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The PEPA project

The PEPA project started in Edinburgh in 1991.

It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

We have sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC)
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Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying
CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solve to find steady state or
transient probability distribution

deriving performance measures
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Process Algebra

Models consist of agents which engage in actions.

α.P
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action type
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agent/
component

The language is used to generate a labelled transition system
for functional verification: reachability analysis, specification
matching and model checking.

Process algebra model Labelled transition system-
SOS rules
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Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
���* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, r).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��
∅

P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�

�	
(reset, r4)

@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A

A
A

A
A

AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0
0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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Benefits of Quantification

Each PEPA expression has an underlying CTMC which can be
derived automatically.

verification can now be complemented by quantitative
verification:

Reachability analysisSpecification matchingModel checking

How long will it take
for the system to arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���
With what probability
does system behaviour
match its specification?

Does the “frequency
profile” of the

system match that
of the specification?

e
e e e0.5

e0.5

-

6

-

?

�
���

∼=
?
�

e ee e e e0.6e0.4e e
- - -

?
����

���

-

���
Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?
φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���
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Theory

The theoretical development underpinning PEPA focused on the
interaction between the process algebra and the underlying
mathematical structure, the Markov process.

This work can be broadly categorised into three areas:

Designing the language

Manipulating models

Solving models and deriving measures
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Designing the language

The issue of what it means for two timed activities to
synchronise is a vexed one....

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.
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Semantic Equivalence

In process algebra equivalence relations are defined based on the
notion of observability:

In PEPA observation is assumed to include the ability to record
timing information over a number of runs.

The resulting equivalence relation is a bisimulation in the style of
Larsen and Skou, and coincides with the Markov process notion of
lumpability.
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Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Characterising efficient solution

PEPA MODEL

MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

Storing and manipulating the
matrix which represents the
Markov process places limitations
on the size of model which
can be analysed.
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Certain structures in the matrix are
known to be amenable to efficient,
decomposed solution.
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PEPA

SUBMODELS

Finding the corresponding structures in the process
algebra means that these techniques can be applied
automatically, before the monolithic matrix is formed.
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Applications

Developing models of real applications has always been an
integral part of the PEPA project.

This allows us to demonstrate to ourselves and others that the
theory we have developed is useful.

It is also a valuable source of inspiration for new theory and
future directions.
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PEPA Case Studies (1)

Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

Multimedia traffic characteristics (Bowman et al, Kent)

Database systems (The STEADY group, Heriot-Watt
University)

Software Architectures (Pooley, Bradley and Thomas,
Heriot-Watt and Durham)

Switch behaviour in active networks (Hillston, Kloul and
Mokhtari, Edinburgh and Versailles)

Mobility and QOS protocols in wireless networks Hillston,
Laurenson and Wang, Edinburgh
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PEPA Case Studies (2)

Locks and movable bridges in
inland shipping in Belgium
(Knapen, Hasselt)

Robotic workcells (Holton,
Gilmore and Hillston, Bradford
and Edinburgh)

Cellular telephone networks
(Kloul, Fourneau and Valois,
Versailles)

Automotive diagnostic expert
systems (Console, Picardi and
Ribaudo, Turin)

........................

............

............
............
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Tool Support

Möbius modelling
platform

(University of Illinois)

Möbius modelling
platform

(University of Illinois)

PRISM
model checker

(Oxford University)

PRISM
model checker

(Oxford University)

PEPA Eclipse Plug-in
(Edinburgh University)

PEPA Eclipse Plug-in
(Edinburgh University)

International PEPA
Compiler (IPC)

(Imperial/Edinburgh)
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Compiler (IPC)

(Imperial/Edinburgh)
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Grid Scheduling
In the EPSRC-funded ENHANCE research project we investigated
ways to use performance predictions to improve scheduling
decisions in large computational grids.

Current performance
parameters obtained
from monitoring.

Highly abstract model
components configured
to represent different
scheduling possibilities.

Fast evaluation and
comparison of
alternatives.
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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.
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discrete state models.



Introduction Markovian Foundations Applications Collective Dynamics Summary

Novelty
The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
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quality of life through enhanced drug treatment and better drug
design.
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The novelty in this project is twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.
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those variables over time.
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New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.
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Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.
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exponential distribution)

component/
derivative

The language is used to generate a set of ODEs.
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approximation
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

Nevertheless we are able to define a structured operational
semantics which defines the possible transitions of an abitrary
abstract state and from this derive the ODEs.
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation

dx1

dt
= −min (r1x1, r3x3) + r2x2

dx2

dt
= min (r1x1, r3x3)− r2x2

dx3

dt
= −min (r1x1, r3x3) + r4x4

dx4

dt
= min (r1x1, r3x3)− r4x4
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Example: Internet worms

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is about $50 billion a year.
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An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.
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Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.
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Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.
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Susceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I ) ��

L
Net[M]

where L = { infectI , infectS }
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Patch rate γ = 0.1. Connection failure rate δ = 0.5
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Patch rate γ = 0.3. Connection failure rate δ = 0.5

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

Nu
m

be
r

Time, t

Worm infection dynamics for gamma=0.3

Infected machines
Network connections

Susceptible machines



Introduction Markovian Foundations Applications Collective Dynamics Summary

Increasing machine patch rate γ from 0.1 to 0.3
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Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.
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Unsecured SIR model (200 network channels)
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Unsecured SIR model (20 network channels)
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Example Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.

We believe the modelling methods exemplified here to be
generally useful for analysing the behaviour of populations of
interacting processes with complex dynamics.
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Consistency results

The vector field F(x) is Lipschitz continuous

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α)

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Lipschitz continuity of the vector field guarantees existence
and uniqueness of the solution to the initial value problem.
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Conclusions

PEPA has been successfully used for a number of years as a
means of constructing structured Markov chains for
performance modelling.

However the state space explosion problem makes this
approach infeasible for systems with collective dynamics and
emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.
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