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2 Proposed research and its context

A. Background

Much research in computer science, ever since its inception, has been devoted the problem: “How can we be sure that a
computer program is correct?” The general problem is extremely difficult, and the enormous variety of computer software
in use demands a corresponding variety of approaches: e.g. structured design methods [YC86], automated testing [Ber91]
and model checking [GL94]. Another possibility—in some sense the most idealistic—is the formal development of programs
with mathematical proofs of correctness claims. If this ideal is ever to become a reality, it is widely agreed that certain basic
requirements must be met:

e The language in which programs are written should itself have a mathematically rigorous definition.
e A logic is required for expressing and proving properties of programs.

e Machine tools are needed to support the construction of proofs, and to check their validity.

In our view, whether the ideal of provably correct software is ultimately achievable hinges mainly on whether a sufficient
level of automation can be achieved in the construction of proofs.

Regarding the first of the above requirements, the definition of Standard ML [MTHM97], developed mainly in the eighties,
showed how a rigorous formal foundation could be given for a full-scale programming language. One of the intentions of
the designers was precisely to provide a suitable platform for formal program development. The uptake of ML was at first
modest, but recently there have been some notable commercial successes and real-world applications (e.g. [EHM 199, Buh95]).
Moreover, aspects of ML such as strong typing and the exceptions system have significantly influenced the design of languages
such as Java [GJS96], and it seems likely that future systems languages will incorporate many of these features [Mac00].

Regarding the second requirement, even before the definition of ML had fully taken shape, the LCF system [GMW7§]
provided a program logic for a rather restricted fragment of the language. Subsequent research has sought to build on the
definition in order to support formal reasoning about programs. Most notably, the Extended ML project [KST97] resulted
in a formal language for specifying program properties, but the complexity of this language prohibited the development of
useful proof rules. A different approach has been pursued by Elsa Gunter et al [GV94], who have formalized the definition
of ML within the HOL theorem prover; this has proved useful for metatheoretical studies, but seems too low-level for
practicable program correctness proofs.

At the same time, the programming language features embodied in ML have attracted a great deal of attention from
the theoretical computer science community. Here, much research has been devoted to the study of abstract mathematical
structures that can be used to give semantics for these features; the long-term motivation has been that a deeper mathematical
understanding should shed light on the kinds of logic required for reasoning about programs.

The problem of finding clean and expressive program logics has been a major motivation behind our theoretical work to
date (see e.g. [PF92, FT95, Lon95, LP97]). Recently we realized that in terms of the underlying theory, we now have all
the pieces we need in order to achieve this goal for a very substantial language, including the full power of a higher-order
functional language, plus (we believe) most everyday uses of exceptions, references and input/output. This puts us in a
significantly better position than ever before to attack the program verification problem.

Finally, regarding the third of our basic requirements, the LCF project itself showed how one can provide machine
support for rigorously checked formal proofs, whilst allowing unlimited scope for automation in their construction. However,
the problem of providing adequate automation, so as to render software verification feasible in practice, has not yet been
satisfactorily overcome. A substantial body of work from the AT community is relevant here, but relatively little has been
done to bring this to bear on program verification—partly, we believe, because of the lack of a good program logic hitherto
on which to base such an effort.

The proposed research will apply recent developments in semantics to provide a powerful proof system for a large part of
ML, including almost all the features used commonly in programming practice. We will develop a prototype implementation
of our proof system using the Isabelle theorem prover [Pau94]; investigate the applicability of a variety of automation
techniques, including proof planning using the A-Clam system [RSG98]; evaluate our proof system via some non-trivial



programming examples; and finally use this system as the basis of our own customized theorem prover. This will result in a
tool suitable for use by the program specification and verification communities, providing a platform for research on formal
development methodologies.

To summarize this in terms of the basic requirements mentioned above: The definition of Standard ML has already
demonstrated how the first requirement may be met. In this project we will show that the second requirement can now be
largely fulfilled, by building on insights from recent theoretical work. We will also make some partial progress with the third
requirement, using the fruits of recent work from the AT theorem-proving community.

