
Bar recursion is not T+min definable

John Longley

February 2, 2015

Abstract

This note supplies the proof of a theorem stated in the forthcoming
book by Longley and Normann: namely, that Spector’s bar recursion
functional is not representable by a left-well-founded sequential procedure,
and hence is not definable in the language T + min (that is, Gödel’s
System T augmented with the minimization operator), for instance within
the Kleene–Kreisel model of total continuous functionals.

1 Introduction

In the forthcoming book by Longley and Normann [3], it is stated without proof
(as Theorem 6.3.281) that Spector’s bar recursion functional is not computable
by any left-well-founded nested sequential procedure, and hence is not express-
ible in the programming language T + min (i.e. Gödel’s System T augmented
with the minimization or ‘µ’ operator familiar from basic computability the-
ory). The present note, intended as a supplement to [3], supplies the proof of
this theorem.

More precisely, the theorem states that within the nested sequential pro-
cedure (NSP) model SP0 as studied in Chapter 6 of [3], no left-well-founded
element can play the role of a Spector-style bar recursor, or even a restricted
one (see Definition 5 below). Since every T + min definable procedure is left-
well-founded (Theorem 6.3.15), it follows that no (restricted) bar recursor in
SP0 is T + min definable. As noted by Corollary 6.3.33, and shown in more
detail in Section 3 below, this readily implies that in the total type structure
Ct of Kleene–Kreisel continuous functionals (for instance), the bar recursion
operator is not µ-computable, or even µ-computable relative to the System T
recursors. Since it is well known that bar recursion is Kleene S1–S9 computable
within Ct (Theorem 8.3.1), we thus see that bar recursion offers a particularly
striking example of a phenomenon first established by Bergstra [1]: namely, the
existence of Kleene computable functionals in Ct that are not µ-computable (see
Section 8.5.2).

1Throughout this note, three-part reference numbers for subsections, definitions, theorems
etc. will always refer to [3].

1

We shall begin by recalling a few points of notation and terminology, al-
though we shall rely heavily on [3] for complete definitions and for the basic
theory of the model SP0.

We work with the class T of simple types freely generated from the single base
type N (for natural numbers) via the binary type constructor →. We write k, or
sometimes just k, for the pure type of level k given by 0 = N and k + 1 = k → 0.

As explained in Subsection 3.2.5 and Section 6.1 of [3], nested sequential
procedures (or NSPs) are infinitary terms generated by the following grammar,
construed coinductively:

Procedures: p, q ::= λx0 . . . xr−1. e

Expressions: d, e ::= ⊥ | n | case a of (i ⇒ ei | i ∈ N)
Applications: a ::= x q0 . . . qr−1

We shall often use vector notation ~x, ~q for sequences x0 . . . xr−1 and q0 . . . qr−1.
The notions of free variable and (infinitary) α-equivalence are defined in the
expected way, and we shall work with terms only up to α-equivalence.

If variables are considered as annotated with types from T, there is an evident
notion of a well-typed procedure term p : σ, where σ ∈ T. For each type σ, we
let SP(σ) be the set of well-typed procedures of type σ, and SP0(σ) for the
set of closed such procedures (note that SP0(N) ∼= N⊥). We will sometimes
take notational liberties: e.g. for n ∈ N, we will often write the procedure
λ.n ∈ SP0(N) simply as n.

It is shown in Section 6.1 of [3] how to define a (total) application operation
· : SP(σ → τ) × SP(σ) → SP(τ) for each σ, τ ∈ T, thus making the sets
SP(σ) into an applicative structure SP. Since closed procedures are closed under
application, we likewise obtain an applicative substructure SP0. A fundamental
though non-trivial result is that SP0 is a (typed) λη-algebra (Theorem 6.1.18).
Furthermore, it is readily shown that SP0 admits a natural interpretation of the
constants of T + min (Theorems 6.3.5 and 6.3.15), and even those of Plotkin’s
PCF (Example 7.1.5), thus making SP0 an adequate model for these languages.

The focus of the present note will be a certain substructure of SP0 repre-
senting a more restricted concept of sequential higher-order computation: the
submodel consisting of left-well-founded procedures. Suppose that p is a sequen-
tial procedure and π is some path through its syntax tree. If case a of (i ⇒ ei)
is any subterm appearing along π, we shall say π takes a left branch at this
subterm if it descends into a, and a right branch if it descends into some ei. We
say p is left-well-founded (LWF) if no path π through its syntax tree involves
infinitely many left branches. Equivalently, p is LWF if the tree of application
subterms within p is well-founded.

