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Abstract. We outline a general approach to providing intensional mod-
els for languages with computational effects, whereby the problem of in-
terpreting a given effect reduces to that of finding an operator of higher
type satisfying certain equations. Our treatment consolidates and gener-
alizes an idea that is already implicit in the literature on game semantics.
As an example, we work out our approach in detail for the case of fresh
name generation, and discuss some particular models to which it applies.

1 Introduction

This paper explores a way in which computable operations of higher type can
be useful in giving denotational semantics for programming languages. In broad
terms, a denotational semantics for a language L consists of a mathematical
model of the behaviour of programs in L, given by assigning to each program
P a “meaning” [[ P ]] within some mathematical structure M which can be de-
fined and studied independently of the syntax of L. Not only does this result
in a rigorous mathematical definition of the programming language, but if M
itself enjoys good mathematical properties, these can be used to reason about
programs of L. Furthermore, a particularly well-behaved model M might even
inspire the design of a new and better programming language. For information
on the mathematical aspects of denotational semantics, we recommend [7].

Much of the foundational work in denotational semantics focused initially
on purely functional languages such as Plotkin’s PCF [26]. The essence of such
languages is that the behaviour of a program can be adequately modelled by a
mathematical function, so that the language is amenable to a denotational de-
scription in terms of some well-understood mathematical class of functions, such
as Scott’s partial continuous functionals of higher type. However, whilst such
purely functional settings are simple and mathematically appealing, virtually
all real-world programming languages abound in “impure” features that break
the simple-minded functional paradigm, such as exceptions, state, continuations,
fresh name generation, input/output and nondeterminism. It is therefore natu-
ral to seek appropriate mathematical theories for modelling such computational
effects (as they are generically known).



To date, there have broadly been two approaches to the denotational se-
mantics of computational effects. The first, and more widely established, was
pioneered by Moggi [20] in his investigation of the use of monads to model
effects of various kinds. Here, a term M : σ, possibly involving some compu-
tational effect, is modelled by an element not of the usual object [[σ ]], but of
some richer domain T [[σ ]], where T is a monadic functor chosen to match the
effect in question. For instance, we may take T (X) = X + E if the evaluation
of M may result in an exception drawn from the set E, or T (X) = (S × X)S

if the evaluation may have a side-effect on some state of type S, and so on. In
this way, an essentially “functional” treatment of programs is maintained, at the
cost of complicating the types of the functions involved: typically, a program
of type σ → τ will be modelled by a function of type [[σ ]] → T [[ τ ]] rather
than [[σ ]] → [[ τ ]]. The monadic approach has had a wide influence and some
notable successes — in particular, it underpins the model of effects employed
in the Haskell programming language [24]. More recently, a closely related ap-
proach has been developed by Plotkin and Power [27], emphasizing the primacy
of Lawvere-style algebraic theories rather than monads — this promises, among
other things, a more satisfactory account of how different computational effects
may be combined in a principled way.

By contrast, the second main approach (advocated explicitly in [1]) seeks to
model programs with effects not by functions of more complicated types, but
by more fine-grained, intensional semantic objects than ordinary mathemati-
cal functions — typically algorithms, strategies or even programs of some kind.
Such intensional notions of “computable operation” occasionally featured in the
earlier literature on higher types (e.g. the non-extensional type structures HRO
and ICF derived from Kleene’s first and second models respectively [30]); in the
computer science literature, an important early example was the sequential al-
gorithm model of Berry and Curien [8]. A wealth of further interesting models
were subsequently introduced by the literature on game semantics [5, 3, 4, 12],
where numerous full abstraction results were obtained for languages with con-
trol features, state, and non-determinism in various combinations (see [11] for
a survey, and [19] for a useful taxonomy of models). Whilst these intensional
models may appear unfamiliar at first, experience shows that many of them lead
to beautiful mathematical structures, carry a persuasive intuition, and (in the
author’s view) provide good candidates for notions of higher type computability
in the spirit of [16].

Although numerous examples of intensional models for languages with effects
have now been collected, they have so far not conformed to much of a general
pattern. Our purpose in the present article is to outline a somewhat uniform
approach to the interpretation of computational effects in intensional models by
means of operators of higher type. Particular instances of our approach may be
discerned in the existing literature on game semantics, but as far as we know, the
general idea has not hitherto been spelt out as a uniformly applicable method.
Our presentation will, moreover, be at a level of generality which renders the
ideas applicable to other intensional models besides game models.



