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2 Proposed research and its context

A. Background

A great deal of research in theoretical computer science has sought to put computer programming on a firmer mathematical
basis, in order to increase the reliability of programs. This includes both the problem of designing languages with good
properties (such as a safe type system ensuring that programs do not derail because of type errors), and that being able to
prove that individual programs do what they are supposed to. The latter, in particular, is acknowledged to be a very hard
problem in general, but current work (including the author’s own EPSRC-funded research) is reaching the point where at
least the foundational and logical aspects of the problem can now be addressed, even for complex combinations of language
features found in many modern programming languages.!

Whether we are concerned with language design or program verification, there are, broadly speaking, two basic strategies
we can adopt. Either we can start with an existing language or collection of language constructs and try to find some
mathematical theory to fit it, or we can start with some well-understood mathematical ideas and structures and design a
programming language around these. The first strategy will ensure that we stay close to real-world computing practice,
while the second will help to ensure that the mathematics remains clean and tractable. In practice, a combination of the
two approaches seems desirable — one should try to address the kinds of language features that programmers actually use,
but some modifications to existing languages might be desirable in order to smooth off rough edges that are troublesome
from the logical point of view.

A case in point here is the development of the Standard ML programming language, starting in the mid-seventies. Part
of the explicit intention of the designers was to design a language with a sound mathematical basis, in at least three senses.
First, the definition of the language was to be mathematically rigorous and complete. Secondly, the language as a whole
was to have good properties, such as type safety and the “no dangling references” condition. Thirdly, it was hoped that
the nature of the language would be such as to facilitate the verification of programs written in it. The design of ML was
guided in part by the mathematical ideas from denotational semantics which were then available (particularly with regard
to the “functional core” of the language), and in part by the demands of programming practice (e.g. “imperative” features
such as references and input/output were added).

Since then, the scope of denotational semantics has widened considerably. Thanks to more recent developments such
as game semantics, we are now able to give clean mathematical models for languages with exceptions, state, input/output,
subtyping, higher order polymorphism and more. Indeed, in certain respects the richness of structure possessed by these
models now surpasses what is needed to describe current programming languages. We make essential use of some of these
theoretical developments in our current EPSRC-funded project “A proof system for correct program development”, in order
to provide simple but powerful logics for reasoning about ML programs. Even so, our experience suggests that, with
hindsight, the treatment of the imperative features in particular was not quite as amenable to formal reasoning as one
might have hoped, so that when dealing with these features, we and others have found it preferable to work with a certain
syntactically circumscribed fragment of ML (albeit one that covers almost all programs written in practice). Indeed, it
seems to be a general characteristic of attempts to reason about programs in a real-world language that they tend to content
themselves with a well-behaved subset of the language.

We believe that in order to make further progress, the time has now come to attempt the design of a full-scale, usable
programming language with a sound mathematical basis, somewhat in the same spirit as ML but taking advantage of
the more powerful technology from denotational semantics that is now available, as well as taking account of other recent
developments and trends in language design. Broadly speaking, we have in mind a strongly typed, object oriented language
with powerful polymorphism and a consistently higher order flavour, bringing together “the best of Java and the best of
Standard ML”, but breaking new ground in the way these features are combined and especially in its treatment of mutable
and non-mutable data.

As we see it, the primary benefits of such a project would be threefold. First, we expect the rich mathematical structure
of our semantic models to suggest innovative and powerful language features (particularly with regard to the type system)
which will contribute to the stock of ideas and techniques in language design. Secondly, by virtue of its clean mathematical

L Another aspect of the problem is to provide adequate automation, tool support and user interfaces to make formal program development
practicable — this is the focus of a slightly different line of current research.



underpinnings, our language will be particularly well-suited to program verification (indeed, our intention is to design the
language hand-in-hand with a suitable logic for reasoning about it), and will thus provide a vehicle for ongoing research in
this area. Thirdly, we also hope that our language will be found by many programmers to be a clean and beautiful one for
a variety of applications, as has been the case with Standard ML.