It can be shown (Theorem 6.3.14) that the left-well-founded procedures of
SP0 are closed under application, and so constitute an applicative substructure
SP0,lwf of SP0. Furthermore, SP0,lwf is a sub-λη-algebra of SP0 and contains the
interpretations of the constants of T + min, so that the interpretation of any
T+min term remains within SP0,lwf. Significantly, however, the interpretations
of the PCF fixed point operators Yσ in SP0 fall outside SP0,lwf.

2

Our theorem will state that no LWF procedure of relevant type can play the
role of a bar recursor. Here, the property of being a bar recursor is framed in
terms of having a certain extensional behaviour when applied to ‘total’ argu-
ments. In fact, since several concepts of ‘totality’ are possible in a higher-order
setting, we shall limit our attention to a restricted class of strongly total ar-
guments which can be expected to be ‘total’ in all reasonable senses—this will
enable us to formulate our theorem in a strong form that transfers readily to
many other models and many concepts of totality. We now proceed to identify
a class of strongly total elements that will be convenient for our purposes.

First, we recall that SP0 admits a natural interpretation of the language
Klexprim of Kleene primitive recursion: in effect, the simply typed lambda calcu-
lus with constants 0̂ : N, Suc : N→ N and Primrec : N→ N→ (N→ N→ N) → N.2

The interpretation of these constants as NSPs is as follows:

0̂ = λ.0
Suc = λx. case x of (i ⇒ i + 1)

Primrecj [x, f] = case x of i0 ⇒ case f0i0 of i1 ⇒ · · ·
case f(j − 1)ij−1 of ij ⇒ ij ,

Primrec = λxfn. case n of (j ⇒ Primrecj [x, f]) .

It is reasonable to expect that any Klexprim definable procedure will be ‘total’
in all senses of interest.

Another simple example of a manifestly ‘total’ NSP, seemingly not definable
within Klexprim, is the following ‘strong definition by cases’ operator Cases :
N→ (N→ N) → (N→ N) → N:3

Cases = λxfg. case x of (0 ⇒ f0 | i + 1 ⇒ g0) .

(Here, for example, f0 abbreviates case f0 of (i ⇒ i).) As in Subsection 6.3.4,
we shall write Klexprim+ for the simply typed λ-calculus with constants 0̂, Suc,
Primrec and Cases, and shall consider an NSP to be strongly total iff it is
definable by a closed term of Klexprim+. (We do not claim any canonical status
for this definition—the choice of the language Klexprim+ is purely a matter of
technical convenience.)

Abstracting from this situation, we may introduce the following general def-
inition (cf. Exercise 6.3.21):

Definition 1 Suppose A is any simply typed λ-algebra over N or N⊥ equipped
with a choice of elements Suc, Primrec, Cases, with types as above, such that
the following hold in A for all n, m ∈ N and all x, f, g of appropriate types.

2In the language Klexprim as defined in Subsection 5.1.5, Suc and Primrec are treated
as built-in language constructs rather than simply as constants, but this is an inessential
difference.

3Note that Cases is called D in [3] (see Exercise 6.3.21). We have not actually proved that

Cases is not definable in Klexprim—this may be an interesting question for further work.

3

(The equations involving ⊥ apply only when A(N) = N⊥.)

Suc · n = n + 1 Suc · ⊥ = ⊥
Primrec · x · f · 0 = x Primrec · x · f · ⊥ = ⊥
Primrec · x · f · n = m =⇒ Primrec · x · f · n + 1 = f · n ·m
Primrec · x · f · n = ⊥ =⇒ Primrec · x · f · n + 1 = ⊥

Cases · 0 · f · g = f0 Cases · ⊥ · f · g = ⊥
Cases · n + 1 · f · g = g0

Relative to this choice, an element of A is strongly total if it is λ-definable from
0, Suc, Primrec, Cases.

In SP0 in particular, it follows easily from results of Section 6.3 in [3] that
every strongly total element is well-founded and contains no occurrences of ⊥.
Moreover, the class of strongly total procedures forms a total computability
model over N. In our main proof, we shall sometimes claim that a certain
procedure is strongly total, but leave it as an easy exercise to verify that this is
indeed the case.

