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Rough Timetable

I Introduction to Systems Biology (40 min)

I Biological models (45 min)

I Questions and Discussion (10 min)

I Coffee Break 10:30 – 11:00
I Performance Techniques applied to Systems Biology

I Stochastic Activity Networks (20 min)
I PEPA (40 min)
I PRISM and Biological Reasoning (20 min)

I Summary, other work and conclusions (10 min)

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Systems Biology

I Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

I Systems biology aims to develop a better understanding of the
processes involved.

I Formalisms from theoretical computer science have found a
new role in developing models for systems biology, allowing
biologists to test hypotheses and prioritise experiments.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

What is Systems Biology?

“The principal aim of systems biology is to provide both a
conceptual basis and working methodologies for the scientific
explanation of biological phenomena” – Olaf Wolkenhauer

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

What is Systems Biology?

“The principal aim of systems biology is to provide both a
conceptual basis and working methodologies for the scientific
explanation of biological phenomena” – Olaf Wolkenhauer

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-

Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena-

Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

� Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

� Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Systems Biology Methodology

Explanation

Explanation

Interpretation

Interpretation

6

Natural System

Natural System

Systems Analysis

Systems Analysis

?

Induction

Induction

Modelling

Modelling

Formal System

Formal System

Biological Phenomena

Biological Phenomena

-Measurement

Measurement

Observation

Observation

�

Deduction

Deduction

Inference

Inference

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Measurement, Observation and Induction

I Robot Scientist project — Kell, King, Muggleton et al.

I Combination of machine learning for hypothesis generation
and genetic algorithms for automatic experimental tuning.

I Experiments are carried out by a robot.

I Data is generated at rates which exceed what is possible when
there are humans in the loop.

I Moreover the intelligent experiment selection strategy is
competitive with (good) human strategies, and significantly
outperforms cheapest and random selection strategies.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

The Robot Scientist

Background
Knowledge

Machine 
learning

Experiment
selection

Final 
Hypothesis

Experiments
Robot

Consistent
hypotheses

Analysis

Results

I No human intellectual input in the design of experiments or
the interpretation of data.

I Integrates scientific discovery software with laboratory
robotics.
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Motivation

Case Study: Circadian Rhythms

J.C.W. Locke, M.M. Southern, L. Kozma-Bognár, V. Hibberd,
P.E. Brown, M.S. Turner and A.J. Millar.

Extension of a genetic network model by iterative experimentation
and mathematical analysis.

Molecular Systems Biology, msb4100018-E2, 2005.

D. Forger, M. Drapeau, B. Collins and J. Blau.

A new model for circadian clock research?

Molecular Systems Biology, msb4100019-E1, 2005.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Case Study: Circadian Rhythms – Overview

The study by Locke et al. focuses on the circadian rhythms in
plants, combining mathematical models and molecular biology.

Their objective is to identify the genes (and proteins) responsible
for maintaining the daily rhythms observed in the plants.

The research exploits an interplay between mathematical models,
experiments in the laboratory and literature search.

It is held up as an exemplar of what systems biology is trying to
achieve, and the breakthroughs that it can bring about when it is
successful.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Case Study: Circadian Rhythms – Initial Model

From initial experiments Locke et al. identified a two genes and
two proteins which appeared to operate in a simple loop:

TOC1 LHY

LHY

TOC1

An initial mathematical model (ODEs) was constructed to capture
this model.

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Motivation

Case Study: Circadian Rhythms – Role of Mathematics

Initial simulations with the mathematical model showed good
agreement with the experimental data for some of the observed
phenomena but significant discrepancies for others.

Experiments were then undertaken with the mathematical model
to find an alternative model which was biologically plausible but
produced a better fit.

These mathematical experiments conjectured a network with two
interacting loops.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Case Study: Circadian Rhythms – Elaborated Model

LHY

TOC1

Y

TOC1

X

Y

X

LHY

Two “new” genes were
introduced to the model
which now has
interlocking loops and
more complex feedback.

The simulation results
from this model showed
much better agreement
with the observed data.

Jane Hillston. LFCS, University of Edinburgh.
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Motivation

Case Study: Circadian Rhythms – Validating the Model

The researchers then sought to identify the “new” genes X and Y .

Searching the literature elicited several candidate genes which
previous experimental studies had suggested were implicated in the
circadian rhythm.

In particular, “knockout” data for one, GIGANTEA (GI), coincided
with the pattern from simulation experiments of the original model
with a single loop.

Subsequent wet lab experiments have reinforced this impression
that GI is gene Y .

Jane Hillston. LFCS, University of Edinburgh.
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Some Biological Background

Networks in cells

We can distinguish three distinct types of links or networks in cells

Gene networks: Genes control the production of proteins but are
themselves regulated by the same or different
proteins.

Signal transduction networks: External stimuli initiate messages
that are carried through a cell via a cascade of
biochemical reactions.

Metabolic pathways: The survival of the cell depends on its ability
to transform nutrients into energy.

Jane Hillston. LFCS, University of Edinburgh.
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Some Biological Background

Extracellular signalling

Extracellular signalling — communication between cells.

I Signalling molecules released by one cell migrate to another;

I These molecules enter the cell and instigate a pathway, or
series of reactions, which carries the information from the
membrane to the nucleus;

I For example, the Ras/Raf-1/MEK/ERK pathway conveys
differentiation signals to the nucleus of a cell.

Specific gene
activation

cellular response
to signalSignal

MEKRaf ERK enters nucleus
Activated ERK

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Some Biological Background

Cell signalling

I All signalling is biochemical:

I Increasing protein concentration broadcasts the information
about an event; for example, that a gene promoter is “on”.

I The message is “received” by a concentration dependent
response at the protein signal’s site of action.

I This stimulates a response at the signalling protein’s site of
action.

I Signals propagate through a series of protein accumulations.

Jane Hillston. LFCS, University of Edinburgh.
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Some Biological Background

Signal transduction pathways

A series of biochemical reactions serve to pass a message from the
cell membrane to the nucleus.

Jane Hillston. LFCS, University of Edinburgh.
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Some Biological Background

Gene expression pathways

I Genetic activity is controlled by molecular signals that
determine when and how often a given gene is transcribed.

