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Motivation

Why investigate game semantics for object oriented languages at all?

e Game semantics can model stateful computation.

e Game semantics is good for data abstraction. We can interpret an object as
a strategy for its externally observable behaviour, and gain a full abstraction

result.

Our approach is to start from a simple category of games %, then give an
object-oriented language which can naturally be modelled in that setting, and
which captures the behaviour present there.
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Language
+ Class-based (but classes are treated as a derived notion)
+ Inheritance
+ Shared mutable state
- No names. No object equality, or cyclic heap topology.

- Sequential computation.

However, coroutines can be added for limited concurrency.
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Talk outline

e The language

e Operational semantics
e Game semantics

e Proof of soundness

e Future work (FA/universality)
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Language

We give an affine CBV A-calculus, with contraction for certain reusable types,
namely basic types and objects.

Types:
7,0 = N|TMQ®m|m — 7|
Obj {my: 11,...,mpn: Tn}
Terms:
e = c, |ifz ethen e; else ey |
(e1,e2) | let (z,y) beeyines | Ax.e | e1 ey |
obj {mi=-¢e1,...,m, =en} | em|Y(e)| constr e; e

Objects are approximately considered reusable (stateful) records of functions.
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Classes

A class is a collection of named methods with open recursion through self,
allowing for inheritance.

A method implementation for m: 7 — 7’ in a class with state type o is given as
a state-transforming function

m:a®7%a®7'

So state is effectively read from before a method invocation, and written to after.
For now we consider o to be a basic type, that is a product of ground types.
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Representation of classes

We do without explicit classes in our approach, treating them as a derived
construct.

Consider a class as its step function, effectively a recursive definition of the

resulting object, left “open” for class extension, and “closed” up at object
creation time.

Class (o,v;m: Ty, = T} Ymex
A
Obj {m: 0@ YT, > VYR T )mex —
Obj {m: 0 @Y® T = YO 7)) mex
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constr

Construction of stateful objects:

C'Fec:O0Obj{m:c@YR Ty, > 7R7 tmeca AlFe:o®vy
['At constr ce: Obj {m: 7, = 7/ }mea

basic(y), re(o)

Given a state-transforming object giving the implementation of the desired object,
constr constructs a new object with the desired behaviour, internalising the
specified stateful behaviour.

From this, define:
new c e ~ constr Y (c) e
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Class extension

We may extend a step function for the superclass to one for the subclass:

extend c with (¢) {m = e, }meB
m = (cs).m, mec A\B }

m = e, meRB

\¢. obj {

This definition allows the addition of new methods when subclassing, but does
not cover adding new state, which would require an extension to our language
such as parametric polymorphism.
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Operational Semantics

We give an operational semantics with heaps. Heaps grow rightwards, and shall
be acyclic (only leftward pointers).

The two key rules:

hoec h'sve h'yey B, v,
h,constr e. es | h"'[l — (vs, V)], 1

[ fresh

h,er § A';lom R vem (v,,vs,e2) U A", (v, v
h,e1 ea | B[l — {{vo, VL), ve)], v

D (1) = ({00, v3), ve)
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Games

We take a category & of games, where a game is (M, Aa, Pa) for move-set

M4, O/P labelling A4 and a set P4 of permitted plays. Strategies o : A are
suitable sets of plays from Pj4.

Further define games
e A ® B: interleaving of play in A and B, allowing interference
o A&B: play in either A or B (opponent chooses)

¢ A— B: as A® B but with O/P switched in A

o !A = uX. A X: linear exponential allowing reuse, as an infinite ordered
product of the game A
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Games ||

A restriction of the Fam(—) construction gives us the category & to model values.

The structure required to model our language comes in the form of three broad
classes of strategies:

e Static copycat strategies (v: AQ B — B® A)
e Content-independent dynamic copycat strategies (d: !A —!A®!A)

e Content-dependent dynamic strategies (to model constr)
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Denotational Semantics—Thread

Central in our denotational semantics is the definition of [constr c v]. We define
thread: S @ (S ® X — (S®Y),) =»(X —Y))

by a recursively defined, highly dynamic strategy. Consider sequential method
invocations—state is threaded through successive method calls, or in other words
through successive components of the “!"

However, even in a sequential context, multiple method invocations can be active
simultaneously, so this is not sufficient.
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Thread I

Non-sequential method invocations may occur during interaction with a method
argument, since a method argument may contain a reference to the object in
question.

A

Our concrete definition of thread is given categorically by a few complicated
diagrams involving structure associated with !, and a dynamic branch operation.
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Soundness
Given an interpretation of [e]|([h]), we wish to show

Theorem 1. [Soundness] [Ifh,e | h',v then [e]([R]) = [v]([h']).

The operational semantics is given for expressions in heaps, but the denotational
semantics does not mention heaps. Interpret a heap cell (I — (c,v)) as
constr ¢ v, and the location [ in e as a free variable which will be bound

to that object. Essentially,

[(l = (c,v)),e] = [let | be (constr ¢ v) in €]

Proof of the above is surprisingly hard, but worthwhile.
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A naive approach
Assuming h, e |} h’,v consider interaction [h]||[e]. Want

gsat € [h]||[e] < qat € [R]||[v]

where s takes h to h’.

[A]1Iel [A'T1I[v]

q q
E a
s s
t
a .
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Oops

But consider the simple case of pairing:

It's not enough! We need to consider potential future states.

hoei 4 hi,vi hi,ea ) h’ﬂiz
h, <€1, €2> U n, <7117 U2>

[PIlIler]  [h1lliTea] [R]IIT{eq, e2)]
Iq Iq Iq
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A construction on strategies

We define a construction on strategies for expressions as depicted here, and a
corresponding construction on strategies for heaps.

[A][Le] le] [e]s
Zq 9
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Definition (Simplified)
It is a general fact that

[el ([2]) = lels([n]°)

so the following definition satisfies our soundness requirements:

Lemma 2. [Soundness] /f h,e || h',v then dqsa € [h]||[e] with [e]s = [v]
and [h]* = [h'].

This definition separates the immediate interaction with the given heap from the
potential future interaction with some descendant heap.

Proof is then by induction on the operational semantics derivation.
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Soundness Complications

Complications for soundness proof:

e New state

e Suspended computation in heap

e Result dependent on heap

e Argument interaction and externally mediated recursion

e Substitution
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Further work

We have not proved other (completeness) direction of adequacy—use logical
relations.

Full abstraction and universality—we hope to prove our interpretation satisfies
these properties. Our plan is to construct a program of the following type

interpret_: Obj {step: N - N} — 7
with the property that
Ve : Obj {step: N — N},a:1 — [7]. (e codes a) = [interpret_e] =a

and construct a proof of both universality and full abstraction with respect to the
well-bracketed version of our model.
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Language extensions
e Control operators (coroutines) and non-wb games
e Subclass state extension
e Pointer update
e Pointer capture

e Names etc.
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