In order for our general notions of bar recursor to make sense, we shall work
in the setting of a model A satisfying the hypotheses of Definition 1, along with
the additional hypothesis that A is extensional at type 1: that is, if f, g ∈ A(1)
and f · x = g · x for all x ∈ A(0), then f = g. It is clear that our model
SP0 satisfies these conditions, as do many other models of interests such as
the Scott-Ershov model PC of partial continuous functionals and the Kleene–
Kreisel model Ct of total continuous functionals. Clearly, in any such model, any
primitive recursive function f : N → N has a canonical representative f̃ ∈ A(1)
such that f̃ · n = f(n) for each n ∈ N and (when A(0) = N⊥) f̃ · ⊥ = ⊥.

A little more notation and terminology will be helpful. If x = 〈x0, . . . , xr−1〉,
where x, xi ∈ N and 〈· · ·〉 is a coding for finite sequences of natural numbers,
we shall write |x| for the length of the coded sequence (namely r), and x.z for
〈x0, . . . , xr−1, z〉 where z ∈ N. We also write x0, . . . , xr−1, j

ω or ~x jω for the
primitive recursive function N → N sending i to xi if i < r, and to j if i ≥ r;
we also use the same notation for the canonical representative of this function
within A(1).

We shall in fact consider two variants of bar recursion, due respectively to
Spector [4] and to Kohlenbach [2]. Both of these exploit the idea that any
continuous function NN → N can be construed as representing a well-founded
countably branching tree, but they differ as regards the way in which it does so:

Definition 2 (i) Given any F ∈ A(2), let us say a sequence ~x = x0, . . . , xr−1

is a Spector leaf in F if F (~x 0ω) < |x|, and is a Kohlenbach leaf in F if
F (~x 0ω) = F (~x 1ω). A Spector [resp. Kohlenbach] leaf ~x is minimal if no proper
prefix of ~x is also a Spector [resp. Kohlenbach] leaf in F .

(ii) The Spector tree of F , written TrS(F), is the set of sequence numbers
x = 〈~x〉 such that no proper prefix of ~x is a Spector leaf in F . The Kohlenbach
tree TrK(F) is defined analogously.

4

The key property here that both TrS(F) and TrK(F) are well-founded trees
if F acts continuously on functions g : N → N. This is because if F is continuous,
then for any such g there exists r such that g(0), . . . , g(r − 1) is a Spector leaf
in F , and likewise for Kohlenbach leaves.

We are now ready at last to present our definitions of bar recursors (cf.
Section 7.3.3 of [3]):

Definition 3 A Spector bar recursor (for type N) is an element

BRS ∈ A(((N→ N) → N) → (N→ N) → (N→ (N→ N) → N) → (N→ N))

such that the following hold for all strongly total F,L,G ∈ A of appropriate
types and for all x = 〈~x〉 ∈ TrS(F):

BRS(F,L,G)(x) = L(x) if x is a Spector leaf in F ,

BRS(F,L,G)(x) = G(x, λz : 0.BRS(F,L,G)(x.z)) otherwise .

The notion of a Kohlenbach bar recursor BRK is defined analogously, using the
set TrK(F) and the notion of Kohlenbach leaf.

(By the notation (λz. BR(F,L,G)(x.z)), we here mean the canonical represen-
tative of this function within A(1). This exists because A is a λ-algebra and
the function (x, z) 7→ x.z is primitive recursive, hence present in A.)

The condition that x belongs to the relevant tree is not a standard part of
this definition (and is not included e.g. in Section 7.3.3 of [3]). This condition
makes our notions of bar recursor slightly weaker than usual (which in turn
makes our main theorem slightly stronger), but its main purpose is to facilitate
Proposition 4 below. Clearly, both Spector and Kohlenbach bar recursors exists
in SP0: e.g. the above recursive definition of BRS can be readily recast as an
NSP for BRS featuring BRS itself, and by expanding this ad infinitum we obtain
an infinitely deep NSP with the required properties. (Crucially, however, these
‘canonical’ bar recursors are not LWF.) If BR is any Spector [resp. Kohlenbach]
bar recursor in SP0, it is easy to show by continuity of SP0 and meta-level bar
induction that for any strongly total F,L,G, x, the value of BR · F · G · x is a
numeral and is uniquely determined by the clauses of Definition 3.

For our main proof, we shall find it marginally more convenient to work
with the Kohlenbach definition, but our theorem will transfer readily to the
Spector version in view of the following relative definability result. We shall
here state this just for SP0; it will be seen that it also holds for other models
with reasonable computational closure and continuity properties, although we
shall not bother to formulate the relevant general conditions precisely.