I The product encoded by one gene often regulates the
expression of other genes.

I Moreover two or more proteins may act together to activate
or repress a gene.

I For appropriate combinations of input signals transcription is
initiated and protein product accumulates when production
exceeds degradation.

I Links are established between genes when the product of one
regulates the expression of another.

I Thus networks of interaction can be deduced and these may
be quite complex.

Jane Hillston. LFCS, University of Edinburgh.
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exceeds degradation.

I Links are established between genes when the product of one
regulates the expression of another.

I Thus networks of interaction can be deduced and these may
be quite complex.
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Some Biological Background

Dynamic issues

I In biochemical regulatory networks, the delay between events
are determined by the delay while signal molecule
concentrations accumulate or decline sufficiently.

I For example, delay from the activation of a gene promoter
until reaching an effective level to control the next promoter
depends on the rate of protein accumulation.

I The accumulation of protein is a stochastic process affected
by several factors in the cell (temperature, pH, etc.).

I Thus the “switching delay” is a distribution rather than a
deterministic time, and this can account for some of the
cellular phenomena which can be observed across a cell
population.
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Some Biological Background

Stochastic behaviour

I The stochastic reaction rate of a chemical reaction is a
function of only those molecular species involved as reactants
or catalysts, and a stochastic rate constant c .

I The stochastic rate constant takes into account volume,
temperature, pH and other environmental factors.

I The stoichiometry of the reaction — how many molecules of
each reactant species are required — also has an impact.
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ODEs

Background

I The modelling of chemical reactions using deterministic rate
laws has proven extremely successful in both chemistry and
biochemistry for many years.

I This deterministic approach has at its core the law of mass
action, an empirical law giving a simple relation between
reaction rates and molecular component concentrations.

I Given knowledge of initial molecular concentrations, the law
of mass action provides a complete picture of the component
concentrations at all future time points.
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ODEs

Background: Law of Mass Action

I The law of mass action considers chemical reactions to be
macroscopic under convective or diffusive stirring, continuous
and deterministic.

I These are evidently simplifications, as it is well understood
that chemical reactions involve discrete, random collisions
between individual molecules.

I As we consider smaller and smaller systems, the validity of a
continuous approach becomes ever more tenuous.

I As such, the adequacy of the law of mass action has been
questioned for describing intracellular reactions.
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ODEs

Background: Application of Stochastic Models

Arguments for the application of stochastic models for chemical
reactions come from at least three directions, since the models:

1. take into consideration the discrete character of the quantity
of components and the inherently random character of the
phenomena;

2. are in accordance with the theories of thermodynamics and
stochastic processes; and

3. are appropriate to describe “small systems” and instability
phenomena.
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ODEs

Deterministic: The law of mass action

The fundamental empirical law governing reaction rates in
biochemistry is the law of mass action.

This states that for a reaction in a homogeneous, free medium, the
reaction rate will be proportional to the concentrations of the
individual reactants involved.
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ODEs

Deterministic: Michaelis-Menten kinetics

Consider the simple Michaelis-Menten reaction

S + E
k1



k−1

C
k2

→ E + P

For example, we have

dC

dt
= k1SE − (k−1 + k2)C

Hence, we can express any chemical system as a collection of
coupled non-linear first order differential equations.
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Stochastic Simulation

Stochastic: Random processes

I Whereas the deterministic approach outlined above is
essentially an empirical law, derived from in vitro experiments,
the stochastic approach is far more physically rigorous.

I Fundamental to the principle of stochastic modelling is the
idea that molecular reactions are essentially random processes;
it is impossible to say with complete certainty the time at
which the next reaction within a volume will occur.
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Stochastic Simulation

Stochastic: Predictability of macroscopic states

I In macroscopic systems, with a large number of interacting
molecules, the randomness of this behaviour averages out so
that the overall macroscopic state of the system becomes
highly predictable.

I It is this property of large scale random systems that enables a
deterministic approach to be adopted; however, the validity of
this assumption becomes strained in in vivo conditions as we
examine small-scale cellular reaction environments with
limited reactant populations.
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Stochastic Simulation

Stochastic: Propensity function

As explicitly derived by Gillespie, the stochastic model uses basic
Newtonian physics and thermodynamics to arrive at a form often
termed the propensity function that gives the probability aµ of
reaction µ occurring in time interval (t, t + dt).

aµdt = hµcµdt

where the M reaction mechanisms are given an arbitrary index µ
(1 ≤ µ ≤ M), hµ denotes the number of possible combinations of
reactant molecules involved in reaction µ, and cµ is a stochastic
rate constant.
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Stochastic Simulation

Stochastic: Fundamental hypothesis

The rate constant cµ is dependent on the radii of the molecules
involved in the reaction, and their average relative velocities – a
property that is itself a direct function of the temperature of the
system and the individual molecular masses.

These quantities are basic chemical properties which for most
systems are either well known or easily measurable. Thus, for a
given chemical system, the propensity functions, aµ can be easily
determined.
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Stochastic Simulation

Stochastic: Grand probability function

The stochastic formulation proceeds by considering the grand
probability function Pr(X; t) ≡ probability that there will be
present in the volume V at time t, Xi of species Si , where
X ≡ (X1,X2, . . . XN) is a vector of molecular species populations.

Evidently, knowledge of this function provides a complete
understanding of the probability distribution of all possible states
at all times.
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Stochastic Simulation

Stochastic: Infinitesimal time interval

By considering a discrete infinitesimal time interval (t, t + dt) in
which either 0 or 1 reactions occur we see that there exist only
M + 1 distinct configurations at time t that can lead to the state
X at time t + dt.

