigour of the formal description
technique has had benefits for both practice and theory, and
lead to enhanced analysis capabilities.
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Thank you
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