Proposition 4 If BRS is any Spector bar recursor in SP0, then a Kohlenbach
bar recursor BRK is T + min definable relative to BRS. Hence if a left-well-
founded Spector bar recursor exists in SP0, so does a left-well-founded Kohlen-
bach bar recursor.

5

Proof We first construct a T + min definable element U ∈ SP0(2 → 2)
such that for any F ∈ SP0(2) in which the empty sequence is not a Kohlenbach
leaf, the minimal Spector leaves in U · F are precisely the minimal Kohlenbach
leaves in F . We may achieve this by defining

U = λF.λg. (min r. F (g(0), . . . , g(r − 1), 0ω) = F (g(0), . . . , g(r − 1), 1ω))− 1 .

Using this, we may define

BRK = λFLGx. if F (0ω) = F (1ω) then L〈〉 else BRS(U(F), L,G)(x) .

It is now easy to check by bar induction on nodes in TrK(F) that BRK is a
Kohlenbach bar recursor. �

The converse implication can also be proved similarly. In fact, a somewhat
subtler argument (appearing in Kohlenbach [2]) shows that Spector bar recur-
sion is definable relative to Kohlenbach bar recursion in System T alone (the
converse to this does not hold).

One final piece of terminology is needed. To ease notation, and also to
present our theorem in a slightly stronger form, we shall consider more special-
ized forms of bar recursion that are easily obtained from the general forms above.
We here revert to the general setting of a model A satisfying the conditions of
Definition 1 along with extensionality at type 1.

Definition 5 A restricted Spector bar recursor is an element

BRS,r ∈ A(2 → 2 → 1)

such that the following hold for all strongly total F,G ∈ A of appropriate types
and for all x = 〈~x〉 ∈ TrS(F):

BRS,r(F,G)(x) = 2x + 1 if x is a Spector leaf in F ,

BRS,r(F,G)(x) = G(λz : 0.BRS,r(F,G)(x.z)) otherwise .

The notion of restricted Kohlenbach bar recursor BRK,r is defined analogously.

It is easily seen that a restricted (Spector or Kohlenbach) bar recursor is
primitive recursively definable from an ordinary one by specializing the leaf
function L to λx.2x + 1 and by eschewing the dependence of G on an argument
x. The proof of Proposition 4 clearly also yields the following:

Proposition 6 If BRS,r is a restricted Spector bar recursor in SP0, then a
restricted Kohlenbach bar recursor BRK,r is T+min definable relative to BRS,r.
Hence if a left-well-founded restricted Spector bar recursor exists in SP0, so does
a left-well-founded restricted Kohlenbach bar recursor. �

6

2 The theorem

We are now ready to state our main theorem:

Theorem 7 Within SP0, a restricted Kohlenbach bar recursor cannot be LWF,
and hence cannot be T + min definable.

The corresponding statement for restricted Spector bar recursion (which
appears as Theorem 6.3.28 in [3]) follows immediately by Proposition 6. It also
follows a fortiori that no ordinary Spector or Kohlenbach bar recursor in the
sense of Definition 3 can be LWF.

The proof of the Theorem follows a general method introduced in [3], where
it is used to show that the System T recursor rec1 is not definable in Klexmin, the
language of µ-recursion (Theorem 6.3.27). The proof of that result is already
complex, and that of the present Theorem even more so. The reader is therefore
strongly urged to study the proof of Theorem 6.3.27 in detail before tackling
the present one.

We start with an informal outline of our argument. Suppose that B is any
genuine restricted Kohlenbach bar recursor in SP0. Suppose also, for contradic-
tion, that B′ is a left-well-founded restricted bar recursor in SP0; our task is to
construct particular strongly total F,G such that B′ · F ·G · 〈〉 6= B · F ·G · 〈〉.
We shall write P ∈ SP0(2, 2 → 0) for the procedure λF 2G2.B′FG〈〉; clearly P
is LWF.

As far as G is concerned, our strategy is to begin by analysing in detail
the computations arising when P and various subterms thereof are applied to
G0 = λg1.2g(0); let the result of applying P to G0 be c. We then concoct some
strongly total G1 which is sufficiently close to G0 that all these computations
proceed in the same way when G0 is replaced by G1, but such that the true
value of B at G1 is different from c. (In this respect our proof is similar to that
of Theorem 6.3.27.)