Pr(X; t + dt)

= Pr(X; t) Pr(no state change over dt)

+
∑M

µ=1 Pr(X− vµ; t) Pr(state change to X over dt)

where vµ is a stoichiometric vector defining the result of reaction µ
on state vector X, i.e. X → X + vµ after an occurrence of
reaction µ.
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Stochastic Simulation

Stochastic: State change probabilities

Pr(no state change over dt)

1−
M∑

µ=1

aµ(X)dt

Pr(state change to X over dt)

M∑
µ=1

Pr(X− vµ; t)aµ(X− vµ)dt
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Stochastic Simulation

Stochastic: Partial derivatives

We are considering the behaviour of the system in the limit as dt
tends to zero. This leads us to consider partial derivatives, which
are defined thus:

∂ Pr(X; t)

∂t
= lim

dt→0

Pr(X; t + dt)− Pr(X; t)

dt
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Stochastic Simulation

Stochastic: Chemical Master Equation

Applying this, and re-arranging the former, leads us to an
important partial differential equation (PDE) known as the
Chemical Master Equation (CME).

∂ Pr(X; t)

∂t
=

M∑
µ=1

aµ(X− vµ) Pr(X− vµ; t)− aµ(X) Pr(X; t)
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Stochastic Simulation

The problem with the Chemical Master Equation

I The CME is really a set of nearly as many coupled ordinary
differential equations as there are combinations of molecules
that can exist in the system!

I The CME can be solved analytically for only a very few very
simple systems, and numerical solutions are usually
prohibitively difficult.

D. Gillespie and L. Petzold.

chapter Numerical Simulation for Biochemical Kinetics, in System
Modelling in Cellular Biology, editors Z. Szallasi, J. Stelling and V.
Periwal.

MIT Press, 2006.
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Stochastic Simulation

Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) is essentially an
exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of
the randomness inherent in such a system.

It is rigorously based on the same microphysical premise that
underlies the chemical master equation and gives a more realistic
representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically by ODEs.

As with the chemical master equation, the SSA converges, in the
limit of large numbers of reactants, to the same solution as the law
of mass action.
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Stochastic Simulation

Gillespie’s exact SSA (1977)

I The algorithm takes time steps of variable length, based on
the rate constants and population size of each chemical
species.

I The probability of one reaction occurring relative to another is
dictated by their relative propensity functions.

I According to the correct probability distribution derived from
the statistical thermodynamics theory, a random variable is
then used to choose which reaction will occur, and another
random variable determines how long the step will last.

I The chemical populations are altered according to the
stoichiometry of the reaction and the process is repeated.
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the statistical thermodynamics theory, a random variable is
then used to choose which reaction will occur, and another
random variable determines how long the step will last.

I The chemical populations are altered according to the
stoichiometry of the reaction and the process is repeated.
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Stochastic Simulation

Stochastic simulation: realisations and ensembles

The SSA computes one realisation of a dynamic trajectory of a
chemically reacting system. Often an ensemble of trajectories is
computed, to obtain an estimate of the probability density function
of the system.

The dynamic evolution of the probability density function is given
by the Chemical Master Equation.
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Stochastic Simulation

Gillespie’s SSA is a Monte Carlo Markov Chain simulation

The SSA is a Monte Carlo type method. With the SSA one may
approximate any variable of interest by generating many
trajectories and observing the statistics of the values of the
variable. Since many trajectories are needed to obtain a reasonable
approximation, the efficiency of the SSA is of critical importance.
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Stochastic Simulation

Computational cost of Gillespie’s exact algorithm

The cost of this detailed stochastic simulation algorithm is the
likely large amounts of computing time.

The key issue is that the time step for the next reaction can be
very small indeed if we are to guarantee that only one reaction can
take place in a given time interval.

Increasing the molecular population or number of reaction
mechanisms necessarily requires a corresponding decrease in the
time interval. The SSA can be very computationally inefficient
especially when there are large numbers of molecules or the
propensity functions are large.
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Stochastic Simulation

Gibson and Bruck (2000)

Gibson and Bruck refined the first reaction SSA of Gillespie by
reducing the number of random variables that need to be
simulated.

This can be effective for systems in which some reactions occur
much more frequently than others.

M.A. Gibson and J. Bruck.

Efficient exact stochastic simulation of chemical systems with many
species and many channels.

J. Comp. Phys., 104:1876–1889, 2000.
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Comparison

Circadian clock

To adapt to natural periodicity, such as the alternation of day and
night, most living organisms have developed the capability of
generating oscillating expressions of proteins in their cells with a
period close to 24 hours (circadian rhythm).

The Vilar-Kueh-Barkai-Leibler (VKBL in short) description of the
circadian oscillator incorporates an abstraction of a minimal set of
essential, experimentally determined mechanisms for the circadian
system.
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Comparison

Circadian clock

I The VKBL model involves two genes, an activator A and a
repressor R, which are transcribed into mRNA and
subsequently translated into proteins.

I The activator A binds to the A and R promoters and increases
their expression rate.

I Therefore, A implements a positive loop acting on its own
transcription.

I At the same time, R sequesters A to form a complex C ,
therefore inhibiting it from binding to the gene promoter and
acting as a negative feedback loop.
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Comparison

Circadian clock (cartoon)
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Comparison

Circadian clock (deterministically . . . )
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Comparison

Circadian clock (. . . and stochastically)
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Comparison

Circadian clock (Conclusions)

I For some parameter values a differential equation model
exhibits autonomous oscillations.

I These oscillations disappear from the deterministic model as
the degradation rate of the repressor δR is decreased.

I The system of ODEs undergoes a bifurcation at this point and
the unique deterministic equilibrium of the system becomes
stable.

I However, if the effects of molecular noise are incorporated the
oscillations in the stochastic system pertain.

I This phenomenon is a manifestation of coherence resonance,
and illustrates the crucial interplay between noise and
dynamics.
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Comparison

Comparing stochastic simulation and ODEs

It is relatively straightforward to contrast the results of the two
methods. We compare the results of 2000 runs of the stochastic
algorithm simulating a system with initial molecular populations
S0 = 100,E0 = 10,C0 = 0,P0 = 0 and a volume of 1000 units.

Jane Hillston. LFCS, University of Edinburgh.
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Comparison

Results for S0 = 100, E0 = 10, C0 = 0, P0 = 0 (vol 1000)
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Comparison

Results for S0 = 100, E0 = 10, C0 = 0, P0 = 0 (vol 1000)
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Comparison

Comparing stochastic simulation and ODEs

It is clear that there is a close correspondence between the
predictions of the deterministic approach and the stochastic
approach, with the deterministic curve falling well within one
standard deviation (S.D.) of the stochastic mean.