Many of our ideas and methods are in principle applicable to a wide range of programming languages, but there are a
number of reasons why Standard ML is a natural testbed for our ideas. Firstly, the semantic techniques we will employ are
at present more fully developed for functional languages than for other genres (e.g. object-oriented languages). Secondly,
the rigorous formal definition of ML gives us a very solid foundation on which to build. Thirdly, the trend in much current
work on next-generation systems language design is towards languages combining higher-order type systems with imperative
features [HLP98, Mac00], and ML provides a good illustration of this combination. Towards the end of the project we will
assess what needs to be done to apply ideas to other languages (see Section D).

B. Programme and methodology

In this project, we will work out the details of a program logic by drawing on recent theoretical research, and provide
machine tools to support reasoning in this logic. We first mention some general features of the logic we have in mind,
drawing attention to other related work. A slightly fuller explanation of the more theoretical aspects of our proposal [L.on00]
is available online at www.dcs.ed.ac.uk/home/jrl/ml-logic.ps.

e Firstly, our approach is aziomatic in the spirit of LCF or Extended ML—that is, we work with clean high-level axioms
for the behaviour of programs, rather than with the operational semantics as in [GV94]. Moreover, terms of our logic
are just ML expressions—no translation from ML into a logical language is needed.! These features allow programmers
to reason relatively directly at a level they are familiar with. An axiomatic approach also means that our logic is less
tied to the specifics of the operational definition, and hence more easily transferable to other languages.

e Like the Extended ML project, we take seriously the challenge of working with a full-scale programming language
rather than a toy theoretical language. We have been influenced by Extended ML in many respects, and will benefit
from the experience of Sannella and his co-workers in the intricacies and pitfalls of the ML definition.

e We make crucial use of recent insights from denotational semantics (this is the main difference from the Extended ML
approach). In this respect, we build largely on theoretical foundations laid by Longley [Lon98, L.on99b, Lon99a, L.P97]
in previous EPSRC-funded research.? Certain well-understood denotational models will provide the technology for
showing the soundness of our proof rules; but more importantly, they will provide conceptual guidance in the design
of our logic. In particular, the fragments of ML that we treat will be determined by what we know how to model well.
In our view, this use of semantics is the key to obtaining a clean and manageable proof system, and to avoiding the
explosion in complexity that beset the Extended ML project.

o A key feature of our approach is that the meaning of the logic can be explained in terms of purely operational concepts,
such as observational equivalence of program fragments; this means that the logic will be intelligible to programmers
with no knowledge of the semantic underpinnings. We achieve this by using denotational models that enjoy an
exceptionally tight fit with the programming language, via the concept of logical full abstraction developed in [LP97].
As far as we know, this particular emphasis is unique to our approach.

e Our approach is stratified in that we will actually carry out our programme for three different sublanguages of ML, of
increasing size and difficulty: a functional fragment £1; a fragment £ with control features (certain uses of exceptions);
and a fragment L3 with imperative features (certain uses of state and input/output). The choice of these sublanguages
is not arbitrary, but corresponds to a series of three mathematically well-understood models that all fit well into
a uniform semantic framework.? (Of course, part of our task will be to give careful syntactic definitions of these
sublanguages.) The idea is that the three logics K (£;) that we obtain from them will fit together in a pleasant way;
this means, for instance, that we can use K (L) to reason about the purely functional parts of a program, resorting to
the more delicate machinery of K(L3) or K(L3) only for those parts of the program that involve control or imperative
features. Likewise, once we have proved that a program involving imperative features (e.g. a memoization operation)
behaves in a purely functional way, we can revert to K(£1) for reasoning about it.

! These aspects of our proposal have roots in the logic of the LAMBDA 3.2 theorem prover [FF90], and the ideas of Fourman and Phoa [PF92].

2EPSRC grants GR/1.89532 “Notions of computability for general datatypes” and GR/J84205 “Frameworks for programming language se-
mantics and logic.”

3Namely, the category of PERs on the van Oosten/Longley combinatory algebra [00s97, Lon98g].