As far as F is concerned, the idea is that since P is LWF, it will only
be prepared to nest calls to G to finite depth along any given branch of the
computation. We therefore wish to construct an F representing a well-founded
tree that goes deeper along some branch than P is willing to explore. Rather
than specifying such an F up front, however, we shall construct one by a process
of successive approximation in tandem with our analysis of the computation tree
for P ·F ·G0; the idea is that our choice of F is based on looking at how deep P
actually goes in the computation in question. (This is a new ingredient of our
argument not present in the proof of Theorem 6.3.27.)

Our proof will be structured as follows. First, we let G0 ∈ SP0(2) be the
evident procedure for λg.2g(0), and analyse the computation of P · F · G0 for
various F . At ‘top level’, this will consist of a finite sequence of calls to F or
G0 followed by the return of a final result; but we will go on to analyse the type
1 procedures that are passed to F and G0, at least for numerical arguments
below a certain bound. These subsidiary computations will themselves consist
of a finite sequence of calls to F or G0, so we can recursively apply a similar

7

analysis to these calls. The hypothesis that P is LWF will ensure that this
whole process terminates at some finite depth.

At the end of this analysis, we are left with two things. First, in the course
of the analysis, the value of F we are considering will have been refined via
an approximating process, and at the end we are able to fix on the definitive
value F∞ that we shall use to obtain a contradiction. Second, our analysis
generates a set of sufficient conditions on a procedure G (all satisfied by G0)
which guarantee that the computation of P · F∞ ·G will proceed exactly as for
P · F∞ ·G0, and will yield the same result. These sufficient conditions may be
encapsulated by a certain neighbourhood G ⊆ SP0(2), consisting of procedures
sufficiently close to G0 that the same computation works.

To complete the proof, we then construct a certain procedure G1 (again
drawing on the above analysis), and show that G1 ∈ G (so that P · F∞ · G1 =
P · F∞ ·G0), but that B · F∞ ·G1 · 〈〉 6= P · F∞ ·G1. We thus conclude that B′

is not a restricted bar recursor after all.
We now proceed to the more formal outworking of this method. We shall

write TrK(F) simply as Tr(F).

Computation analysis: the top level

To begin, we define strongly total procedures

G0 = λg. case g(0) of (i ⇒ 2i) ,

F+
0 = λf. case f(0) of (i ⇒ 〈i〉) .

Note that 〈〉 is not a leaf in Tr(F+
0), but that each 〈x0〉 is a leaf. Suppose that

P · F+
0 · G0 = c ∈ N.4 By continuity of application, we may pick k0 ∈ N large

enough that P · F0 ·G0 = c, where

F0 = λf. case f(0) of (i < k0 ⇒ 〈i〉 | i ≥ k0 ⇒ ⊥)

(extending our notation for case expressions in an obvious way). Note that
F0 v F+

0 . We shall use F0 as the first step in our approximative construction
of a suitable F .

Let us now look at the computation of P ·F0 ·G0 = c. At ‘top level’, this will
consist of a finite sequence of calls to F0 or G0 (in any order), corresponding
to a rightward path through the syntax tree of P leading to the result c (recall
that P has the form λFG. · · ·). For example, such a path might have the form

λFG. case F (f0
0) of u0

0 ⇒ case G(g0
0) of v0

0 ⇒ case F (f0
1) of u0

1 ⇒ · · · ⇒ c .

Here the f0
i and g0

i are themselves type 1 procedures which appear syntactically
within P and which may contain F,G as free variables (the superscript indicates
that we are here analysing the computation at ‘level 0’). Let f0

0 , . . . , f0
l0−1 be

the complete list of such procedures appearing as arguments to F along this
computation path, with u0

0, . . . , u
0
l0−1 the corresponding outcomes when F,G

4One can actually show that P · F+
0 · G0 = 4〈0〉 + 2, but we shall not need this fact.

8

are instantiated to F0, G0. Likewise, let g0
0 , . . . , g0

n0−1 be the list of procedures
appearing as arguments to G on this path, with v0

0 , . . . , v0
n0−1 the corresponding

outcomes. In general, if h is a procedure possibly containing F,G free, and F ′, G′

are closed procedures of appropriate types, we shall use the notation h[F ′, G′]
for the closed procedure obtained from h by instantiating F,G to F ′, G′ and
normalizing (formally, h[F ′, G′] = (λFG.h) · F ′ ·G′).

Of course, when F = F0 and G = G0, the type 1 procedures f0
i and g0

i will
be interrogated only on the argument 0. However, in order to secure the same
evaluation behaviour when we later replace G0 by our contrary example G1, we
shall also need to analyse the behaviour of each g0

i on arguments up to some
modulus m0. Choose

m0 > k0 + n0 + 1 .