This is a very close match, especially considering our stochastic
simulation is modelling a system containing just 110
molecules—well within what we might consider to be the
microscopic domain.

Jane Hillston. LFCS, University of Edinburgh.
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Comparison

The variance of the stochastic approach

However, it is worth bearing in mind that an actual in vivo
biochemical reaction would follow just one of the many random
curves that average together producing the closely fitting mean.
This curve may deviate significantly from that of the deterministic
approach, and thus call into question its validity.

Hence, it is perhaps most important to consider the variance of the
stochastic approach—with a larger variance indicating a greater
deviation from the mean and hence from the deterministic curve.

Jane Hillston. LFCS, University of Edinburgh.
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Comparison

Comparing results at lower population sizes

Consider exactly the same simulation setup, except this time we
are modelling a system consisting of just 11 molecules within a
volume of 100 units [thus the molecular concentrations are equal
to those earlier].
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Comparison

Results for S0 = 10, E0 = 1, C0 = 0, P0 = 0 (vol 100)
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Comparison

Compatibility of the two approaches

On average, the stochastic approach tends to the same solution as
the deterministic approach as the number of molecules in the
system increases, and we hence move from the microscopic to the
macroscopic domain.
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Comparison

Mean results for 11, 110 and 1100 molecules
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Comparison

From the microscopic to the macroscopic domain

Each specific run is individually in closer and closer agreement with
the deterministic approach as the number of molecules in the
system increases.

This is a direct effect of the inherent averaging of macroscopic
properties of a system of many particles.

Jane Hillston. LFCS, University of Edinburgh.
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Comparison

Conclusions from the comparison

1. These results provide clear verification of the compatibility of
the deterministic and stochastic approaches.

2. They also illustrate the validity of the deterministic approach
in systems containing as few as 100 copies of components.
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Challenges

Modelling challenges: stiffness

A problem for modelling temporal evolution is stiffness. Some
reactions are much faster than others and quickly reach a stable
state. The dynamics of the system is driven by the slow reactions.

Most chemical systems, whether considered at a scale appropriate
to stochastic or to deterministic simulation, involve several widely
varying time scales, so such systems are nearly always stiff.

Jane Hillston. LFCS, University of Edinburgh.
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Challenges

Modelling challenges: multiscale populations

The multiscale population problem arises when some species are
present in relatively small quantities and should be modelled by a
discrete stochastic process, whereas other species are present in
larger quantities and are more efficiently modelled by a
deterministic ordinary differential equation (or at some scale in
between). SSA treats all of the species as discrete stochastic
processes.

Jane Hillston. LFCS, University of Edinburgh.
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Challenges

Gillespie’s multiscale SSA methods (2005)

SSA is used for slow reactions or species with small populations.
The multiscale SSA method generalizes this idea to the case in
which species with small population are involved in fast reactions.

Jane Hillston. LFCS, University of Edinburgh.
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Challenges

Gillespie’s slow-scale SSA methods (2005)

The setting for Gillespie’s slow-scale SSA method is

S + E
k1



k−1

C
k2

→ E + P

where
k−1 � k2

Slow-scale SSA explicitly simulates only the relatively rare
conversion reactions, skipping over occurrences of the other two
less interesting but much more frequent reactions.

Jane Hillston. LFCS, University of Edinburgh.
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Challenges

Comparing SSA and Slow-Scale SSA results
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Challenges

Conclusions

I Stochastic simulation is a well-founded method for simulating
in vivo reactions.

I Gillespie’s SSA can be more accurate than ODEs at low
molecular numbers; compatible with them at large molecular
numbers.

I Recent explosion of interest in the subject with many new
variants of the SSA algorithm.
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Challenges

Excellent introductory papers

T.E. Turner, S. Schnell, and K. Burrage.

Stochastic approaches for modelling in vivo reactions.

Computational Biology and Chemistry, 28:165–178, 2004.

D. Gillespie and L. Petzold.

System Modelling in Cellular Biology, chapter Numerical Simulation
for Biochemical Kinetics,.

MIT Press, 2006.
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Challenges

Stochastic simulation software

S. Ramsey, D. Orrell, and H. Bolouri.

Dizzy: stochastic simulation of large-scale genetic regulatory
networks.

J. Bioinf. Comp. Biol., 3(2):415–436, 2005.

http://magnet.systemsbiology.net/software/Dizzy
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Current Hypothesis

Some of the techniques we have developed over the last thirty
years for modelling complex software systems can be beneficially
applied to the modelling aspects of systems biology.

In particular formalisms which encompass support for

I Abstraction

I Modularity and

I Reasoning

have a key role to play.

Stochastic mechanisms are crucial for the dynamic analysis of
many phenomena so system descriptions should also capture such
mechanisms.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

SPN for Systems Biology

P.J.E. Goss and J. Peccoud

Quantitative modeling of stochastic systems in molecular biology by
using stochastic Petri nets

Proceedings of National Academy of Science, USA, Volume 95(12),
pp. 6750–6755, June 1998 (Biochemistry)

D. Gilbert and M. Heiner

From Petri Nets to Differential Equations — an Integrative
Approach for Biochemical Network Analysis

Proceedings of the 27th International Conference on Application and
Theory of Petri Nets, LNCS Volume 4024, pp. 181–200, June 2006.
(Biochemistry)
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Stochastic Petri Nets

Stochastic Petri Nets
Stochastic Petri nets (SPN) emerged as a modelling formalism for
performance analysis in the early 1980s.

They are based on untimed Petri nets which were developed in the
1960s for modelling and analysing causality, concurrency and
conflict within scheduling systems.

Molloy established that the reachability graph of a SPN can be
regarded as the state transition diagram of an underlying
continuous time Markov process.

Subsequently SPN were generalised in several ways e.g. immediate
transitions, inhibitor arcs, colours, arc functions, marking
dependent firings, input and output gates.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Molecular biology using SPN

Goss and Peccoud, writing for biochemists, explain the stochastic
Petri net (SPN) formalism and illustrate it through a number of
examples.

