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Introduction

Stochastic Process Algebra

Process Algebra

Models consist of agents which engage in actions.
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.
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Stochastic Process Algebra

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
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�
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Proc0 ‖task1 Res1
A
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Stochastic Process Algebra

Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram
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Stochastic Process Algebra

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?
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Stochastic Process Algebra

Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Introduction

Stochastic Process Algebra

PEPA: some recent case studies

QoS protocols for mobile devices
(Wang, Lauriston and Hillston, Edinburgh)

Switch behaviour in active networks
(Hillston, Kloul and Mokhtari, Edinburgh and Versailles)

Task scheduling in a Grid-based processing system
(Benoit, Cole, Gilmore and Hillston, Edinburgh)

Probability of timely airbag deployment
(Clark, Gilmore and Tribastone, Edinburgh)
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Introduction

Stochastic Process Algebra

Does timeliness matter...?

There is sometimes a perception in software development that
performance does not matter much, or that it is easily fixed later
by buying a faster machine.

On the contrary — studies have shown that response time is a key
feature in user satisfaction and trust in systems.

In a recent study by Amazon they artificially delayed page loading
times in increments of 100 milliseconds. Even such very small
delays were observed to result in substantial and costly drops in
revenue.

Gary Linden, Amazon, quoted on http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency

AOL, Bing and Google report similar findings.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency
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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Collective Behaviour
In the natural world there are many instances of collective
behaviour and its consequences:
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Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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Collective Behaviour

This is also true in the man-made and engineered world:

Love Parade, Germany 2006
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Collective Behaviour

This is also true in the man-made and engineered world:

Map of the Internet 2009



Making stochastic process algebras count — Jane Hillston

Introduction

Collective Dynamics

Collective Behaviour
This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year
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Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to constructing models of such
systems:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

Unfortunately, whilst theoretically possible, the analysis of such
systems through the standard process algebra approaches —
explicitly building the state space — is not generally feasible.
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Collective Dynamics

Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.

c

b

a
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Collective Dynamics

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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The CODA project

In the CODA project we have been developing stochastic process
algebras and associated theory, tailored to the construction and
evaluation of the collective dynamics of large systems of
interacting entities.

One approach to this is to keep the discrete state representation in
the model and to evaluate it algorithmically rather than
analytically, i.e. carry out a discrete event simulation of the model
to explore its possible behaviours.

Another approach is to make a shift to population statistics.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.
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Example: Performance as an emergent behaviour

In this framework we must think about the performance of a
system from the collective point of view. Service providers often
want to do this in any case. For example making contracts in
terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Novelty

The novelty in this approach is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Crowd dynamics
Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.
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State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

State variables

New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.
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Continuous Approximation

State variables

Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action of a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action
zero if the component is not involved in the action.
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Continuous Approximation

State variables

Models suitable for counting abstraction

In Bio-PEPA components are parameterised with a counting
variable and the definition of an action records the impact
that an action has on the counting variable.
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Continuous Approximation

Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0
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Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Numerical illustration

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run A)



Making stochastic process algebras count — Jane Hillston

Continuous Approximation

Numerical illustration

100 processors and 80 resources (simulation run B)
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Numerical illustration

100 processors and 80 resources (simulation run C)
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Numerical illustration

100 processors and 80 resources (simulation run D)
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Numerical illustration

100 processors and 80 resources (average of 10 runs)
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Numerical illustration

100 Processors and 80 resources (average of 100 runs)
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Numerical illustration

100 processors and 80 resources (average of 1000 runs)
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Continuous Approximation

Numerical illustration
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Fluid-Flow Semantics

Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.
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Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Make the counting abstraction (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.
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Fluid Structured Operational Semantics

Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector
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Fluid Structured Operational Semantics by Example

Proc0
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= (task1 , r1 ).Proc1
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task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics

Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =min
(
r1ξ1, r3ξ4

)
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Fluid Structured Operational Semantics

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 )
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{task1}
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{task1}

(R0 ‖ R1 )
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{task1}

(R1 ‖ R0 )

(P0 ‖ P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 )

(P0 ‖ P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 )
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Capturing behaviour in the Generator Function
Proc0

def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Fluid Structured Operational Semantics

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx1
dt

= −min (r1x1, r3x3) + r2x2

dx2
dt

= min (r1x1, r3x3)− r2x2

dx3
dt

= −min (r1x1, r3x3) + r4x4

dx4
dt

= min (r1x1, r3x3)− r4x4
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Fluid-Flow Semantics

Fluid Structured Operational Semantics

Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.
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Secure Web Service use

Example: Secure Web Service use

Second party Broker Web service First party

The example which we consider is a Web service which has
two types of clients:

first party application clients which access the web service
across a secure intranet, and
second party browser clients which access the Web service
across the Internet.