We see this project as bringing together two strands of our research to date: our interest in natural notions of computability
and in languages and models that embody them, and our current experience of working with the details of a full-scale
programming language. A central idea behind our approach is that the semantic perspective and conceptual guidance
afforded by the first of these strands is the key to avoiding a blow-up of complexity in the second. This philosophy will also
be crucial in our approach to the currently proposed project: the essential simplicity of the semantic models will ensure that
the various features of the programming language fit together in a clean and principled way.

Ours will not be the first attempt to combine aspects of Java and ML. Most notably, the OCAML language [?] offers
a version of “ML with objects” which has achieved considerable popularity among functional programmers in recent years.
The distinctiveness of our approach, however, lies in its semantic basis, which both provides a rigorous definition of the
language and helps to ensure that it has good logical properties. (At present, OCAML does not have a formal semantics,
and it is unclear whether it lends itself to program verification in the way we envisage.) We will regard it as a positive sign
if some aspects of our language turn out to resemble OCAML; however, we believe that our language will go considerably
further in its combination of object oriented and higher order features. (Below we will mention some particular aspects of
OCAML from which we will draw inspiration.)

B. Programme and methodology

Creating a new programming language is obviously an massive undertaking, and in the current project we intend merely
to carry out some exploratory research resulting in a prototype definition of the language and a crude “interpreter” for
it, perhaps with a view to a more serious implementation effort at a later date. Our approach will be based on state-of-
the-art developments in semantics, type theory and language design — most specifically, on a particular game model for
computation which has proved very useful in our current work on logics for ML, but whose potential usefulness appears to
extend far beyond ML and to embrace many aspects of object-oriented languages such as inheritance and dynamic binding,
for instance. Our intention will be to allow the design of our language to grow naturally out of the structure available in
this model.

Using our game model, we will design and provide a formal mathematical semantics for a prototype version of the
language, together with a logic for reasoning about programs. In order to achieve this, some part of the project will also be
taken up with consolidating and extending our theoretical understanding of the model. Finally, our game semantics will be
naturally ezecutable, so we will be able to obtain, almost for free, an “animation” of our language definition. This will allow
us (and others) to experiment with the use of the various language features, which in turn will provide valuable feedback
allowing us to improve the language design.

We now give a more detailed description of the main phases of the project. We will describe the phases in logical order,
though we envisage them as being undertaken largely in parallel as there will be much interaction between them.

I. Semantic foundations

We have already identified the game model we intend to use as the semantic basis for the project. An intuitive and somewhat
informal description was given in [?]; a more precise account, along with a sketch of how our model can be used to interpret
various languages (in particular an object oriented language with inheritance and dynamic binding), will be forthcoming as
part of our present EPSRC-funded project.

In order to provide justification for the ensuing discussion, it is necessary here to go into a few technical details concerning
what we already know about our model. The reader unfamiliar with the mathematics here will still be able to make sense
of the rest of the proposal, though may have to take some of our claims on trust.

Our preferred construction of our model starts from a concretely constructed untyped A-algebra of strategies. This -
algebra exists in two versions: a linear A-algebra L and an intuitionistic one I, the latter being obtained from the former by
means of a “!I” modality. By means of a simple categorical construction which adds splittings for projections in these algebras,
we obtain two rich categories of games: a symmetric monoidal closed category K(L) and a cartesian closed category K(I),
related by a co-Kleisli adjunction in the usual way.? The fact that our categories are constructed from untyped A-algebras
in this way is significant, as the existence of easily understood universal types in these categories gives us a good handle on
many aspects of their structure and allows us to prove several results very easily (this approach is discussed in detail in [?]).

20ur K(L) is essentially Lamarche’s category of sequential games, though our ! modality is richer than his, and in some sense combines the
power of Lamarche’s “backtracking exponential” and Abramsky’s “copying” one. Our K(I) appears to be very close to one of the categories of
games constructed e.g. in [?] (namely the one with no innocence or well-bracketing constraints on strategies), though our X(L) is quite different
from their corresponding linear category.