They highlight that the stochastic process resulting from the SPN
representation is equivalent to the chemical master equation.

They use the standard UltraSAN simulation tools to simulate their
models rather than an implementation of Gillespie’s algorithm.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Biochemical mapping

SPN entity Molecular interpretation

Place Molecular species
Token Molecule
Marking Number of molecules
Transition Reaction
Input place Reactant
Output place Product
Weight function Stoichiometry
To be enable A possible reaction
To fire A reaction occurs

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Simple example: 2R � R2

Dimerisation is the process of two molecules of the same species
binding to form a single molecule of the dimer species.

Monomerisation is the reverse process when a single dimer
disassociates into two individual molecules of the constituent
species.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Simple example: 2R � R2

n 0

t+

t−

R2R1

2

2

(dimerization)

(monomerisation)

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Stochastic Petri Nets

A remark about kinetics

The rate of a transition in the SPN is the stochastic rate constant.

This takes into account the volume, temperature, pH etc which
affect the rate at which the reaction takes place.

The rate of the reaction will be the stochastic rate constant c
multiplied by the number of the ways in which the reaction can be
formed from the current state.

For example, for dimerisation the rate will be
c × Nmonomer × (Nmonomer − 1).

Thus, marking dependent rates are used in the SPN.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Protein synthesis example

I A single gene is represented which is initially inactive, but may
later be activated.

I When the gene is activated protein may be produced.

I Once protein is produced it may be degraded.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Protein synthesis example

r − activation rate
s − inactivation
t − protein synthesis
u − degradation

Active gene

Inactive gene

Protein

s r

t u

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Stochastic Petri Nets

Model analysis

The authors discuss three approaches to analysis of the model:

I structural analysis;

I numerical analysis;

I simulation.

They consider numerical analysis and simulation for this example
but point out that in general state spaces are so large that
numerical analysis is precluded.

Jane Hillston. LFCS, University of Edinburgh.
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Stochastic Petri Nets

Numerical analysis

The authors use the input gates of SANs to limit the number of
protein molecules to 100.

Rewards are associated with places and transitions in order to
calculate the measures of interest — in this case the number of
protein molecules.

Transient and steady state analysis are conducted in UltraSAN
using both the numerical solver and simulation.

These are both compared against a symbolic solution of the
Kolmogorov equations for the same system previously derived by
Peccoud and Ycart.
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Stochastic Petri Nets

Analysis results: number of protein molecules

Mean Variance
Transient analysis (time t = 10)

Symbolic solution 1.488 1.858
Numerical solution 1.488 1.858

Simulation 1.481 +- 0.004 1.852 +- 0.011
Transient analysis (time t = 100)

Symbolic solution 7.202 8.334
Numerical solution 7.202 8.334

Simulation 7.171 +- 0.009 8.315 +- 0.039
Steady state analysis

Symbolic solution 8.333 9.487
Numerical solution 8.333 9.487

Simulation 8.333 +- 0.031 9.487 +- 0.100
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Stochastic Petri Nets

Conclusions

The authors found advantages in using a high-level stochastic
language (SPN) and supporting tool (UltraSAN):

I Allows the biologist to focus on the content of the model
rather than its implementation;

I Standard format facilitates replication, extension and
exchange of models between researchers;

I Existing solution engines produce results that can be related
to biological phenomena.
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Process Algebras for Systems Biology

Process Algebras for Systems Biology

Process algebras have several attractive features which could be
useful for modelling and understanding biological systems:

I Process algebraic formulations are compositional and make
interactions/constraints explicit — not the case with classical
ordinary differential equation models.

I Structure can also be apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.
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Process Algebras for Systems Biology

Process Algebra

I Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

I The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-SOS rules
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Process Algebras for Systems Biology

Calculus of Communicating Systems (CCS)

Introduced to capture the behaviour of concurrent programs, CCS
first appeared in the last 1970s.

α.P Prefix
P1 + P2 Choice
P1 | P2 Composition
P\L Restriction
P[f ] Relabelling

A
def
= P Constant or

fix(X = E ) Recursion
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Process Algebras for Systems Biology

Dynamic behaviour

I The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

I The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

I This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

I The language is also equipped with observational equivalence
which can be used to compare models.
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Process Algebras for Systems Biology

Observational Equivalence

In process algebra equivalence relations are defined based on the
notion of observability:

Processes are equivalent if they can match actions and arrive at
states that also match actions.
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PEPA

Performance Evaluation Process Algebra

I Models are constructed from components which engage in
activities.

(α, r).P
���* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language may be used to generate a Markov Process (CTMC).

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Performance Evaluation Process Algebra (PEPA)

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(determined by race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L concurrent activity

(individual actions)
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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PEPA

I Use of PEPA has focused primarily on signal transduction.

I Analysis may be conducted based on Continuous Time
Markov Chains, Ordinary Differential Equations and
Stochastic Simulation.

I The abstraction level chosen for PEPA is slightly different
from that for the stochastic π-calculus: rather than
associating a component with each molecule, we associate a
component with a species or a pathway.
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PEPA

Mapping biological systems to process algebra

There has been much work on the use of the stochastic π-calculus
and related calculi, for modelling biochemical signalling within cells

This work treats a molecule in a pathway as corresponding to the
component in the process algebra description.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

In our first mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).

In our second we focus on sub-pathways.
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PEPA

Alternative Mappings: illustration

Reagent mapping: Each species is a distinct component in the model
with local states to capture differing levels of concentration
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Alternative Mappings: illustration

Pathway mapping: Each sub-pathway is a distinct component in the
model with local states to capture progress through the pathway
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Alternative Mappings: illustration

Reasoning based on bisimulation equivalence is able to prove that
the two representations are equivalent.
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PEPA

Alternative Mappings: illustration

Different parts of the system may use different mappings, reflect-
ing perhaps the level of knowledge (data) available, or the primary
interests of the modeller.
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Dynamics of cell signalling

m 4

m 5

m 10m 9

m 6

k3/k4

k5

forward reaction
 (association)
with rate k3

backward reaction
(disassociation)
with rate k4

product formation
(disassociation)
with rate k5

concentration
(variable)

reagent (protein)

reagent
with initial concentration

(without initial
concentration)

I Bi-directional arrows denote both
forward and backward reactions;

I Uni-directional arrows denote
reactions which are disassociations.