The basic idea is as follows. Each kind of computational effect is typically
associated with some characteristic syntactic operators: e.g. raise and handle
in the case of exceptions; read and write in the case of store cells; new and
eq in the case of the generation of fresh names (with equality testing), and
so on. For the sake of discussion let us work with the example of fresh name
generation, though the same basic strategy will clearly make sense for many
other effects. In the context of a higher order (say call-by-value) language, we
may naturally ascribe types to the relevant operators: e.g. in the spirit of the
ν-calculus of Pitts and Stark [25], we have operations new : unit → name and
eq : name ∗ name→ bool. However, rather than attempting to model what these
operators actually do, let us choose to regard them simply as variables that may
appear in a term, with the same formal status as ordinary program variables.
Thus, no special technology is needed at this stage to model terms involving such
operators. However, in an intensional model, the denotation of such a term M
may typically record information concerning when, and in what order, the char-
acteristic operators are invoked, and how the results affect the subsequent com-
putation. This means that (in good cases) the denotation of M (or equivalently
of its closure M = λnew, eq.M) will in principle contain enough information to
determine how M would behave if genuine implementations of the appropriate
operators were supplied.1 Furthermore, in many cases, one can find within the
model itself a higher order operator Φ which transforms the denotation of M to
an element modelling the desired actual behaviour of M . One may informally
think of Φ as modelling the behaviour of the program λF. F New Eq, where New,
Eq are actual implementations of the relevant operators; note that such a Φ may
exist even though New, Eq themselves have no standalone interpretation in the
model.

This naturally raises the question: what properties must an operator Φ sat-
isfy in order to give rise to a correct semantics for fresh name generation? Our
“reference semantics” for freshness will presumably be derived from our opera-
tional understanding of New and Eq, but we would also like a denotational (e.g.
an equational) condition on Φ within the model which is sufficient and (ideally)
necessary for the soundness of our interpretation. An operator Φ satisfying this
condition may then be dubbed a freshness operator.

Having arrived at this general definition, it is then natural to ask which
particular intensional models possess a freshness operator. We may think of this
property as capturing something interesting about the innate computational
power of a model (somewhat akin, say, to the property of having a fixed point
operator or a modulus of continuity operator of some sort — see e.g. [30]), as well
as its potential usefulness in denotational semantics. Moreover, by formulating
this notion uniformly for a class of models, we facilitate the task of comparing
and classifying models, thus contributing to the author’s project of mapping out
the landscape of computability notions [16, 17].

1 In the case of store cells with read and write operations, this is very much how
the interpretation e.g. in [3] works; this is perhaps the clearest manifestation in the
existing literature of our basic idea.



Typically, our approach will work at its best for uses of computational effects
that are localized to some block of code M (cf. [15]). A program that makes
global use of some effect will be modelled as the denotation of an open term
with free variables for the characteristic operations; the operation of localizing
this effect then corresponds to abstracting over these variables and applying
the appropriate operator Φ. Whilst this in principle allows us to interpret both
complete “closed” programs and “open” fragments thereof, a common situation
will be that our interpretation is fully abstract for closed programs, but very far
from this for open ones.2 A natural methodology is therefore to focus initially
on the well-behaved situation for closed programs, and then to consider how
the benefits of our interpretation might be extended to open programs. We will
return to this issue in Section 4.

In the present article, we make a modest start on demonstrating the viabil-
ity of our programme, focusing in particular on name generation. This seems an
interesting example to consider for two reasons. Firstly, it cannot be straightfor-
wardly modelled by monads on familiar categories of domains. This led Moggi
originally to suggest using a monad on a functor category [21], an approach which
has subsequently proved rather difficult to combine with other language features
[28]. (In a different guise, functor categories are also an important ingredient in
the Plotkin-Power approach to name generation — see [27, 29].) Secondly, virtu-
ally all other efforts to model name generation have, in some way, made essential
use of another idea: that of a set of names acted on by a permutation group in
order to make them “indistinguishable” [28, 13, 2, 31]. These approaches have
achieved significant success, e.g. in terms of full abstraction results; however,
we believe it is also interesting to explore how much can be achieved without
resorting to the machinery of either functor categories or permutation actions.
In particular, our approach shows that many models of computation that have
proved to be of interest for other reasons (e.g. game models) already have what
it takes to model name generation without any specialized additional technology.