Intuitively, one can think of the linear category K (L) as a world for modelling potentially mutable, non-copyable data
such as (non-cloneable) objects: a computation can only “use” the value of an object once, since if the state of the object
changes it is effectively replaced by the new value, and it is no longer possible to get at the old value. (This connection
between computing with state and the ideas of linear logic has been observed before, but the connection seems to be more
precise in our model than in previous work.) The intuitionistic category K(I), on the other hand, can be thought of as a
world of non-mutable (or else copyable) data, such as values of type int or functional programs, together with programs
involving certain local uses of exceptions and non-persistent state. As a first approximation, one can think of X(L) as “Java
world” and K(I) as “ML world” — indeed, it will be shown in [?] how these categories can respectively be used to model
Java-like and ML-like languages.? * Moreover, thanks to the existence of universal types, one can easily arrange that the
languages precisely match the model in the sense that all (effective) strategies are expressible by a program of the language.

Our basic idea is to design a programming language combining Java-like and ML-like features, in which a fundamental
distinction is enforced between mutable and non-mutable types. The design of the language will be inspired by the structure
of our models, with the two kinds of types corresponding to objects in (L) and X(I) respectively. Both of these categories
have a rich mathematical structure, including higher-order types, and this will be used to suggest a type system and term
calculus for the programming language itself. The presence of a natural notion of subtyping in our models will allow us to
incorporate a familiar notion of inheritance in the language, and perhaps subtypes of other kinds as well. Moreover, the
functors between K(L) and K(I) will allow for mutable and non-mutable data to interact in various ways. (Some particular
features which we expect the language to include will be mentioned below.)

One further aspect of our models deserve mention, since it will vastly increase the scope of what we will be able to include
in our language. Both our A-algebras come equipped with a universal projection, which means the corresponding categories
contain an object that plays the role of a “type of types”. This means that they can model very strong type theories such
as Fw, and even logically inconsistent systems such as Martin-Lo6f’s System U. In terms of the programming language, this
not only allows for very strong polymorphism if we want it, but also opens up the possibility that many constructs for
programming-in-the-large (such as ML-style functors acting on structures or on classes) might arise from from essentially
the same mechanisms as those of the “core” language (indeed, for simplicity we might even choose not to make any syntactic
distinction between “large” and “small” levels of the language). This will set us free to design and explore some potentially
very powerful features, secure in the knowledge that type-safety will be assured by our adherence to the semantic model. It
is in this area that we expect to make the most innovative and far-reaching contributions to programming language design.

Besides some consolidation of the theoretical ideas outlined above, one task in this project will be to investigate more
closely what kinds of type constructors are available in our models, and hence what types we can put into our programming
language. For instance, it seems that in K(L) there are two kinds of “product type” — one which can be used when the two
components are truly independent (i.e. do not share state), and one which allows for the possibility of interference between
the components. Several type systems have recently been proposed for keeping track of of which parts of the heap are
independent in this sense. This will also be an important concern for us since we are designing a language with verification
in mind. We will therefore start by investigating to what extent our categories provide models for these type systems.

II. A prototype language definition

Having investigated what is possible in terms of programming language design, the next stage will be to crystallize a
prototype definition for our programming language. Our purpose is to come up with a provisional definition which we can
release in order to elicit feedback from the community, and which could form the basis of a more definitive version at a later
date. The particular priorities we shall have in mind are as follows:

e Our language should admit a denotational interpretation in our semantic model. Indeed, our denotational semantics
will serve as the official definition of the language. We will resist the temptation to add any features that we cannot
interpret in the model. This is crucial to our approach to program verification, since it will ensure that we retain a
reasonable logical grasp of how programs will behave and how the various parts of the language interact.

e Our language should be clean and beautiful. This may seem a rather subjective criterion, but a more objective test
would be whether it is possible to state simple and useful properties that are universally applicable to all programs
in the language. Examples might include type safety properties, a “no dangling references” property as in ML, and
a theorem asserting that data of non-mutable type is indeed non-mutable. In our view, cleanness and beauty are
not merely a matter of aesthetics but are of real practical benefit for the avoidance of needless complexity in the
understanding and (especially) verification of program behaviour. As mentioned earlier, this ideal will be achieved

3In particular, we are able to interpret class definitions so that inheritance and dynamic binding are handled correctly, though we will not give
the details here.