(This constraint is rather hard to motivate at this stage; the reason for it will
emerge during the construction of G1, at the point where we select a number
x0 with certain properties.)

In order to proceed further, we need to extend our approximation to F .
First, extend the procedure F0 to a strongly total F+

1 :

F+
1 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒

case f(1) of (i1 ⇒ 〈i0, i1〉)) .

(We leave it as an easy exercise to verify that F+
1 is indeed strongly total.) The

idea is that 〈x0〉 will be a leaf node in Tr(F+
1) when x0 < k0, but elsewhere

Tr(F+
1) will have depth 2.

Now consider the computation of P · F+
1 ·G0. Since F+

1 w F0, this has the
same shape as before and features the same type 1 procedures f0

i and g0
i and

outcomes u0
i , v

0
i . Furthermore, we claim that g0

i [F+
1 , G0] · z yields some natural

number r0
iz. To show this, suppose for contradiction that g0

i [F+
1 , G0](z) = ⊥ for

some i, z, and let G′0 = λg. case g(z) of (j ⇒ G0(g)). Clearly G′0 is strongly
total. Also G′0 � G0 in the extensional preorder on NSPs (see Exercise 6.1.21),
so

(G(g0
i))[F+

1 , G′0] v G′0(g
0
i [F+

1 , G0]) = ⊥ .

Moreover, for each application F (f0
j) (respectively G(g0

j)) occurring before G(g0
i)

in the path under consideration, we have (F (f0
j))[F+

1 , G′0] v u0
j (respectively

(G(g0
j))[F+

1 , G′0] v v0
j), whence it is easy to see that P · F+

1 · G′0 is undefined.
This contradicts the fact that P is defined on all strongly total arguments.

By the same argument, for each i < l0 and for z = 0, f0
i [F+

1 , G0] · z yields
a natural number, which we call q0

iz. (This apparently superfluous use of z is
intended to mesh with the more general situation treated below.)

At this point, it is convenient to record the information gleaned so far in the
form of certain neighbourhoods of G0. For each i < n0, define

V 0
i = {g ∈ SP0(1) | ∀z < m0. g · z = r0

iz} ,

G0
i = {G ∈ SP0(2) | ∀g ∈ V 0

i . G · g = v0
i } .

9

Clearly G0 ∈ G0
i for each i, because G0 interrogates its argument only at 0 (so

in fact even the single condition g ·0 = r0
i0 suffices to guarantee that G ·g = v0

i).
This completes our analysis of the computation at top level; we shall refer to
this as the depth 0 analysis.

The idea is that the sets G0
i will form part of a system of neighbourhoods

recording all the necessary information about G0; we will then be free to select
any G from the intersection of these neighbourhoods knowing that the compu-
tation will proceed as before. (The particular neighbourhood system we give
will be carefully selected to allow for the construction of a certain G1 with the
desired properties.) As things stand, the neigbourhoods G0

i do not achieve this:
for an arbitrary G in all these neigbourhoods, there is no guarantee that the
meaning of each g0

i (z) at F+
1 and G will agree with its meaning at F+

1 and G0

— and similarly for each f0
i (0). We therefore need a deeper analysis of these

subcomputations in order to nail down the precise information about G0 that
these rely on.

Computation analysis: the step case

The idea is that we now repeat our analysis for each of the computations of

f0
i (z)[F+

1 , G0] (i < l0, z < 1) , g0
i (z)[F+

1 , G0] (i < n0, z < m0) .

The analysis at this stage is in fact illustrative of the general analysis at depth
w, assuming we have completed the analysis at depth w − 1. For notational
simplicity, however, we shall concentrate here on the depth 1 analysis, adding a
few brief remarks on the depth 2 analysis in order to clarify how the construction
works in general.

First, since each of the above computations yields a numeral q0
iz or r0

iz as
appropriate, we may choose k1 such that all these computations yield the same
results when F+

1 is replaced by

F1 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒ ⊥)) .

Note in passing that F0 no longer suffices here: there will be computations of
values for g0

i (z) that did not feature anywhere in the original computation of
P · F0 ·G0.

Everything we have said about the main computation and its subcomputa-
tions clearly goes through with F+

1 replaced by F1. So let us consider the shape
of the computations of

f0
i (z)[F1, G0] (i < l0, z < 1) , g0

i (z)[F1, G0] (i < n0, z < m0) .