Second party clients route their service requests via trusted
brokers.
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Examples

Secure Web Service use

Scalability and replication

Second party Broker Web service First party

To ensure scalability the Web service is replicated across
multiple hosts.

Multiple brokers are available.

There are numerous first party clients behind the firewall using
the service via remote method invocations across the secure
intranet.

There are numerous second party clients outside the firewall.
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Examples

Secure Web Service use

Security and use of encryption

Second party Broker Web service First party

Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.

When processing a request from a second party client brokers
decrypt the request before re-encrypting it for the Web service.
When the response to a request is returned to the broker it
decrypts the response before re-encrypting it for the client.
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Examples

Secure Web Service use

PEPA model: Second party clients

Second party Broker Web service First party

A second party client composes service requests, encrypts
these and sends them to its broker.

It then waits for a response from the broker.

The rate at which the first three activities happen is under the
control of the client.

The rate at which responses are produced is determined by
the interaction of the broker and the service endpoint.
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Secure Web Service use

PEPA model: Second party clients

Second party Broker Web service First party

SPCidle
def
= (composesp, rsp cmp).SPCenc

SPCenc
def
= (encryptb, rsp encb).SPCsending

SPCsending
def
= (requestb, rsp req).SPCwaiting

SPCwaiting
def
= (responseb,>).SPCdec

SPCdec
def
= (decryptb, rsp decb).SPCidle
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Examples

Secure Web Service use

PEPA model: Brokers

Second party Broker Web service First party

The broker is inactive until it receives a request.

It then decrypts the request before re-encrypting it for the
Web service to ensure end-to-end security.

It forwards the request to the Web service and then waits for
a response.

The corresponding decryption and re-encrytion are performed
before returning the response to the client.
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Secure Web Service use

PEPA model: Brokers

Second party Broker Web service First party

Brokeridle
def
= (requestb,>).Brokerdec input

Brokerdec input
def
= (decryptsp, rb dec sp).Brokerenc input

Brokerenc input
def
= (encryptws , rb enc ws).Brokersending

Brokersending
def
= (requestws , rb req).Brokerwaiting

Brokerwaiting
def
= (responsews ,>).Brokerdec resp

Brokerdec resp
def
= (decryptws , rb dec ws).Brokerenc resp

Brokerenc resp
def
= (encryptsp, rb enc sp).Brokerreplying

Brokerreplying
def
= (responseb, rb resp).Brokeridle
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Examples

Secure Web Service use

PEPA model: First party clients

Second party Broker Web service First party

The lifetime of a first party client mirrors that of a second
party client except that encryption need not be used when all
of the communication is conducted across a secure intranet.

Also the service may be invoked by a remote method
invocation to the host machine instead of via HTTP.

Thus the first party client experiences the Web service as a
blocking remote method invocation.
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Secure Web Service use

PEPA model: First party clients

Second party Broker Web service First party

FPCidle
def
= (composefp, rfp cmp).FPCcalling

FPCcalling
def
= (invokews , rfp inv ).FPCblocked

FPCblocked
def
= (resultws ,>).FPCidle
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Examples

Secure Web Service use

PEPA model: Web service

Second party Broker Web service First party

There are two ways in which the service is executed, leading
to a choice in the process algebra model taking the service
process into one or other of its two modes of execution.

In either case, the duration of the execution of the service
itself is unchanged.

The difference is only in whether encryption is needed and
whether the result is delivered via HTTP or not.
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PEPA model: Web service

Second party Broker Web service First party

WSidle
def
= (requestws ,>).WSdecoding
+ (invokews ,>).WSmethod

WSdecoding
def
= (decryptReqws , rws dec b).WSexecution

WSexecution
def
= (executews , rws exec).WSsecuring

WSsecuring
def
= (encryptRespws , rws enc b).WSresponding

WSresponding
def
= (responsews , rws resp b).WSidle

WSmethod
def
= (executews , rws exec).WSreturning

WSreturning
def
= (resultws , rws res).WSidle
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PEPA model: System composition

In the initial state of the system model we represent each of the
four component types being initially in their idle state.

