Game semantics for object-oriented languages:
a progress report

John Longley and Nicholas Wolverson

10 Aug 2006

o School of
informatics

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

Motivation

Why investigate game semantics for object oriented languages at all?

e Game semantics can model stateful computation.

e Game semantics is good for data abstraction. We can interpret an object as
a strategy for its externally observable behaviour, and gain a full abstraction

result.

Our approach is to start from a simple category of games %, then give an
object-oriented language which can naturally be modelled in that setting, and
which captures the behaviour present there.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

Language
+ Class-based (but classes are treated as a derived notion)
+ Inheritance
+ Shared mutable state
- No names. No object equality, or cyclic heap topology.

- Sequential computation.

However, coroutines can be added for limited concurrency.

® School of _ o
= iInformatics

J. Longley and N. Wolverson Game semantics for object-oriented languages

n.wolverson@ed.ac.uk

® School of _ e
= informatics

Talk outline

e The language

e Operational semantics
e Game semantics

e Proof of soundness

e Future work (FA/universality)

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
= informatics

Language

We give an affine CBV A-calculus, with contraction for certain reusable types,
namely basic types and objects.

Types:
7,0 = N|TMQ®m|m — 7|
Obj {my: 11,...,mpn: Tn}
Terms:
e = c, |ifz ethen e; else ey |
(e1,e2) | let (z,y) beeyines | Ax.e | e1 ey |
obj {mi=-¢e1,...,m, =en} | em|Y(e)| constr e; e

Objects are approximately considered reusable (stateful) records of functions.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ e
= iInformatics

Classes

A class is a collection of named methods with open recursion through self,
allowing for inheritance.

A method implementation for m: 7 — 7’ in a class with state type o is given as
a state-transforming function

m:a®7%a®7'

So state is effectively read from before a method invocation, and written to after.
For now we consider o to be a basic type, that is a product of ground types.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ e
= iInformatics

Representation of classes

We do without explicit classes in our approach, treating them as a derived
construct.

Consider a class as its step function, effectively a recursive definition of the

resulting object, left “open” for class extension, and “closed” up at object
creation time.

Class (o,v;m: Ty, = T} Ymex
A
Obj {m: 0@ YT, > VYR T)mex —
Obj {m: 0 @Y® T = YO 7)) mex

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ e
= iInformatics

constr

Construction of stateful objects:

C'Fec:O0Obj{m:c@YR Ty, > 7R7 tmeca AlFe:o®vy
['At constr ce: Obj {m: 7, = 7/ }mea

basic(y), re(o)

Given a state-transforming object giving the implementation of the desired object,
constr constructs a new object with the desired behaviour, internalising the
specified stateful behaviour.

From this, define:
new c e ~ constr Y (c) e

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ e
= iInformatics

Class extension

We may extend a step function for the superclass to one for the subclass:

extend c with (¢) {m = e, }meB
m = (cs).m, mec A\B }

m = e, meRB

\¢. obj {

This definition allows the addition of new methods when subclassing, but does
not cover adding new state, which would require an extension to our language
such as parametric polymorphism.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

School of
- informatics

Operational Semantics

We give an operational semantics with heaps. Heaps grow rightwards, and shall
be acyclic (only leftward pointers).

The two key rules:

hoec h'sve h'yey B, v,
h,constr e. es | h"'[l — (vs, V)], 1

[fresh

h,er § A';lom R vem (v,,vs,e2) U A", (v, v
h,e1 ea | B[l — {{vo, VL), ve)], v

D (1) = ({00, v3), ve)

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

Games

We take a category & of games, where a game is (M, Aa, Pa) for move-set

M4, O/P labelling A4 and a set P4 of permitted plays. Strategies o : A are
suitable sets of plays from Pj4.

Further define games
e A ® B: interleaving of play in A and B, allowing interference
o A&B: play in either A or B (opponent chooses)

¢ A— B: as A® B but with O/P switched in A

o !A = uX. A X: linear exponential allowing reuse, as an infinite ordered
product of the game A

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
= informatics

Games ||

A restriction of the Fam(—) construction gives us the category & to model values.