At top level, each of these consists of a finite sequence of applications of F1 and
G0 (in any order), leading to the result q0

iz or r0
iz. Taking all these computations

together, let f1
0 , . . . , f1

l1−1 and g1
0 , . . . , g1

n1−1 respectively denote the (occurrences
of) type 1 procedures to which F1 and G0 are applied, with u1

0, . . . , u
1
l1−1 and

10

v1
0 , . . . , v1

n1−1 the corresponding outcomes. Although we will not explicitly track
the fact in our notation, we should consider each of the f1

j and g1
j as a ‘child’

of the procedure f0
i or g0

i from which it arose. Note that if g1
j is a child of f0

i

(for example), then just as Ff0
i appears as a subterm within the syntax tree of

P , so Gg1
j appears as a subterm within the syntax tree of f0

i . Thus, each of the
f1

j and g1
j corresponds to a path in P with at least two left branches.

We now select a suitable modulus for our analysis of the g1
i . Choose

m1 > k1 + n0 + n1 + 2 , m1 ≥ m0 .

(Again, the reason for this choice will emerge from the construction of G1.)
Extend F1 to F+

2 so that F+
2 (f) = 〈f(0), f(1), f(2)〉 when f(0) ≥ k0 and f(1) ≥

k1. Replacing F1 by F+
2 preserves all the structure established so far, and as

before we have that g1
i (z) at F+

2 , G0 yields a numeral r1
iz for each i < n1 and

z < m1; similarly f1
i (z) at F+

2 , G0 yields a numeral q1
iz for each i < l1 and z < 2.

(In fact, it is superfluous to consider f1
i (1) in cases where f1

i (0) < k0, but it
simplifies notation to use 2 here as our uniform modulus of inspection for the
f1

i .) We may now augment our collection of neighbourhoods by defining

V 1
i = {g ∈ SP0(1) | ∀z < m1. g · z = r1

iz} ,

G1
i = {G ∈ SP0(2) | ∀g ∈ V 1

i . G · g = v1
i } .

for each i < n1; note once again that G0 ∈ G1
i . This completes our analysis of

the computation at depth 1.
At the next stage, we choose k2 so that the above all holds with F+

2 replaced
by

F2 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒
case f(2) of (i2 < k2 ⇒ 〈i0, i1, i2〉 | i2 ≥ k2 ⇒ ⊥))) .

We now repeat our analysis for each of the computations of

f1
i (z)[F2, G0] (i < l1, z < 2) , g1

i (z)[F2, G0] (i < n1, z < m1) .

Having identified the relevant type 1 procedures f2
0 , . . . , f2

l2−1 and g2
0 , . . . , g2

n2−1

that feature as arguments to F and G, we pick

m2 > k2 + n0 + n1 + n2 + 3 , m2 ≥ m1 ,

and use this to define suitable sets V 2
i ,G2

i for i < n2. By this point, it is clear
how our construction may be continued to arbitrary depth.

Computation analysis: the bottom level

The crucial observation is that this entire construction eventually bottoms out.
Indeed, using h as a symbol that can ambivalently mean either f or g (and

11

likewise H for F or G), we have that for any sequence h0
i0 , h

1
i1 , . . . of type 1

procedures where each hw+1
iw+1 is a child of hw

iw , the syntax tree of P contains
the descending sequence of subterms H0h0

i0 ,H
1h1

i1 , Since P is LWF by
assumption, any such sequence must eventually terminate. Moreover, the tree
of all such procedures hw

i is finitely branching, so by König’s lemma it is finite
altogether.

Let us see explicitly what happens at the last stage of the construction.
For some depth d, we will have constructed the fd

i , gd
i , ud

i , v
d
i as usual, along

with md, F+
d+1, the numbers rd

iz, q
d
iz and the neighbourhoods Gd

i , but will then
discover that ld+1 = nd+1 = 0: that is, none of the relevant computations of
fd

i (z) or gd
i (z) (relative to F+

d+1 and G0) themselves perform calls to F or G.
At this point, we may settle on F+

d+1 as the definitive version of F to be used
in our counterexample, and henceforth call it F∞. Explicitly:

F∞ = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒
· · ·
case f(d) of (id < kd ⇒ 〈i0, · · · , id〉 | id ≥ kd ⇒
case f(d + 1) of (id+1 ⇒ 〈i0, · · · , id+1〉)) · · ·)) .