As a somewhat separate issue, we will also add some support for data abstraction (abstypes and opaque signature
constraints). Thus, we believe that we will cover most of the features of ML occurring commonly in programming
practice. Of course, with future advances in semantic understanding it may be possible to handle even larger fragments
of the language, though this is likely to yield diminishing returns beyond a certain point.

o Our logics will be sound and relatively complete.* Soundness ensures that all provable theorems are true under the
operational interpretation; completeness ensures that (in some sense) no axioms are missing from our system. Absolute
completeness is too much to hope for in view of Godel’s theorem, but our axiomatizations will be, in a precise sense,
as complete as first-order Peano arithmetic.?

This means that we do not sacrifice any logical power by going for a high-level axiomatic approach. This contrasts
interestingly with the LOOP project on Java program verification [JvdBH1 98], to which our proposal is similar in spirit
in many other respects. In LOOP, one uses a combination of axiomatic reasoning (Hoare-style logic) with reasoning
about the semantics via a translation from Java to higher-order logic. By dispensing with the latter, we believe we
will achieve much greater abstraction and ease of reasoning; the trade-off is that we do not yet have the semantic
technology to apply our approach to an object-oriented language.

On a more technical level, starting from a sublanguage £ of Standard ML, we build a many-sorted first-order classical
logic K (L) whose sorts are types of £ and whose terms are terms of £, with atomic predicates for equality and termination.
We then give an operational interpretation for formulae of K(L£): for instance, equality is interpreted as observational
equivalence relative to £, and variables are taken as ranging over terms of £. Finally, we axiomatize our logic by making
use of logically fully abstract denotational models of K (L) (see [LP97]). The model we have in mind is nothing other
than the closed term model for £ modulo observational equivalence, but the point is that we have other more semantic
characterizations of this model which give us a better handle on the logic. The relative completeness is achieved by a
technique of bootstrapping from lower to higher types; this exploits the existence of universal types (i.e. types within which
all other types can be represented as retracts) for the languages in question.

How will we know that our proof systems are sound? Once we have formulated the proof systems in detail, these will have
the status of precise mathematical claims involving the definition of ML. In principle, one could imagine a machine-checked
verification of these properties based on something like Gunter’s encoding of the definition, but we will leave this as an
ambitious possibility for future work. In the meantime, we will content ourselves with producing careful statements of our
claims, together with clear outlines of the proofs. Whether our claims are valid in every detail will have the status of a
working scientific hypothesis, to be subjected to the scrutiny of experts in the manner of [Kah93].

Next we outline the stages of our programme. Some overlap between the various stages will be possible once the basics
are in place (see the Diagrammatic Workplan).

I. Design of logic and Isabelle prototype

We will begin by identifying those language features we wish to study, demarcating the corresponding sublanguages of ML,
working out the details of the logical axioms, and embodying all this in a prototype implementation using the Isabelle generic
theorem prover [Pau94]. Our preliminary work here has shown that Isabelle is a very suitable tool for this purpose, owing
to the flexibility of its syntax-encoding mechanisms, and the ability to experiment cheaply with different sets of axioms.

We have also discovered that some language features (e.g. record types, and certain details of ML syntax) are awkward to
encode faithfully in Isabelle.® We emphasize, however, that these difficulties arise purely from certain restrictions imposed
by working with Isabelle, rather than from any inherent theoretical difficulty in devising a logic for the features concerned.
The intention is that later on we will build our own customized theorem prover, which will iron out these difficulties and
incorporate language features missing from our prototype (see IV below).

Along with our Isabelle implementation we will produce user documentation, together with documents explaining the
underlying theory and justifying the soundness and completeness claims.

I.1. The functional fragment We will first consider a functional fragment £1; this is the fragment that we expect it to
be easiest to reason about. We have already devoted about two man-months’ work to this part of the programme, and now
have a prototype implementation in Isabelle for most of the functional fragment. With our present system, the user may
write Isabelle theory files incorporating function declarations in ML syntax; the system then generates a defining axiom for
each function (see [Lon00] for an example). So far, we have encoded the ML syntax and logical axioms for: the basic types

4 At present we know how to achieve relative completeness only for monomorphic formulae—in the proposed project we will try to extend this
to polymorphic formulae.

51f required, PA can be replaced here by stronger theories, e.g. ZF set theory.