The structure required to model our language comes in the form of three broad
classes of strategies:

e Static copycat strategies (v: AQ B — B® A)
e Content-independent dynamic copycat strategies (d: !A —!A®!A)

e Content-dependent dynamic strategies (to model constr)

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

Denotational Semantics—Thread

Central in our denotational semantics is the definition of [constr c v]. We define
thread: S @ (S ® X — (S®Y),) =»(X —Y))

by a recursively defined, highly dynamic strategy. Consider sequential method
invocations—state is threaded through successive method calls, or in other words
through successive components of the “!"

However, even in a sequential context, multiple method invocations can be active
simultaneously, so this is not sufficient.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

Thread I

Non-sequential method invocations may occur during interaction with a method
argument, since a method argument may contain a reference to the object in
question.

A

Our concrete definition of thread is given categorically by a few complicated
diagrams involving structure associated with !, and a dynamic branch operation.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
= informatics

Soundness
Given an interpretation of [e]|([h]), we wish to show

Theorem 1. [Soundness] [Ifh,e | h',v then [e]([R]) = [v]([h']).

The operational semantics is given for expressions in heaps, but the denotational
semantics does not mention heaps. Interpret a heap cell (I — (c,v)) as
constr ¢ v, and the location [in e as a free variable which will be bound

to that object. Essentially,

[(l = (c,v)),e] = [let | be (constr ¢ v) in €]

Proof of the above is surprisingly hard, but worthwhile.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

A naive approach
Assuming h, e |} h’,v consider interaction [h]||[e]. Want

gsat € [h]||[e] < qat € [R]||[v]

where s takes h to h’.

[A]1Iel [A'T1I[v]

q q
E a
s s
t
a .

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

Oops

But consider the simple case of pairing:

It's not enough! We need to consider potential future states.

hoei 4 hi,vi hi,ea) h’ﬂiz
h, <€1, €2> U n, <7117 U2>

[PIlIler] [h1lliTea] [R]IIT{eq, e2)]
Iq Iq Iq

51

£ 81) :

: : 59

;al ;az ("a1a ag)

t1 t2 7 tz

16

o School of _ e
informatics

J. Longley and N. Wolverson

Game semantics for object-oriented languages

n.wolverson@ed.ac.uk

® School of _ o
- informatics

A construction on strategies

We define a construction on strategies for expressions as depicted here, and a
corresponding construction on strategies for heaps.

[A][Le] le] [e]s
Zq 9

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
- informatics

Definition (Simplified)
It is a general fact that

[el ([2]) = lels([n]°)

so the following definition satisfies our soundness requirements:

Lemma 2. [Soundness] /f h,e || h',v then dqsa € [h]||[e] with [e]s = [v]
and [h]* = [h'].

This definition separates the immediate interaction with the given heap from the
potential future interaction with some descendant heap.

Proof is then by induction on the operational semantics derivation.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
-~ informatics

Soundness Complications

Complications for soundness proof:

e New state

e Suspended computation in heap

e Result dependent on heap

e Argument interaction and externally mediated recursion

e Substitution

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
= informatics

Further work

We have not proved other (completeness) direction of adequacy—use logical
relations.

Full abstraction and universality—we hope to prove our interpretation satisfies
these properties. Our plan is to construct a program of the following type

interpret_: Obj {step: N - N} — 7
with the property that
Ve : Obj {step: N — N},a:1 — [7]. (e codes a) = [interpret_e] =a

and construct a proof of both universality and full abstraction with respect to the
well-bracketed version of our model.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

® School of _ o
= informatics

Language extensions
e Control operators (coroutines) and non-wb games
e Subclass state extension
e Pointer update
e Pointer capture

e Names etc.

J. Longley and N. Wolverson Game semantics for object-oriented languages n.wolverson@ed.ac.uk