System
def
= (SPCidle ��K Brokeridle) ��

L
(WSidle ��M FPCidle)

where K = { requestb, responseb }
L = { requestws , responsews }
M = { invokews , resultws }

This model represents the smallest possible instance of the system,
where there is one instance of each component type. We evaluate
the system as the number of clients, brokers, and copies of the
service increase.
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Cost of analysis

We compare fluid approximation, ODE-based, evaluation
against other techniques which could be used to analyse the
model.

We compare against steady-state and transient analysis based
on an explicit state representation,as implemented by the
PRISM probabilistic model-checker (which provides PEPA as
one of its input languages). We also compare against Monte
Carlo Markov Chain simulation.
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Secure Web Service use

Comparison of analysis types

We report only a single run of the simulation analysis. In
practice, due to the stochastic nature of the analysis, this
would need to be re-run multiple times to produce results
comparable to the ODE-based analysis.

Moreover, note that the number of ODEs is constant
regardless of the number of components in the system, whilst
the state space grows dramatically.
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Running times from analyses (in seconds)
S

ec
on

d
p

ar
ty

cl
ie

n
ts

B
ro

ke
rs

W
eb

se
rv

ic
e

in
st

an
ce

s

F
ir

st
p

ar
ty

cl
ie

n
ts

N
u

m
b

er
of

st
at

es
in

th
e

fu
ll

st
at

e-
sp

ac
e

N
u

m
b

er
of

st
at

es
in

th
e

ag
gr

eg
at

ed
st

at
e-

sp
ac

e

S
p

ar
se

m
at

ri
x

st
ea

d
y-

st
at

e

M
at

ri
x/

M
T

B
D

D

st
ea

d
y-

st
at

e

T
ra

n
si

en
t

so
lu

ti
on

fo
r

ti
m

e
t

=
10

0

M
C

M
C

si
m

u
la

ti
on

on
e

ru
n

to
t

=
10

0

O
D

E
so

lu
ti

on

1 1 1 1 48 48 1.04 1.10 1.01 2.47 2.81

2 2 2 2 6,304 860 2.15 2.26 2.31 2.45 2.81
3 3 3 3 1,130,496 161,296 172.48 255.48 588.80 2.48 2.83
4 4 4 4 >234M – – – – 2.44 2.85

100 100 100 100 – – – – – 2.78 2.78
1000 100 500 1000 – – – – – 3.72 2.77
1000 1000 1000 1000 – – – – – 5.44 2.77
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Secure Web Service use

Time series analysis via ODEs

We now consider the results from our solution of the PEPA
Web Service model as a system of ODEs with the number of
clients of both kinds, brokers, and web service instances
all 1000.

The results as presented from our ODE integrator are
time-series plots of the number of each type of component
behaviour as a function of time.

We can observe an initial flurry of activity until the system
stabilises into its steady-state equilibrium at time (around)
t = 50.
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Emergency egress

Designing for human crowd dynamics

Widespread take up of mobile and communicating
computational devices is making ubiquitous systems a reality
and creating new ways for us to interact with our environment.

One application is to provide routing information to help
people navigate through unfamiliar locations.

In these cases the dynamic behaviour of the system as a whole
is important to ensure the satisfaction of the users.

Emergency egress can be regarded as a particular case, when
the location may be familiar but circumstances may alter the
usual topology and make efficient movement particularly
important.
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Example scenario
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The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Bio-PEPA components describe the behaviours of individuals, but
also rooms and information dissemination.
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Model specification
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Example results: room occupancy
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Example results: rerouting through mediation
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Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA and Bio-PEPA, are
well-suited to modelling the behaviour of such systems in
terms of the individuals and their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.
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Conclusions

On-going work

Time series plots counting the populations of components
over time tell us a great deal about the dynamics of the
system but are not necessary the information we require.

Recent work has establish how performance measures such as
throughput, and average response time can be derived from
the ODE solutions.

On-going work is investigating the use of probes to query the
model by adding components to the model whose sole
purpose is to gather statistics.

Using this technique we can now derive measures such as
cumulative response time from the fluid approximation of the
model.
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