
Eriskay: a programming language

based on game semantics

John Longley and Nicholas Wolverson

6 April 2008

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

1

Outline

• Motivation

• Model and basic language

• Control features

• Objects and classes

• The argument-safe type system

• Conclusions

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

2

Motivation

The Eriskay project: Use a simple mathematical model of computation (a game
model) to guide the design of a full-scale programming language.

We have in mind a strongly typed, higher order, polymorphic, class-based, object-
oriented language, inspired by languages such as Java and ML. Some motivations:

• Reasoning about programs. Logical full abstraction means that logics derived
from the model can be understood in terms of the language.

• “Hygiene” properties. Semantically based language design promises to yield
properties like type safety and security for exceptions, continuations, name
generation.

• Expressive new constructs suggested by model.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

3

OO

Game semantics is intuitively a good match for object-oriented languages:

• Can model stateful computation.

• Good for data abstraction. We can interpret an object as a strategy for its
externally observable behaviour, and gain a full abstraction result.

• Captures the idea of reactive computation (an ongoing interaction rather than
a final result)

We consider a core language which can interpreted simply in our game model,
and a full language including more problematic features (references with equality)
which require some extra effort to model. (Also cut-down language Lingay)

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

4

Introduction to Eriskay

Eriskay is a strongly typed class-based object-oriented language, with

• Objects with mutable state

• Functions (and recursion), sums, (labelled) products

• Recursive types, structural subtyping and System F style polymorphism (and
F-bounded)

• Linear type system

• A form of continuations

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

5

Game model

We work in the simple category of Lamarche games—games are just trees of
alternating Opponent/Player moves, with no restrictions such as well-bracketing.
Define games ⊗, ⊸, etc.

There are two linear exponentials ‘!’ of particular interest:

• Hyland exponential—!A is simply an infinitary (ordered) product of the game
A.

• Backtracking exponential—each move in !A may continue play in some copy
of A, or backtrack to some move and open a new copy.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

6

Basic language features

Types:

σ ::= int | σ1*σ2 | σ1+σ2 | σ1->σ2 | !σ1 | {l1:σ1, . . . ,ln:σn}

Language is strict, plain functions are linear and not reusable:

Jσ1->σ2K = Jσ1K ⊸ Jσ2K⊥

Records are labelled products:

Jl1:σ1, . . . ,ln:σnK = Jσ1K ⊗ . . . ⊗ JσnK

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

7

Catchcont

We define a control operator catchcont providing a form of resumable exceptions
(in various flavours). Where ρ, τ are ground types:

x : ρ->σ ⊢ e : τ

⊢ catchcont1 x => e

: {result : τ} +
{arg:ρ, resume : σ->τ}

x : !(ρ->σ) ⊢ e : τ

⊢ catchcont2 x => e

: {result : τ} +
{arg:ρ, resume : σ->!(ρ->σ)->τ}

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

8

Catchcont, continued

Semantic considerations suggest a more general operator:

x : !(ρ->σ) ⊢ e : τ*τ ′

⊢ catchcont3 x => e

: {result : τ, more:!(ρ->σ)->τ ′} +
{arg:ρ, resume : σ->!(ρ->σ)->τ*τ ′}

ρ, τ ground

To show definability and full abstraction we consider the universal game U =
J!(int->int)K. All computable strategies of U are language-definable, and basic
types, U ⊗ U , U ⊕ U , U ⊸ U , !U and U⊥ are all definable retracts of U .