The rest of the paper is structured as follows. In Section 2 we sketch a general
framework (based on Moggi’s notion of a λc-model) within which the general idea
works out smoothly. In Section 3, as a concrete example, we consider the case
of fresh name generation in some detail, including the definition of freshness
operators and some technical results validating this definition. In Section 4 we
survey some particular examples of models in which freshness operators are
available, and in Section 5 we mention some avenues for further investigation.

The ideas in this paper arose rather naturally in the course of an attempt to
design a programming language based around the structure available in a certain
game model. For an account of this work in progress, see [18].

I am grateful to the CiE organizers for the invitation to present this mate-
rial, to the reviewers for their helpful comments, and to Ian Stark and Nicholas
Wolverson for valuable discussions. The research was supported by EPSRC
Grant GR/T08791: “A programming language based on game semantics”.

2 In the case of store cells, this is related to the problem of “bad variables” — see [3].



2 The general framework

Although we will not be using monads themselves to model effects, we are in-
debted to the monadic tradition for a general notion of (intensional) model that
is suited to our purposes. Because of the special role played by values (i.e. fully
evaluated expressions) in programming languages with effects, it is convenient
to frame our ideas in a call-by-value setting, and here a very suitable notion of
model is provided by Moggi’s work on computational λ-calculus [20]. The def-
inition is most compactly presented in categorical terms. Formally, a λc-model
is a category C with finite products, equipped with a strong monad (T, η, µ, t),
such that for any A,B ∈ C the exponential TBA exists (we henceforth denote
TBA by A ⇒ B).3 For convenience, we assume our λc-models come equipped
with objects 1, 2 representing unit and boolean types. We abbreviate f : 1 → A
to f ∈ A.

The intuition is that whereas an object A may serve for modelling values
of some type, the corresponding object TA will model more general expressions
of this type whose evaluation may involve some effect. (For a detailed expla-
nation of why strong monads are an appropriate choice of structure here, we
refer the reader to [22].) In Moggi’s work, one considers a range of different
monads to capture different computational effects. By contrast, here we will be
concerned almost exclusively with lifting monads representing potentially non-
terminating computations — the interest for us lies in varying the base category
C to capture different “levels of intensionality”. However, it is worth remarking
that computability models that are too finely intensional (such as those based
on Kleene’s models K1 and K2) fail even to be λc-models, and it is not clear
whether our approach can be made to work at all in these settings.

Rather than writing lengthy categorical expressions, we use shall use a famil-
iar lambda-calculus notation for denoting morphisms of C as in [14]; the precise
intention in any given instance will be clear from the types involved. We shall
supplement this with some meta-notation borrowed from [20]: we write [e] for
the inclusion of e : A into TA via ηA, and let x = e in e′ for the “Kleisli compo-
sition” of e and e′.4 The essential point about the latter is that it captures the
call-by-value discipline of forcing the evaluation of e whether or not x appears
in e′. We write let a = er in e′ to abbreviate let a1 = e in · · · let ar = e in e′.

We also introduce some syntactic machinery intended to embody the general
notion of a “programming language interpretable in C”. We represent the syntax
of such a language as a category à la Lawvere, with composition corresponding
to syntactic substitution. Formally, an object language L consists of:
3 The “mono requirement” mentioned in [20] is not needed for our purposes.
4 More precisely, if e is a meta-expression of type TA involving metavariables yi : Ci,

and e′ a meta-expression of type TB involving metavariables yi : Ci and x : A, then
let x = e in e′ denotes the morphism

ΠCi
〈id,e〉−→ ΠCi × TA

tΠCi,A−→ T (ΠCi ×A)
Te′
−→ T (TB)

µB−→ TB

For a more formal treatment, see [22].



– a collection of types σ, τ , equipped with binary operations ∗,→ and including
for convenience the types unit and bool;

– a category with finite products whose objects are finite tuples of types
(σ1, . . . , σn) (the product of two objects being their concatenation as tu-
ples).