I Each reagent has a variable
concentration, denoted mi .

I Each reaction has a corresponding
rate constant, e.g. k3, but the rate
at which the reaction takes place is
the product of this rate constant
and the current concentrations of
the used substrates.
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Example: The Ras/Raf-1/MEK/ERK pathway

m12

m 1 m 2

m 3

m 9

m 8

m 7 m 5 m 6 m 10

m 11

m 4

m13

k14

k15

MEK−PP ERK RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*

k12/k13

k8

k6/k7

k3/k4

k1/k2

k11

k9/k10

k5
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PEPA components of the reagent-centric model

m 3

m 4

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

k3/k4

k5

Raf-1∗/RKIP/ERK-PPH
def
=

(k5product, k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react, k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
=

(k3react, k3).Raf-1∗/RKIP/ERK-PPH

Each reagent gives rise to a pair of PEPA definitions, one for high
concentration and one for low concentration.
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PEPA components of the pathway-centric model

m 9

m 8

m 5

m 4

ERK

Raf−1*−RKIP/ERK−PP

ERK−PP

MEK−PP/ERK−P

k8

k6/k7

k3/k4

k5

Pathway30
def
= (k3react, k3).Pathway31

Pathway31
def
= (k5product, k5).Pathway32

+(k4react, k4).Pathway30

Pathway32
def
= (k6react, k6).Pathway33

Pathway33
def
= (k8product, k8).Pathway30

+(k7react, k7).Pathway32

For each reagent that has an initial concentration we define the
sub-pathway generated by the progression of that reagent.
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PEPA components of the pathway-centric model
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Commentary on the models

I Neither model currently “correctly” captures the rate of
interaction – concentrations are discretized and rates are
assumed to be constant within levels:

In these examples only
using high and low to modify rates in the sense of enabling or
disabling activities.

I The reagent-centric model can be regarded as a fine-grained
view of the system.

I The pathway-centric model can be regarded as a more
structural, coarse-grained view of the system.

I Applying the structured operational semantics reveals that
they are strongly bisimilar

(in fact, in this case, isomorphic).
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The state space

s21 s22 s15 s17

s16s14s20s19

s7 s8 s10 s12

s9 s11 s13

s6

s18s25 s23 s1 s3

s4s2s24s26

s28 s27 s5

k5product

k5product

k6react k6react k6react k6reactk7react k7react k7react k7react

k11product

k11product

k11product

k11productk11product

k11product

k11product

k15productk15productk15productk15productk15productk15product

k8product k8product k8product k8product

k9react

k9react

k9react

k9react

k10react

k10react

k10react

k10react

k10react

k10react

k10react

k9react

k9react

k9react k1react

k2react

k3react

k4react

k3react

k4react

k1react

k2react

k1react

k2react

k1react

k2react

k1react

k2react

k15productk15productk15product

k12react k12react k12react k12react k12react k12react

k13react k13reactk13reactk13reactk13react
k14product k14productk14product k14productk14product k14product
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The bisimulation

s1

(Raf-1∗H, RKIPH, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PL, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗L, MEK-PPH, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway40, Pathway30,

Pathway20, Pathway10)

s2

(Raf-1∗H, RKIPH, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PLRKIP-P/RPL, RPH, MEKH,

MEK/Raf-1∗L, MEK-PPL, MEK-PP/ERKL, ERK-PPH)

(Pathway51, Pathway40, Pathway30,

Pathway20, Pathway10)

s3

(Raf-1∗L, RKIPL, Raf-1∗/RKIPH, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PL, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗L, MEK-PPH, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway41, Pathway30,

Pathway21, Pathway10)

...
...

...

s28

(Raf-1∗L, RKIPL, Raf-1∗/RKIPL, Raf-1∗/RKIP/ERK-PPL,

ERKL, RKIP-PH, RKIP-P/RPL, RPH, MEKL,

MEK/Raf-1∗H, MEK-PPL, MEK-PP/ERKL, ERK-PPH)

(Pathway50, Pathway40, Pathway30,

Pathway20, Pathway10)
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PEPA

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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PEPA

Markovian analysis

I Analysis of the Markov process can yield quite detailed
information about the dynamic behaviour of the model.

I A steady state analysis provides statistics for average
behaviour over a long run of the system, when the bias
introduced by the initial state has been lost.

I A transient analysis provides statistics relating to the
evolution of the model over a fixed period. This will be
dependent on the starting state.

I Note, however, that a transient Markovian analysis is exact
because it takes account of all possible evolutions, unlike a
stochastic simulation which considers only one possible
evolution in each run.
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PEPA

Quantified analysis – k8product

Approximating a variation in the initial concentration of RKIP by
varying the rate constant k1, we can assess the impact on the
production of ERK-PP.

0.02

0.025

0.03

0.035

0.04

Throughput of k8product

2 4 6 8 10
k1

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

PEPA

Quantified analysis – k14product

Similarly we can assess the impact on the production of MEK-PP.
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PEPA

Deriving differential equation: overview

I The ODEs are the familiar mathematical model for the
biochemists.

I There should be one equation for each reagent/concentration,
indicating how the concentration varies over time.

I Standard solution tools are available for solution of this
equations, which are known and trusted by the biologists.

I From the reagent-centric PEPA model we can see the
influence of the reactions on each concentration – this is
recorded in a matrix termed the activity matrix.
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PEPA

Activity Matrix

For a pathway with R reactions and S reagents, the activity
matrix Ma is an S × R matrix, and the entries are defined as
follows.