Coding the retraction (U ⊸ U) → U ⊳U makes use of the power of catchcont3.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

9

Catchcopy

Under the backtracking interpretation of ‘!’, we additionally have a reusable
version:

x : !(ρ->σ) ⊢ e : τ*τ ′

⊢ catchcopy x => e

: {result : τ, more:!(!(ρ->σ)->τ ′)} +
{arg:ρ, resume : σ!(->!(ρ->σ)->τ*τ ′)}

ρ, τ ground

Again, this is required for definability.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

10

Classes

For now assume that methods are public, and fields are protected. A class
implementation is a first-class expression of type classimpl τf , τm, τk, where:

• τf is a record type for the fields,

• τm = {m1:!(ρ1->ρ
′
1), . . . ,mn:!(ρn->ρ

′
n)} is the type for objects of the class

• τk is the argument type for the (single) constructor

Given such a class implementation c, we can construct an object via the expression
constr c:τk->τm.

But what does one look like?

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

11

Method bodies

For object type τm, with fields of type τf , the method bodies will have type
τm♮τf .

In the case of the Hyland !, there is a ‘functional’ treatment of state:

τm♮τf = {m1:!(ρ1*τf->ρ
′
1*τf), . . . ,mn:!(ρn*τf->ρ

′
n*τf)}

With the backtracking !, we can introduce more flexible read and write operations:

τm♮τf = !(!({}->τf)->!(τf->{})->τm)

(Note: not every expression of either of these types is a suitable method body)

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

12

Class implementations

In a class body, we leave ‘open’ the method implementations, via a parameter
self :τm♮τf , allowing for method overriding.

A class is interpreted via the resulting approximation operator τm♮τf->τm♮τf .
The fixed point of this is taken at object creation time.

An additional parameter super can be added, and to allow for additional fields in
subclasses we can replace τf by τf*δ (unfortunately not α<:τf).

c : classimpl τf,τm,τk

em : polytype δ=> τsuper->τself->τself

ek : τ ′
k->τk*(τf->τ

′
f)

extend c with em,ek : classimpl τ ′′
f ,τ

′′
m,τ ′

k

τsuper = τm♮(τ ′′
f *δ)

τself = τ ′
m♮(τ ′′

f *δ)

τ ′′
f = τf♯τ ′

f

τ ′′
m = τm♯τ ′

m

τf , τ ′
f have disjoint labels

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

13

Restrictions on higher-order store

Our class implementations seem to allow us to define a higher-order store cell.
Suppose s is a store cell for (int->int), and we run

s.put(fn x=>x); s.get() 5

We get ‘bad’ behaviour:

put:(int -> int) -> {}, get:{} -> (int -> int)
O ?
P !
O ?
P !
O ?5
P ?5

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

14

Argument safety

Problematic behaviour occurs when a method argument is accessed via the state
after the method returns. The type system ensures the property of argument

safety, that this does not occur.

New judgement forms such as ‘Γ ⊢ e:τ safe’.

Fundamental principle: information from an argument may only flow into the
state via an expression of ground type.

This means that our language does not permit arbitrary uses of higher-order store;
on the other hand, we are not restricted to ground type store.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

15

What do we have

• Can create objects with higher-type fields (f): new C (x:int->int) can set f := x

• Cannot store a non-ground-type argument: m(x:int->int){f := x}.

• Cannot store a non-ground-type value obtained from argument:

m(x:int->int->int){f := x 5}

• Can interact with fields: m(){return (f 5)}

• Update non-ground fields: m(){f := λn. f n + 1}

• Make use of ground type info from argument m(){p := x5; f := λn. p}

• Use fields and arguments unrestrictedly in return values:

m(x:int->int){return (f, x)}

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

16

Exception safety

Argument safety has applications to statically controlled exceptions.

• In ML, it is possible for an exception to escape its static scope.

• Conversely, Java’s typing of exceptions can be too restrictive.

Consider the Java program:

interface Function {Element f (Element x);}

interface List {void add (Element x);

void map (Function F);

Element nth (int n);}

Intuitively, map is argument safe, while add is not.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

17

Future work

• Implementation (coming soon)

• Soundness proof (extension of proof for smaller language)

• Details of full language

• Program logics etc.

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

18

Conclusions

J. Longley and N. Wolverson Eriskay n.wolverson@ed.ac.uk