Morphisms (σ1, . . . , σn) → (τ) should be thought of as equivalence classes of
terms-in-context x1 : σ1, . . . , xn : σn ` M : τ modulo renaming of variables.
We shall generally use terms-in-context to denote morphisms of L and blur
the distinction between the two notions. We shall also require that there are
constant terms 〈 〉 : unit and tt, ff : bool, and for each σ, τ there exist pairing
and application terms x : σ, y : τ ` 〈x, y〉 : σ ∗ τ and f : σ → τ, x : σ ` f • x : τ .
(We warn the reader against confusion between the object language syntax and
the meta-notation conventions introduced above.)

A programming language will be an object language L endowed with an
operational semantics which includes a notion of “symbolic evaluation” for open
terms as well as the usual notion of evaluation for closed terms. Formally, we
shall require:

– for each Γ, τ , a reflexive-transitive evaluation relation � (more properly
written Γ ` − � − : τ) on terms Γ ` M : τ ;

– for each Γ, σ, a set of terms of L in context Γ,− : σ designated as evaluation
contexts E[−] (where ‘−’ is a distinguished free variable).

In typical cases, these will satisfy further properties, e.g.:

– if M � N and E[−] is an evaluation context then E[M ] � E[N ];
– for any Γ, τ, Γ ′, the term Γ,−, Γ ′ : τ ` − : τ is an evaluation context;
– if E[−], E′[−] are appropriately typed evaluation contexts then so is their

evident composition E′[E[−]];
– for any M and x, the terms −•M , x•−, 〈−,M〉 and 〈x,−〉 (in any suitable

context Γ,− : τ) are evaluation contexts.

A language satisfying these properties will be called standard. Surprisingly, how-
ever, none of these properties will be required for our main results.

An interpretation of types of L in a λc-model C is a mapping [[− ]] from types
of L to objects of C satisfying the expected properties: [[ unit ]] = 1, [[ bool ]] = 2,
[[ nat ]] = N , [[ σ ∗ τ ]] = [[σ ]] × [[ τ ]], [[σ → τ ]] = [[σ ]] ⇒ [[ τ ]]. By convention, if
Γ = x1 : σ1, . . . , xr : σr we write [[ TΓ ]] for the object T [[σ1 ]] × · · · × T [[σr ]].
Note the appearance of T here, which contrasts with the modelling of contexts
e.g. in [20]. This reflects the fact that the role of variables here is purely to allow
us to talk about the compositional structure of terms rather than to model any
kind of object-level variable binding.

Relative to such a mapping, an interpretation [[− ]] of L maps each term
Γ ` M : τ of L to a morphism [[ M ]]Γ : [[ TΓ ]] → T [[ τ ]], in such a way that

– variables, constants, application and pairing receive the expected (left-strict)
interpretation, and the evident weakening and contraction properties hold;



– [[− ]] is compositional : that is, if ∆i ` Ni : σi for each i (with the ∆i disjoint)
and Γ = x1 : σ1, . . . , xr : σr ` M : τ , then

[[M [N/x] ]]∆ = [[M ]]Γ ◦ ([[N1 ]]∆1 × . . .× [[Nr ]]∆r )

– if Γ,− : σ ` E[−] : τ is an evaluation context then [[ E[−] ]]Γ,−:σ is strict in
‘−’, that is:

[[E[−] ]](x, y) = let z = y in[[E ]](x, [z])

Clearly, a global interpretation gives rise to a functor L → C which preserves
finite products. Note, however, that products in L do not correspond to object-
level product types, the difference being that between TA× TB and T (A×B).

An interpretation [[− ]] is called sound if Γ ` M � N implies [[ M ]]Γ =
[[N ]]Γ . We also say [[− ]] is sound for a class T of L-terms if this property holds
whenever M ∈ T .

3 Fresh name generation

As our main example, we now work out our approach in some detail for the case
of fresh name generation in the spirit of the ν-calculus. We first present our op-
erational understanding of name generation by describing how any programming
language L may be extended to a language L+ with (localized) name generators.
We then investigate the conditions under which an interpretation for L may be
extended to one of L+.