40f the standard features of OO languages, it seems that only pointer equality poses problems for our models. There are various slightly messy
ways in which we can circumvent this problem if we are unable to find an elegant solution.



partly by the fact that we are designing our language around a mathematically elegant structure, but we will also pay
close attention to the simplicity of each construct and to keeping the number of primitive concepts to a minimum.

e We will favour the use of very strong typing wherever possible. Types are a way of expressing certain properties of
programs, and we strongly believe that the richer the type system (i.e. the more program properties it encapsulates),
the easier the task of program verification will then become. Of course, a richer type system will typically also mean
that more type annotations are necessary in programs; however, since our emphasis is on trying to provide support
for verifiable programs, we will be willing to accept some additional verbosity in the language. Our strategy will be
to start with an explicitly typed version of the language, and then allow the programmer to omit certain information
where we see opportunities for type inference.

o We will try to stay close to the syntax of existing languages such as Java, Standard ML and OCAML wherever possible.
This will facilitate the learning of our language and the the task of porting existing programs from these languages.

The following list of features gives a rough indication of what we expect our language to contain. (However, we have
already identified many ways in which some of these features could be merged, so we expect the eventual form of the language
to be significantly smaller than this list might suggest.)

e A repertoire of non-mutable datatypes similar to those of functional ML, including inductive types and higher-order
types. Certain localized uses of state and exceptions will also be permitted in the non-mutable fragment (the semantic
model provides guidance as to what the appropriate syntactic constraints should be).

e The usual constructs of an Algol-like imperative language with block structures and lexical scoping.

e An object system with classes, interfaces, single inheritance and dynamic binding, similar to that of Java, but with
a more consistently higher-order character than Java or even OCAML. For example, consider a method invocation
expression o.m(t), where o is a target object, m a method and t a parameter. In Java this expression as a whole is a
value, but in our language we also expect o.m, m(t) and m to be first-class values of some higher type. Moreover, we
expect to be able to enforce type distinctions between mutable and non-mutable values of these kinds: for instance,
a method call m(t), whilst it will typically be applied to a mutable object o, might itself be either mutable or
non-mutable, in the sense that its behaviour may or may not depend on state other than the internal state of o.

o A powerful polymorphic type system, incorporating but going well beyond the system of generic types currently being
added to Java. For instance, we can, if we wish, allow types to be passed as parameters as in System F'; moreover,
such parameters could be constrained to be subtypes of existing types as in Pierce’s F<.

e ML-style pattern matching in function and method declarations, perhaps augmented by disjunctive patterns and
guarded patterns as in OCAML.

e An exception mechanism similar to that of Java, where each method or function is explicitly annotated with the set
of exceptions it could in principle throw. This approach to exceptions fits in well with our semantic model.

e A module system somewhat akin to that of ML (including higher-order functors). It is clearly possible to use the class
system as a module system to some extent, although there may be arguments in favour of a separate module system.

However, our language will not include threads or any form of concurrency, since our game models embody an inherently
sequential notion of computation. We will probably also not attempt to include dependent types, even though our model does
support them and they would certainly be in accord with our objectives, since this would probably introduce considerable
additional complication with little novel contribution on our part.’?

For any critical design decisions we encounter, we will consult with colleagues in LFCS who are specialists in type theory,
language design, language implementation and software engineering. In terms of concrete deliverables, this phase of the
project will result in a formal syntax for our language, a complete set of typing rules, and a denotational semantics specifying
the dynamic behaviour of programs.

ITI. Operational and axiomatic semantics

Since our language is to be inspired by a particular semantics model, it is natural to opt for a definition based on denotational
semantics. However, in order to give some insight into how an implementation might work, we will also provide an equivalent
operational semantics, and a justification of the equivalence.®

In order to support verification of programs in our language, it is desirable to provide a program logic or axiomatic
semantics. We believe that it will not be too difficult to do this based on the denotational semantics, using the ideas

5Dependently typed programming languages constitute a major research area in themselves — see e.g. [?].
SWe believe that standard techniques will suffice for this. Since the language will be fairly large, we may content ourselves with a proof outline
concentrating on the interesting cases rather than a complete rigorous proof.



and methods that we are currently applying to program logics for fragments of Standard ML. We will spend some time
investigating any particular challenges posed by our language in order to assess the feasibility of this approach, but we do
not expect to develop a complete program logic in full detail.