8This is partly because we are adopting a shallow embedding wherein ML types are represented by Isabelle types—this means, for instance,
that the Isabelle typechecker does ML, type inference for us.



unit, bool, int and ’a list; product and (higher order) function types; val and fun declarations with general pattern
matching (including overlapping and non-exhaustive patterns); polymorphism (including equality types); simultaneous and
mutually recursive declarations; fn and case expressions; while expressions; infixes; explicit type constraints (in expressions
and patterns); and layered patterns. Our efforts so far provide encouraging evidence that our approach does indeed scale
up to the intricacies of a real programming language.

Besides consolidating what we have done so far, we will add let and local constructs’ and datatype declarations. With
regard to the latter, the ideas of [SP82, Pit94], in combination with properties of universal types, lead to good axioms even
for mixed-variance recursive types.

I.2. Control features There is a class of toy languages—all equivalent from our point of view—which embody a notion
of functional programming with control (e.g. PCF+-catch; uPCF; PCF with first-order callcc). These languages suffice for
modelling exceptions in Java, for instance, and from a semantic point of view they are now very well understood (see e.g.
[CCF94, 0S97, Lai98, Lon98]).

We will define a language £ by isolating a (syntactically defined) class of “safe” uses of exceptions in ML corresponding
to the above languages. Thus, the known semantic models will guide us in choosing a sublanguage with pleasant logical
properties, which will integrate smoothly with £; and £3. Our ideas for a logic of exceptions are outlined in [Lon00].

I.3. Imperative features State and input/output are staple features of systems languages, and some use of state is
essential if functional languages are to offer competitive efficiency. However, even apparently simple functional languages
with state can display very complex behaviour unless the use of state is restricted somehow (see e.g. [Rey78, OPTT99, PS98]).

Our intention is to work with a suitable class of safe uses of first-order references (also of input/output), somewhat
analogous to the safe uses of exceptions mentioned above—this will ensure that we avoid unpleasant extrusion effects, for
instance. Some of the theory here still needs to be worked out in detail. In the first instance, we will isolate a language L3
that corresponds a particular semantic model we have constructed (see [Lon00] for more details). We are confident that this
at least will work, though it is not yet clear how much programming power it will give us (e.g. how far it will allow us to
treat equality of references or parameter passing by reference). We will also consider whether other approaches to languages
with state allow us to do better, e.g. [AHM98, PS98, OPTT99].

Finally, we will add the logical principles needed to relate the logics K (L), K(L2), K(L3) to each other, allowing all
three logics to be subsumed in one big proof system if desired.

I.4. Data abstraction We will also consider extending our fragments of ML by adding data abstraction, as given by
ML abstypes or opaque signature constraints. This kind of extension is somewhat orthogonal to the sequence of languages
L1 C Ly C L3 outlined above.

At present, we know how to extend our approach smoothly to a certain (semantically motivated) class of abstract types,
provisionally called translucent datatypes.® Examples of translucent abstract types include all the usual implementations of
stacks, queues, sets, multisets and lookup tables, and the abstract type of theorems in an LCF-style theorem prover. One
problem, at present, is that in order to prove anything about an abstract type, one would first need a theorem saying that
it 1s translucent. We may be able to do better than this by extending our theoretical understanding of abstypes; however,
our primary goal in the present project is to see how much can be achieved with the currently understood theory.

II. Automation and proof heuristics

The general problem of making interactive theorem proving tractable for large examples is a very difficult one, involving
cognitive as well as logical issues, but all are agreed that a high degree of automation is an essential component. We will
develop various forms of automated assistance:

II.1. Decision procedures and related tools Many standard techniques have already been used in conjunction with
interactive provers such as PVS, HOL and Isabelle (for example, arithmetical decision procedures [CLS96], term rewriting
[Nip89], model checking [Sha96] and BDDs [Gor00]). We will adapt and make use of these techniques where appropriate
(particularly the first two). There is also scope for developing new decision procedures specific to our logic.