First, let us assume for convenience that our original object language L comes
already equipped with an infinite supply of name types, ranged over by ν. (These
types need play no active role in L beyond what is implied by the fact of being
a finite-product category.) We may then freely extend L (as a finite-product
category) to a language L+ by means of the following term formation rule:

Γ, new : unit→ ν, eq : ν ∗ ν → bool, a1 : ν, . . . , ar : ν ` M : τ

Γ ` genν ,new , eq , (a1, . . . , ar) in M : τ
ν 6∈ Γ, τ

where ν ranges over name types and new , eq ,a may be any variables.5 If G ⊆
T is any set of types, we also obtain a restricted language L+

G by requiring
that τ ∈ G in the above rule. This construct allows us to introduce a localized
name generator with characteristic operations represented by new and eq , whose
generated names are prevented by the type system from being confused with
names arising from other generators. (The side-condition also ensures that the
generated names cannot leak out of their scope.) This kind of potentially nested
block structure sets the pattern for our general approach to localized effects; in
the present context it also models the situation e.g. in Standard ML, where a
5 We regard ν,new , eq , a as being bound by this construction, and should also require

in the above rule that they do not occur bound within M itself. Technically, we view
α-equivalent expressions as defining the same term in L+, so that for the purpose of
substitution and evaluation we may freely apply α-conversion as necessary.



local datatype declaration implicitly introduces a localized name generator for
the corresponding ref type. The ai play the role of names that have already
been created using the generator in question, and which may feature in M .

We let E∗[−] range over L+-substitution instances of evaluation contexts in
L, and let G[−] range over gen-contexts: that is, compositions of zero or more
contexts of the form gen new , eq , (a) in −. As evaluation contexts of L+ or L+

G ,
we take all contexts of the form G[E∗[−]] (note that these are not closed under
composition), and let F [−] range over these. As an operational semantics, we let
�+ be the evaluation relation generated by the following:

– if M � N in L and P is a list of L+-terms, then G[M [P /x]] �+ G[N [P /x]];
– genν new , eq , (a) in F [new •〈 〉] �+ genν new , eq , (a, b) in F [a′] (a′ fresh);
– genν new , eq , (a) in F [eq • 〈ai, ai〉] �+ genν new , eq , (a) in F [tt];
– genν new , eq , (a) in F [eq • 〈ai, aj〉] �+ genν new , eq , (a) in F [ff] (i 6= j);
– G[E∗[genν new , eq , (a) in M ] ] �+ G[genν new , eq , (a) in E∗[M ] ];
– G[genν new , eq , (a) in M ] �+ G[M ] if new , eq ,a do not appear in M .

We will take the definition of �+ as our reference semantics for fresh name
generation, and ask when an interpretation in a λc-model accords with this. The
last of the above rules is a “garbage collection rule” — the definition of �+

admits some non-determinism regarding exactly when this rule is to be applied,
but this does not matter for our purposes, since Propositions 1 and 2 below will
apply a fortiori to any reduction strategy included in �+. Note also that if L
is standard, the following are always evaluation contexts:

new • − eq • 〈−,M〉 eq • 〈ai,−〉

and this enables us to make progress with the evaluation of programs such as

genν new , eq , () in eq • 〈new • 〈 〉, (fn x =>new • 〈 〉) • 〈 〉〉

Next, suppose we are given an interpretation [[− ]] of L in C, and assume
for simplicity that [[ ν ]] is the same object Aname for all name types ν. Let
Anew = 1 ⇒ Aname and Aeq = Aname ×Aname ⇒ 2. Suppose moreover that for
each τ ∈ G we are given some operator Φτ ∈ (Anew ⇒ Aeq ⇒ [[ τ ]]) ⇒ [[ τ ]], and
let Φ denote the indexed family {Φτ | τ ∈ G}. Relative to Φ, we may define an
interpretation [[− ]]Φ for terms of L+

G as follows:

– [[M ]]ΦΓ = [[ M ]]Γ if Γ ` M : τ in L;
– [[ genν new , eq , (a1, . . . , ar) in M ]]ΦΓ is taken to be

λx : [[ TΓ ]]. Φτ (λnew, eq. let a = (new 〈 〉)r in
[[M ]]ΦΓ ′ (x, [new], [eq], [a1], · · · , [ar]))

where Γ ′ = Γ, new : unit→ ν, eq : ν ∗ ν → bool, a1 : ν, . . . , ar : ν;
– [[− ]]Φ extends to arbitrary terms of L+

G via compositionality.