(si , rj) =


+1 if

rj−→ si ∈ L
−1 if si

rj−→∈ L
0 if si

rj−→/∈ L
∪

rj−→ si /∈ L
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PEPA

Activity matrix for the MAPK pathway

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Raf-1∗ -1 +1 0 0 +1 0 0 0 0 0 0 -1 +1 +1 0
RKIP -1 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0

Raf-1∗/RKIP +1 -1 -1 +1 0 0 0 0 0 0 0 0 0 0 0
Raf-1∗/RKIP/ERK-PP 0 0 +1 -1 -1 0 0 0 0 0 0 0 0 0 0

ERK 0 0 0 0 +1 -1 +1 0 0 0 0 0 0 0 0
RKIP-P 0 0 0 0 +1 0 0 0 -1 +1 0 0 0 0 0

MEK-PP 0 0 0 0 0 -1 +1 +1 0 0 0 0 0 +1 -1
MEK-PP/ERK 0 0 0 0 0 +1 -1 -1 0 0 0 0 0 0 0

ERK-PP 0 0 -1 +1 0 0 0 +1 0 0 0 0 0 0 0
RP 0 0 0 0 0 0 0 0 -1 +1 +1 0 0 0 0

RKIP-P/RP 0 0 0 0 0 0 0 0 +1 -1 -1 0 0 0 0
MEK 0 0 0 0 0 0 0 0 0 0 0 -1 +1 0 +1

MEK/Raf-1∗ 0 0 0 0 0 0 0 0 0 0 0 +1 -1 -1 0
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PEPA

Deriving differential equations: activity matrix

k1 k2 k3 k4 k5 k6 . . . conc .

Raf-1∗ −1 +1 0 0 +1 0 . . . m1

RKIP −1 +1 0 0 0 0 . . . m2

Raf-1∗/RKIP +1 −1 −1 +1 0 0 . . . (m3)
Raf-1∗/RKIP/ERK-PP 0 0 +1 −1 −1 0 . . . m4

ERK 0 0 0 0 +1 −1 . . . m5

RKIP-P 0 0 0 0 +1 0 . . . m6

MEK-PP 0 0 0 0 0 −1 . . . m7

MEK-PP/ERK 0 0 0 0 0 +1 . . . m8

ERK-PP 0 0 −1 +1 0 0 . . . m9

...
...

...
...

...
...

...
. . .

dm3(t)

dt
= k1 m1(t)m2(t)−k2 m3(t)−k3 m3(t)m9(t) +k4 m4(t)
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PEPA

Differential equations

dm1(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k5m4(t)− k12m1(t)m12(t)

+k13m13(t) + k14m13(t)

dm2(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k11m11(t)

dm3(t)

dt
= k1m1(t)m2(t)− k2m3(t)− k3m3(t)m9(t) + k4m4(t)

...
...

dm13(t)

dt
= k12m1(t)m12(t)− k13m13(t)− k14m13(t)
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ODE Analysis
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PEPA

ODEs via PEPA

There are several advantages to be gained by introducing a process
algebra model as an intermediary to the derivation of the ODEs.

I The ODEs can be automatically generated from the
descriptive process algebra model, thus reducing human error.

I The formality of the process algebra model and its underlying
semantics allow us to derive properties of the model, such as
freedom from deadlock, before numerical analysis is carried
out.

I The algebraic formulation of the model makes clear the
interactions between the biochemical entities, or substrates.
The style of modelling is descriptive, close to informal
graphical representations that biochemists already use.
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Probabilistic model checking

The FGF Pathway

I Fibroblast Growth Factors (FGF) are a family of proteins
which play a key role in the process of cell signalling in a
variety of contexts, e.g. wound healing.

I The mechanisms for FGF signalling are complex and not yet
fully understood.

I The model incorporates protein-protein interactions,
phosphorylation, dephosphorylation, protein complex
relocation and protein complex degradation.
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The FGF Pathway

FGF

SOS

FGFR

FRS2

SRC

SPRY

GRB2

SOS

GRB2
SHP2

PLC

CBL

The binding of the
signalling protein
FGF to its receptor
FGFR triggers a
series of biochemical
reactions.
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Some notes about the model

The model is not intended to be a fully accurate representation.

Nevertheless it contains sufficient information to allow biological
hypotheses to be evaluated — it facilitates in silico
experimentation.

The abstraction has been guided by biological interests: the
reactions selected are those which are currently being actively
studied by the biologists.
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PRISM modelling of the FGF Pathway

I The PRISM model is written in the PRISM input language of
reactive modules. A companion model written in π-calculus
was developed at the same time and studied via simulation.

I In the model some elements are modelled in detail with a
separate state of the model for each possible state in the
biochemical process (c.f. previous work with the π-calculus).

I Other elements are represented more abstractly with different
biochemical states represented by distinct components which
have two possible states indicating only presence or absence
(c.f. PEPA high-low models).

I The focus of this paper is on the role that model checking can
have in testing biological hypotheses.
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Probabilistic model checking

Model checking the FGF Pathway

I PRISM is used to check properties of the CTMC underlying
the FGF model.

I Properties are expressed in the stochastic temporal logic CSL.
I For example:

I What is the probability that the protein A is bound to the
protein B at time instant T? P=?[trueU [T ,T ]ab = 1]

I What is the expected number of times that the proteins A and
B bind before A degrades? R+?[F(a = 0 ∧ ab = 0)] assuming
a reward of 1 is associated with any transition labelled by bind .

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Probabilistic model checking

Model checking the FGF Pathway

I PRISM is used to check properties of the CTMC underlying
the FGF model.

I Properties are expressed in the stochastic temporal logic CSL.
I For example:

I What is the probability that the protein A is bound to the
protein B at time instant T? P=?[trueU [T ,T ]ab = 1]

I What is the expected number of times that the proteins A and
B bind before A degrades? R+?[F(a = 0 ∧ ab = 0)] assuming
a reward of 1 is associated with any transition labelled by bind .

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Probabilistic model checking

Model checking the FGF Pathway

I PRISM is used to check properties of the CTMC underlying
the FGF model.

I Properties are expressed in the stochastic temporal logic CSL.
I For example:

I What is the probability that the protein A is bound to the
protein B at time instant T? P=?[trueU [T ,T ]ab = 1]

I What is the expected number of times that the proteins A and
B bind before A degrades? R+?[F(a = 0 ∧ ab = 0)] assuming
a reward of 1 is associated with any transition labelled by bind .