II.2. Proof planning A more novel aspect of our proposal is to investigate the use of proof planning from Al [Bun91]
for reasoning about programs. There are specific reasons why we think proof planning is particularly well-suited to program
verification. Our experience of verifying small programs by hand is that almost everything is proved by induction, and most

7 A makeshift is required to give the appearance of capturing let-polymorphism in Tsabelle. See also TV below.
8Other people have used this term with a different meaning, e.g. [H1.94].



of the difficulty lies in choosing just the right strength of induction hypothesis—it often takes two or three attempts before
this is found. (This corresponds to the problem of choosing the right loop invariants when verifying imperative programs.)
It is precisely in this area of inductive proof—and of constructing a correct proof out of previous failed attempts—that work
on proof planning has specialized.

Fleuriot has recently proposed an EPSRC-funded project [Fle00] to develop a generic proof planning system by integrating
Isabelle with the A-Clam proof planner [RSG98], developed at Edinburgh by Bundy, Richardson et al. The present project
will complement this by applying this system to a particular target logic and testing it on some hard application problems.

III. Examples and case studies

We will evaluate our approach via examples of programs formally specified and verified using our proof system. It is difficult
to anticipate the scale of the examples that will be feasible—this will depend largely on the success of the automated proof
mechanisms in practice—but we believe we will be in a position to tackle more substantial examples than have previously
been possible. Early case studies may include ML implementations of®

e the Fast Fourier Transform (FFT) algorithm;
e the RSA public-key cryptosystem;
e Ordered Binary Decision Diagrams (OBDDs);

¢ (more ambitiously) a calculator for exact real arithmetic.

A good source of further examples will be the “pearls” published in the Journal of Functional Programming. We will focus
particularly on verifying efficient programs involving clever optimizations whose correctness is not obvious.

We emphasize that the success of our approach should be gauged not only by the size and complexity of the programs
we can verify, but by the ease with which we can do it. Interactive theorem proving has resulted in some impressive
achievements (e.g. in hardware verification), but it seems fair to admit that many of these have been accomplished more
by heroic perseverance than by generally tractable methods. Our aim will be to investigate what can be done on a modest
timescale, and moreover what we can expect others to reproduce.!®

IV. Customized system

As mentioned earlier, it is difficult to encode certain features of ML faithfully within the existing Isabelle system. Some of
the difficulties are merely matters of surface syntax, but others seem more far-reaching and reflect deeper meta-logical issues
(e.g. Let-polymorphism;!! the modules system). Once our prototype has stabilized, we plan to modify Isabelle to create our
own theorem proving system, customized to our logic for ML and not subject to these restrictions. The new system will be
smoothly compatible with the ML definition, and will be generally more friendly to ML programmers (for instance, one will
be able to load in an ML source file directly as a “theory file” rather than writing special Isabelle theory files).

IV.1. The modules system The main intellectual challenge in this part of the project will be to incorporate (as much
as possible of) the ML modules system in a principled way. Part of the issue here is to design a modules system for theories
within the theorem prover that closely reflects the modules system for programs—existing work on Extended ML and on
modules in OBJ [GWM*00] may be relevant here. There are also specific challenges associated with opaque signature
constraints (see 1.4 above) and ML functors—again, our approach will be to see how much we can achieve with our current
semantic understanding.

IV.2. Implementation In this project, we intend merely to start what we hope may become an ongoing endeavour.
Building a theorem prover is a major undertaking, and we plan to re-use available components wherever we can. In
particular, we expect that much of the existing Isabelle code will serve our purposes well, and that the automated tools
developed earlier in the project will slot in easily. We also intend to borrow a parser and type-checker from the ML Kit
Compiler [BRTT93], and to take advantage of Aspinall’s Proof General interface [Asp99]. If appropriate, we may use parts
of the PROSPER, proof environment toolkit [DCN100].

We do not aim for a tool engineered to the level of a commercial product, but for a reasonably clean and robust system
suitable for distribution and use in the research community. Fourman’s experience as architect of the LAMBDA theorem
prover will be invaluable here; we are also eager to profit from the experiences of other colleagues who have implemented
theorem provers (e.g. in Edinburgh and Cambridge).

9Some of these examples have previously been verified as abstract algorithms, but we will be verifying actual code.
10Case studies will thus furnish ideal material for student projects at M.Sc. and final-year undergraduate level.
' The inconsistency of let-polymorphism with HOL-style logic is not a problem for us, since formulae are not terms in our logic.



Once the basics are in place, we will be able to run large samples of code through our system (without necessarily proving
anything about it), in order to assess our claim that we are handling most of the commonly used features of Standard MT..