Under what conditions is this interpretation a reasonable one? We propose
the following semantic definition; note that only equations between higher type
operators are involved. For readability, we take a few small liberties in our meta-
notation, e.g. writing f new eq 〈b, a〉 in place of let f ′ = f in f ′ new eq 〈b, a〉.

Definition 1. A freshness operator for a type τ is an operator Φτ ∈ (Anew ⇒
Aeq ⇒ [[ τ ]]) ⇒ [[ τ ]] satisfying the following equations.

1. If Ag = T [[ τ ]] then

λg : Ag. Φτ (λnew, eq. let a = (new 〈 〉)r in g) = λg : Ag. g

2. For all r and all i ≤ r, if Af = T (Anew ⇒ Aeq ⇒ (2×Ar
name) ⇒ [[ τ ]]) then

λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in let b = eq (ai, ai) in f new eq 〈b, a〉)
= λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in f new eq 〈tt,a〉)

3. For all r and all i, j ≤ r with i 6= j, if Af is as above then

λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in let b = eq (ai, aj) in f new eq 〈b, a〉)
= λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in f new eq 〈ff,a〉)

Although a certain amount can be achieved even with a single freshness
operator, more can be done with a family of such operators that fit well together.
A family Φ = {Φτ | τ ∈ G} of freshness operators is called coherent if for any
σ, τ ∈ G, writing Ac = T [[σ → τ ]] and Ap = T (Anew ⇒ Aeq ⇒ [[σ ]]) we have

λc : Ac. λp : Ap. Φτ (λnew, eq. let x = p new eq in c x)
= λc : Ac. λp : Ap. let x = Φσp in c x

(In particular, the Φτ form a natural transformation (Anew ⇒ Aeq ⇒ −) → −
considered as functors on the relevant portion of the Kleisli category CT .)

We now state a series of results which collectively validate the above defini-
tions, and also confirm the appropriateness of our framework as a whole. (We
omit the rather straightforward proofs.) We henceforth assume a fixed sound
interpretation [[− ]] of L in C. By a primary term we mean an L+-term of the
form G[M ] where M ∈ L.

Proposition 1. (i) If Φτ is a freshness operator for τ , then [[− ]]Φ as defined
above constitutes an interpretation of L+

{τ} which is sound for primary terms of
type τ .

(ii) Moreover, if Φ is a coherent family of freshness operators for G, then
[[− ]]Φ is a sound interpretation of L+

G .

As an immediate consequence, we have the following:

Proposition 2. (i) Suppose Φ is a freshness operator for τ , M is a closed pri-
mary term of type τ , and N a closed L-term of type τ . Then ∅ ` M �+ N : τ ,
implies [[M ]]Φ = [[ N ]].

(ii) Suppose Φ is a coherent family of freshness operators for G, M is an
arbitrary closed L+

G -term of type τ ∈ G, and N a closed L-term of type σ. Then
∅ ` E[M ] �+ N implies [[E[M ] ]]Φ = [[ N ]].



The moral of Proposition 2 is roughly as follows. Typically, we will be inter-
ested in languages L with a designated class of syntactic values V , and a class of
ground types γ with the property that a value V of ground type cannot contain
any variables new , eq , ai with types as above. Thinking of N in Proposition 2
as ranging over values, the proposition implies (in typical cases) that to obtain
a sound interpretation for programs containing only gen expressions of ground
type, the existence of the corresponding freshness operators is sufficient; how-
ever, to give an interpretation programs involving non-ground type localizations
which correctly accounts for ground type observations on them, coherence is
required. This phenomenon is not special to the case of name generation, but
appears to be typical of our approach.

The converse half of computational adequacy requires stronger hypotheses,
such as a “syntactic continuity” property, though we will not go into the de-
tails here. For our present purposes, a more interesting kind of converse is the
following, which can be seen as validating our definition of freshness operator:

Proposition 3. (i) Suppose Φτ is an operator such that for every programming
language L′ with a sound interpretation [[− ]]′ in C (agreeing on types with [[− ]]),
the interpretation [[− ]]′Φτ of L′+

{τ} is sound for primary terms of type τ . Then
Φ is a freshness operator for [[ τ ]].