IV. Animation and prototype implementation

An interesting aspect of game semantics is that, in contrast to many other kinds of denotational semantics, it is exzecutable:
the denotation of a program will be a strategy of some kind which can be “played” or executed on a machine. We have
already developed an “implementation” in ML" of our A-algebras L and I, and shown how this can be used as a workbench
for game semantics in the context of ML programs. This program, known as Stratagem, is available from the author’s web
page along with examples illustrating its use.

The denotational semantics for our language will essentially define a function from programs to strategies, with one
inductive clause per syntactic construct of the language. We can therefore directly recast such a definition as an ML
function from abstract syntax trees to executable strategies, with one ML clause per syntactic construct, and thus obtain,
almost for free, a prototype implementation or “animation” of the language. This implementation will not be particularly
efficient, but at least it will allow us (and others) to get a feel for the language and experiment with the effects of various
choices, at the cost of very little implementation effort. It will also enable us to explore possible programming idioms that
make use of the novel features we have introduced into the language.

We will devote a part of the project to developing and experimenting with an animation of the language in this way.
This work will also have spin-offs for of other uses of the Stratagem system (e.g. execution tracing for ML).

In the longer term, a natural goal would be to build a compiler for our language, compiling down to some intermediate
language such as JVM. We do not expect to have time to complete even a prototype compiler within the current project,
but we hope to demonstrate the feasibility of such an undertaking by writing small-scale compilers for particular subsets of
the language that raise interesting implementation issues.

One important question is whether we allow the design of our language to be constrained by any particular target
intermediate language we have in mind. Experience within the Mobile Resource Guarantees project at Edinburgh [?] (and
also the MLj project [?]) has shown that certain advanced language features such as ML functors do not admit compilation
to JVM in a natural way, and other intermediate languages in current use are likely to pose similar problems. There is
a tension here: clearly if we can compile to JVM then a great deal of existing infrastructure will be available to us (e.g.
programs in our language can probably make use of existing Java APIs), and this would encourage the use of our language
and promote wider dissemination of our ideas. On the other hand, the spirit of the project is to explore ideas in language
design for the long-term future, and also to let the design of our language be driven by the mathematics rather than by
more accidental pragmatic concerns. In this project we will opt for the purity and idealism of the latter approach: we will
not insist that our language be naturally compilable to any existing intermediate language (though a substantial subset of
it probably will be). We will, however, devote some time to a preliminary investigation of what needs to be done in order
to support efficient implementations of our language.

Manpower and work plan

All parts of the project will be supervised by Longley, who will contribute an average of five hours a week to the project.
It is expected that he will contribute actively to part I of the project in particular. The core of the project, consisting of
parts I, IT and III, will be undertaken by one PhD student, working full-time for three years. The student will also devote
some time to part IV, but we will employ a research assistant for 1 year to bear the brunt of the implementation effort in
this part of the project. (This could be done by a recent graduate without research experience but with some knowledge of
formal semantics from their undergraduate course.) [ASK MONIKA ABOUT ALL THIS.]

Details of the timescale for the various phases of the project are given in the accompanying Diagrammatic Workplan.

C. Relevance to beneficiaries

We expect our work to have an impact in three main areas:

Language design. Even if we proceed no further with the development of our language, our work will have contributed
some innovative ideas on programming language design, particularly regarding higher-order and polymorphic extensions
of object-oriented features, and the enforcement of type distinctions between non-mutable and (potentially) mutable
data. History shows that ideas in language design developed within more theoretical communities can and do find
their way into mainstream computing practice — witness the influence of ML on the design of Java (e.g. the exceptions
mechanism), or the current incorporation into Java of the system of generic types proposed by Abadi and Wadler. In the

7Our implementation requires ML of New Jersey since it makes essential use of continuations.



long term, such developments in language design (particularly those relating to type systems) make for a cleaner, more
disciplined approach to programming, and hence ultimately for more robust, reliable software. Furthermore, strong
type systems make more information available to a compiler and increase the opportunities for program optimization;
we would certainly expect our mutable and non-mutable types to be of value here.