This may highlight strategic areas for further research.

C. Relevance to beneficiaries

In the short term, our project will benefit workers in the formal methods and software verification communities. Software
verification has been talked about for decades, and there is an enormous literature on methodologies for formal software
development, but many of these ideas have never really been put to the test—largely because of the absence of appropriate
tools (both conceptual and mechanical). Our work will therefore fill a significant gap, providing a platform for case studies
and opening up new directions in formal methods research. Like the HOL, LAMBDA and PVS theorem provers, we hope
that our tools will also enjoy some level of use within industry for safety-critical applications.

We also expect our work to have a bearing on the next generation of systems languages. There is a significant move
amongst language designers towards the adoption of more ML-like features (e.g. strong typing, exceptions), and the applic-
ation of such languages to systems programming [HLP98, Mac00]. Our work will therefore be an important step towards
bringing formal techniques to bear on real-world software. In the long term, we expect our basic strategy to be transferable
to languages of any genre (e.g. object-oriented languages).

Finally, our project will bring together two different research communities (theoretical computer science and Al), and
we expect this to be enriching for both. On the one hand, it will give an indication of how far current semantic theories
address the demands of programming practice; on the other hand, it will offer proof planning techniques some challenging
test problems, which will stimulate further refinements of these techniques.

D. Dissemination and exploitation

As usual in our research community, the main modes of dissemination will be refereed journal papers, conferences, informal
workshops and personal visits to other research establishments. In addition, our software (Isabelle version and customized
version), together with supporting documentation and examples, will be made available to colleagues via the Internet.

Our contacts with industry (e.g. Microsoft Research; Bell Labs; Compaq Research) will provide a rich source of potential
applications. Towards the end of the project, we intend to host a workshop for industrial and academic colleagues in formal
methods, safety critical systems and software verification, both to offer instruction in the use of our tools to verify programs,
and to discuss how to render our technology applicable to industrial or commercial projects.

E. Justification of resources

Manpower Longley will work full-time on the project as a postdoctoral research associate for the whole three years. Funding
for Longley is requested on the ARTA to start at spinal point 9 with annual increments. Fleuriot will contribute an
average of three hours a week for the last two years of the project. Prof. Fourman will contribute an average of three
hours a week to the project, and conduct termly project review meetings. We also seek funding for 15% of a computing
officer (AD3.3) to provide infrastructure support for development and use of our machine tools, and 10% of a secretary
(CN3.3) to support publication and dissemination of our results.

Travel We plan to attend an average of two international conferences a year, e.g. LICS, MFPS, POPL, ICALP, ETAPS,
MFCS, CSL, TACS, CTCS, CADE, CAV, TPHOLs. We request travel and subsistence support for seven one-week
visits to European centres (e.g. Aarhus, INRIA), and two 1-2 week visits to a number of centres within the US (e.g.
CMU, SRI/Stanford, Pennsylvania, Cornell). These visits will be made in conjunction with overseas conference travel.
We also request support for two 2-3 day visits per year within the UK (e.g. Birmingham, Cambridge, Oxford, QMW).

Equipment A workstation, maintained over the project period, is requested to support the development of our proof system
and its evaluation via examples. A portable computer is requested for demonstrating our system at conferences and on
other visits. We also request an appropriate contribution to consumables, shared networking, and fileserver provision.
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A proof system for correct program development

Diagrammatic Workplan

Year 0 1 2 3

I. Design of logic
and Isabelle

prototype 1.1 1.2 1.3 1.4

(Fourman)

II. Automation and

proof heuristics

(Fleuriot) 111 11.2

ITI. Examples and

case studies

(Fleuriot) t

1V. Customized

system
v Iv.2
(Fourman)
____________ T’_____T’______________T’__u
Project milestones First release of Second release of First release of
Isabelle prototype Isabelle prototype customized tool
Workshop and final review

Remarks: Longley will work on all areas of the project; Fleuriot and Fourman will contribute to parts of the project as
indicated above. Where tasks overlap, Longley will divide his time approximately evenly between them.
The task numbers (I.1, 1.2 etc.) refer to paragraphs in the main proposal.