(ii) Suppose Φ is a family of operators over G such that for every program-
ming language L′ with a sound interpretation [[− ]]′ in C, [[− ]]′Φ is a sound
interpretation of L′+

G . Then Φ is a coherent family of freshness operators.

Note also that in the above setting, the freshness operators are themselves
syntactically definable in L+, since Φτ = [[ genν new , eq , () in (− • new • eq) ]]Φ.
In fact, it seems reasonable to suppose that for any natural interpretation of
L+, the operator defined in this way will be a freshness operator. Thus, if we are
seeking to interpret a language with name generation in an intensional model,
little or no useful generality appears to be lost by assuming the existence of
freshness operators.

4 Models

We now briefly review what we know concerning particular λc-models that pos-
sess freshness operators. Firstly, any of the known game models that suffice for
modelling local store of integer type (see e.g. [5, 3, 6]) will also yield a model for
fresh name generation according to our scheme, for the simple reason that (tak-
ing names to be just integers) a freshness operator may be readily implemented
using a local integer store cell. (Note that the game models in question may be
transformed into suitable λc-models by means of a standard construction [4].)

Some idea of the landscape may be gained by considering a few particular
game models that are relatively simple to construct. We content ourselves here
with a bare sketch of the relevant points, referring to the literature for further
details. Let G denote the basic game model introduced by Lamarche (see [10]):
here, a game G consists of sets OG, PG of opponent and player moves respectively,



together with a non-empty prefix-closed set LG of legal positions of the form
o1p1 . . . onpn (n ≥ 0) or o1p1 . . . on (n ≥ 1), where oi ∈ OG, pi ∈ PG. Such
games (with suitable morphisms) form a symmetric monoidal closed category,
on which one may consider several different linear exponentials ‘!’ embodying
different notions of “reusability”. From any of these exponentials we may obtain
a category G! with the same objects as G, in which morphisms G → H are simply
morphisms !G → H of G. This gives a cartesian-closed category with a lifting
monad, and hence a suitable λc-model.

Some exponentials of particular interest are the following (cf. [19]):

– The “Lamarche exponential” !1. Here moves in !1G are certain finite sub-
trees of LG, and a play in !1G consists of an “exploration” of LG in which
one new position s ∈ LG is added to the subtree at each stage. From the
corresponding category G!1 one recovers essentially the world of sequential
algorithms [10]. However, this does not yield a model for either ground type
store or freshness, essentially because repetitions of earlier moves are not
accounted for in !1G.

– The (more powerful) “Hyland exponential” !2 of [12]. Here !2G essentially
consists of ω copies of G side by side, with the stipulation that one cannot
play a move in the (i + 1)th copy unless one has already played in the ith
copy. The category G!2 gives a good model for ground type store and more
besides [32], and in particular has a coherent family of freshness operators.

– A still more powerful exponential !3 may be defined, where plays in !3G
explore trees of justified sequences of moves in G. This essentially coincides
with the exponential given in [5], except that we do not impose a visibility
condition on our plays. Again, the corresponding model supports ground-
type store and freshness operators.

We are also aware of one model which is not a game model, and which
supports freshness operators but not local store. This provides an encouraging
sign that our general approach is applicable beyond the class of models that
motivated it. The model in question is based on a “resource-sensitive” model for
linear logic, in which multisets are used to keep track of the number of times
some argument is invoked in a computation, but without imposing a temporal
order on these invocations as the game models do. Specifically, we have in mind
the category MRel, whose objects are sets and whose morphisms f : S → T are
relations f ⊆Mf (S)×T , where Mf (S) is the set of finite multisets over S. (An
explicit description of this category and its cartesian closed structure is given
in [9].) We may also endow MRel with a (rather crude) lifting monad which
simply adds to each set a new token ∗ signalling “definedness”, and again apply
the construction of [4] to obtain a λc-model. Within this model, it is possible to
“probe” an operation p : Anew ⇒ Aeq ⇒ X in order to discover what it does
when all invocations of Anew yield different answers. Using this idea, we obtain
a coherent family of freshness operators within the model.