Jane Hillston. LFCS, University of Edinburgh.

Quantitative Evaluation of Biological Systems



Introduction to Systems Biology Biological Models Performance Techniques and Tools Summary

Probabilistic model checking

Model checking the FGF Pathway

I In the model a single instance of the pathway is represented.

I This results in a model with 80,616 states and over 560,000
transitions.

I The same signal dynamics were observed in a larger model
with 100 instances of each molecule which was studied using
simulation.

I Atomic propositions were defined over the model to capture
events of interest, for example when bindings have been
formed or degradation has been initiated.
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Probabilistic model checking

Analysis

In silico experiments were undertaken with the model for a number
of scenarios:

1 The pathway as illustrated consisting of FGF, FGFR (unbound
and unphosphorylated), FRS2 (unphosphorylated), SRC,
GRB2, CBL, PLC and SOS (all unbound) and SPRY arriving
after a delay.

2-5 The pathway with one of SHP2, SRC, SPRY or PLC removed.

Time series plots are generated by finding the probability of a
situation (e.g. GRB2 bound to FRS2) for varying values of T .

In this example GRB2 spends a smaller proportion of time bound
to FRS2 as time passes.
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Results: GRB2-FRS2 binding

I The binding of GRB2 to FRS2 is regarded as the signal of
interest.

I In the full model this is seen to very rapidly increase but then
decay.

I When SRC is missing there is a constant signal.

I When there is no SHP2 the signal reaches a higher peak at
the same speed but then decays more rapidly.

I When there is no SPRY the peak is reached as in the full
model but the decay is more gradual.
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Probabilistic model checking

Conclusions

The paper demonstrates that probabilistic model checking can be
useful for exploring the behaviour of biochemical pathways and
conducting in silico experiments.

The size of the system must be kept modest in order for the tool
to be able to work since an explicit representation of the underlying
continuous time Markov chain is needed.

The relationship between the single instance version of the model,
as used here, and the more realistic model with multiple copies of
each species, is yet to be formally established.
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Related work

Stochastic π-calculus

Stochastic π-calculus [Priami, 1995 ] extends the π-calculus with
exponentially-distributed rates.

0 Nil
(π, r).P Prefix
(ν n) P New
[x = y ]P Matching
P1 | P2 Parallel
P1 + P2 Choice
P(y1, . . . , yn) Definition

where π is either x(y) (input), xy (output ) or τ (silent).
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Related work

Stochastic π-calculus

I The stochastic π-calculus has been used to model and analyse
a wide variety of biological systems.

I Examples include metabolic pathways, gene transcription and
signal transduction.

I Currently all analysis is based on stochastic simulation
(Gillespie’s algorithm).

I Two tools: BioSPI and SPIM which implement slightly
different versions of the language.

I There has also been some work on a graphical notation
associated with the SPIM tool.
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Related work

Example: The VICE project

I The aim was to construct a minimal cell in silico in order to
track the dynamics of a complete metabolome.

I Thus a VIrtual CEll was defined as a stochastic π-calculus
model, which seems to behave as a simplified prokaryote.

I Started from a published minimal gene set which eliminated
duplicated genes and other redundancies from the smallest
known bacterial genomes. This was further reduced to 180
different genes.

I Experimental results were in accordance with those available
from in vivo experiments.

I Some extensions to the stochastic π-calculus were needed.
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from in vivo experiments.
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The current work on defining biology-specific process calculi has
focused on spatial aspects.
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components and how this impacts on their potential interactions.
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I Membranes are taken as primitives of the calculus:

I Systems consist of nested membranes;
I Membranes consist of collections of actions;
I Reactions happen only at the level of systems and are caused

only by actions on membranes.
I Actions may be bitonal actions of the membrane, binding or

release, or molecular interactions.
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Ambient Calculus which captures process location and
movement through computational domains [Cardelli and
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I An ambient is a bounded place where computation can
happen — within each ambient there may be component
processes and sub-ambients.

I Entities may enter or exit an ambient and ambients may
merge.
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Beta Binders

I Originating from the group of Corrado Priami and Paola
Quaglia at the University of Trento.

I Can be viewed as an extension of the π-calculus.

I Processes are encapsulated into boxes, that mimic biological
membranes, and have interaction sites, motifs, depicting
where molecules can bind together.

I The semantics give rules on joining and splitting boxes, as
well as the affinity between interaction sites.
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Future directions

On-going work

I System description techniques previously used for performance
analysis have been demonstrated to be useful abstractions of
a variety of biochemical systems.

I Particular emphasis is being paid to the use of abstraction and
reasoning about models.

I We are studying the relationship between population level
models, and more individual-focused models.

I In the future we plan to investigate the extent to which the
process algebra compositional structure can be exploited
during model analysis.
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Future directions

Models as Tools

When designing a modelling formalism it is important to consider
two key aspects:

I the ability of the formalism to capture the behaviour of
interest and the availability of data to instantiate the model;

I the amenability of the formalism to appropriate analysis.

What is the behaviour of interest and appropriate analysis depends
on the question or problem you are seeking to address.

It is not the case the models have to be completely faithful to their
subject in order to be useful.
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Future directions

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra
models for systems biology comes from both key aspects of
modelling:

I The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that
we should use semiquantitative models rather than
quantitative ones.

I Process algebra based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible is the state space is not prohibitively large.
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Future directions

Challenges of Systems Biology

I Biologists.

I Varied approaches to capturing and representing data.
I Unfamiliarity with notions of abstraction and quantification.
I Expectations.

I Scalability and tractability.
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Future directions

Conclusions

I Ultimately we want to understand the functioning of cells as
useful levels of abstraction, and to predict unknown behaviour.

I It remains an open and challenging problem to define a set of
basic and general primitives for modelling biological systems,
inspired by biological processes.

I Achieving this goal is anticipated to have two broad benefits:

I Better models and simulations of living phenomena
I New models of computations that are biologically inspired.

I Inclusion of quantitative/stochastic elements is essential.
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Thank You!
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