Program verification. The problem of rendering feasible the verification of realistic programs remains a huge challenge,
and in our view one important step towards achieving it is to start with a mathematically clean language that lends
itself to program verification. Recent progress in semantics has shown that very substantial “safe fragments” of existing
languages are suitable for this purpose, but this is somewhat satisfactory as there remains a worry about how safe
programs will behave in interaction with unsafe ones. Our project will, perhaps for the first time, demonstrate the
viability of a realistic programming language based entirely on well-understood semantic principles; we will also go some
way to providing a program logic for the language. We therefore believe our language will offer a suitable framework
for further research in program verification. In terms of research impact, most of this benefit will be realized even
if we do not develop a full-scale implementation (much valuable research in this area has been based on theoretical
languages that no one has implemented). However, we also hope that, if implemented, our language might actually
become the medium for substantial formal software development projects in the future.

Programming applications. Finally, if we eventually decide to proceed with a more serious implementation of our lan-
guage, we are hopeful that it will prove attractive to many programmers as a state-of-the-art language based on
theoretically sound principles, much as ML has been for the past couple of decades. (Indeed, our ideas have been influ-
enced to some extent by our own views of the sort of language we would most like to use, based on our programming
experience in Java and ML.) Like ML, our language will be well suited to fast prototyping of research applications,
and could enjoy some level of use in teaching. Furthermore, we expect that certain familiar programming tasks will
become simpler in our language: for instance, certain common programming idioms in Java such as factory, listener
and visitor patterns could be more naturally expressed using higher-order constructs.

D. Dissemination and exploitation

As usual in our research community, the main modes of dissemination will be refereed journal papers, conferences, informal
workshops personal visits to other research establishments, and the publication of other materials via the Internet. In
particular, the definition of our language, the animations and prototype implementations we shall produce, and any programs
of particular interest that we develop, will be made available at an early stage to interested colleagues via the World Wide
Web. The definition of the language will be submitted for publication to a refereed journal once we deem it to have reached
a sufficiently stable form. A unified presentation of all the results of the project will appear in the student’s PhD thesis.

At the end of the project we will take a decision on whether to proceed with the development of a usable implementation
and a commitment to supporting it. The decision will be based on feedback from colleagues and our own views concerning
the level of success of the project. If we do develop such an implementation, the opportunities for dissemination of our ideas
will be taken to a new level. Our implementation would be made available under a free software licence, and we would offer
general support to encourage its use in research and teaching.

E. Justification of resources

Manpower. We request funding for one PhD student for three years, in order to work full-time the project as described
in section B above. We also request funding for a research associate on the AR1A scale for one year, in order to work
on the implementation aspects of the project in the later stages, as described in part IV of section B. In addition, we
seek funding for 10% of a computing officer (AD3.3) to provide infrastructure support for development and use of our
prototype implementations, and 10% of a secretary (CN3.3) to support publication and dissemination of our results.

Travel. We plan to attend an average of two international conferences a year. We request travel and subsistence support
for five one-week visits to European centres (e.g. Aarhus, INRIA), and one 1-2 week visits to a number of centres
within the US (e.g. CMU, SRI/Stanford). These visits will be made in conjunction with overseas conference travel.
We also request support for two 2-3 day visits per year within the UK (e.g. Birmingham, Cambridge, Oxford).

Equipment. A workstation, maintained over the project period, is requested for the use of the PhD student, to support
work on prototype implementations of our language, experiments with programs in our language, the production of
documents reporting the results of our research, and interaction with colleagues via email and the Web. A second
workstation, maintained over one year, is requested for the use of the research associate, to support the intensive
implementation work involved in part IV of the project. We also request an appropriate contribution to consumables,
shared networking, and fileserver provision.
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Remarks:

The task numbers (LILIIL,IV) refer to the parts of the project described in Section B of the main proposal.

Longley will supervise all areas of the project, and will contribute an average of five hours a week.

The PhD student will work on parts I,ILIIT of the project, and will produce the documentation for these parts. He
will also have some input to part IV.

The research assistant will do the bulk of the implementation work in part IV of the project, and will produce the
documentation for this part.