We now return to the question of full abstraction mentioned in the Introduc-
tion. According to the setup of Section 3, if the interpretation [[− ]] of L in C



satisfies full abstraction and definability, then so will the resulting interpretation
[[− ]]Φ of L+. However, this relies on the fact that, in L+, the characteristic oper-
ators new and eq are just ordinary variables, whereas in more realistic languages
they will be hard-wired in as language primitives, as in the original ν-calculus
[25]. In the latter case, we can still get a semantic interpretation

M : σ 7→ [[M ]] ∈ Anew ⇒ Aeq ⇒ [[σ ]]

by treating new and eq as free variables, though this will (in game models, for
instance) not even validate such simple observational equivalences as

let (x,y)=(new(),new()) in M ' let (y,x)=(new(),new()) in M

To do better than this, an alternative (and still compositional) interpretation

M : σ 7→ [[M ]]† ∈ (Anew ⇒ Aeq ⇒ T [[σ ]] ⇒ 1) ⇒ 1

may cheaply be defined from [[− ]] as follows:

[[M ]]† = λP. Φ (λnew, eq. (P new eq)([[M ]] new eq))

In typical models, [[− ]]† will validate simple equivalences such as the one above,
at least at low types. Whether a fully abstract semantics for (extensions of) the
ν-calculus can be given along these lines is an interesting outstanding question.

5 Further work and conclusions

The next step in our programme is to carry out a similar analysis for other com-
putational effects. We have informally verified that a similar story can be told
for exceptions and for (ground or higher type) local store. In the case of excep-
tions, two options are available. The first is to consider fourth-order exception
operators of types such as

(Araise ⇒ Ahandle ⇒ [[ τ ]]) ⇒ [[ τ ]]

where Araise = 1 ⇒ 1 and Ahandle = (1 ⇒ [[σ ]]) ⇒ (1 ⇒ [[σ ]]) ⇒ [[σ ]]. This
affords a very general treatment of exceptions allowing us to model complex
dynamic scoping phenomena; however, the relevant exception operators are only
available in relatively powerful game models such as G!3 . Another option is to
restrict attention to a somewhat more disciplined class of uses of exceptions, in
which an independent raise operator is eschewed and instead the first argument
to handle explicitly incorporates the relevant invocations of raise: consider e.g.
A′

handle = ((1 ⇒ 1) ⇒ [[σ ]]) ⇒ (1 ⇒ [[σ ]]) ⇒ [[σ ]]. This conveniently accounts
for those uses of exceptions that can be reasonably modelled e.g. in G!1 , and also
gives us the rare pleasure of finding a use for a fifth-order operator!

An important difference arises when one considers local store. Whilst a sensi-
ble notion “store cell operator” may be formulated, it turns out that non-trivial



coherent families of such operators never exist. The issue here is that programs
of non-ground type involving local store can define functions with persistent in-
ternal state, which may behave differently each time they are called, and one
cannot hope to model such a thing in a λc-model. However, it turns out that one
can do better on this front by working in a linear rather than an intuitionistic
framework, as is often done in game semantics to account for stateful behaviour
(see e.g. [32]).

We also expect a similar treatment of continuations to be possible using
suitable higher order operators. However, our approach seems to have very little
to offer in the case of non-determinism or input/output, since there is no evident
specification for the relevant operators in these cases.

Once some further instances of our approach have been worked out, a detailed
comparison of the merits and demerits of the monadic (or algebraic theory) and
intensional approaches will be possible. There is, however, one suggestion we
would like to make at this stage. In the monadic approach, each effect featur-
ing in a complex language typically requires a separate increment to the model
construction. Moreover, if local state is to be treated, maybe functor categories
must also be added to the mix; for name generation, perhaps nominal sets are re-
quired too. By contrast, in the intensional approach, one may be able to account
for all these effects using operators that are naturally to hand in a single model
— indeed, it seems that there are fairly simple models (such as G!3 , or more
accurately its linear counterpart) that support virtually all the effect operators
one might hope for. If this is so, we regard it as an important point in favour of
intensional semantics.

Finally, we note that there are some tantalizing resemblances between our
approach and the mechanism employed in Haskell for localization of effects using
the runST operator [15, 23]. It would be interesting to explore this connection.
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