Clearly F∞ is strongly total and F∞ w Fw for w ≤ d. Note that if f(0) ≥
k0, . . . , f(d) ≥ kd then F∞ · f = 〈f(0), . . . , f(d+1)〉; indeed 〈f(0), . . . , f(d+1)〉
is a minimal leaf node in Tr(F). It is this portion of the tree, not visited by any
of the computations described so far, that we shall exploit when we construct
our counterexample G1.

The critical neighbourhood of G0

We may now define the critical neighbourhood G ⊆ SP0(2) by

G =
⋂

w≤d, i<nw

Gw
i .

Clearly G0 ∈ G. We claim that the following hold for all G ∈ G and all w ≤ d:

1. fw
i (z)[F∞, G] = qw

iz for all i < lw and z ≤ w.

2. gw
i (z)[F∞, G] = rw

iz for all i < nw and z < mw.

3. F (fw
i)[F∞, G] = uw

i for all i < lw.

4. G(gw
i)[F∞, G] = vw

i for all i < nw.

5. P · F∞ ·G = c.

In other words, G provides a tight enough constraint to ensure that all the
computations we have considered run for any G ∈ G just as they did for G0.

12

We prove claims 1–4 simultaneously by downwards induction on w. For w =
d, claims 1 and 2 hold because the computations in question make no use of F∞
or G. For any w, claim 1 implies claim 3: Fw was chosen so that (among other
things) Fw(fw

i [Fw, G0]) = uw
i is defined; moreover, Fw interrogates its argument

only on 0, . . . , w at most, so the established values of fw
i (z)[F∞, G] for z ≤ w

suffice to ensure that Fw(fw
i [F∞, G]) = uw

i , and hence that F∞(fw
i [F∞, G]) =

uw
i . Likewise, claim 2 implies claim 4, since G ∈ Gw

i by hypothesis, and the
established values of gw

i secure that gw
i ∈ V w

i (at F∞ and G).
Assuming claims 3 and 4 hold for w + 1, it is easy to see that claims 1 and

2 hold for w: the relevant top-level computation may be reconstituted from left
to right leading to the result qw

iz or rw
iz. Applying the same argument one last

time also yields claim 5.

The counterexample G1

It remains to construct our contrary example G1 ∈ G. The idea is that G1 will
be chosen so that according to the definition of restricted bar recursion, some
‘large’ value K 6= c will be propagated from a leaf node at depth d+1 up to the
surface of the computation. We work with paths beyond the horizon defined by
k0, k1, . . . to ensure that we do not encounter a leaf prematurely, and use the
moduli mw to ensure that the type 1 functions at intermediate levels steer clear
of the sets V w

i .
Recall that B is assumed to be a genuine restricted bar recursor within SP0,

and set B0 = B · F∞ ·G0 ∈ SP0(1). Since G0 = λg.2g(0) and the leaf function
has been fixed at x 7→ 2x + 1, we have that for any sequence number x, B0 · x
will take one of the values

2x + 1 , 2(2(x.0) + 1) , 4(2(x.0.0) + 1) , 8(2(x.0.0.0) + 1) , . . . ,

according to where a leaf for F∞ first appears in the sequence x, x.0, x.0.0,
In particular, for any fixed j, if we know that |x| > j, we can recover xj from
B0 ·x and even from θ(B0 ·x), where θ(n) denotes the unique odd number such
that n = 2t.θ(n) for some t. We shall write x.0t for the result of appending t
occurrences of 0 to the sequence number x.

We construct a finite path x0, x1, . . . , xd through the tree for F∞ in the
following way, along with some associated numbers y0, y1, . . . , yd, yd+1. Start by
setting y0 = B0 · 〈0〉. By the foregoing remarks, the mapping z 7→ θ(B0 · 〈z, 0〉)
is injective, so by our choice of m0 we may pick x0 with k0 ≤ x0 < m0 such that
y1 = B0 · 〈x0, 0〉 differs from g0

i (0) (more precisely from r0
i0) for each i < n0,

and also θ(y1) differs from θ(y0). Likewise, the mapping z 7→ θ(B0 · 〈x0, z, 0〉)
is injective, so by our choice of m1 we may pick x1 with k1 ≤ x1 < m1 such
that y2 = B0 · 〈x0, x1, 0〉 is different from all r0

i0 and r1
i′0 where i < n0, i′ < n1,

and also θ(y2) is different from θ(y0) and θ(y1). In general, we pick xw with
kw ≤ xw < mw such that yw+1 = B0 · 〈x0, . . . , xw, 0〉 is different from all ru

i0

with u ≤ w and i < nu, and also θ(yw+1) is different from θ(y0), . . . , θ(yw).
Since xw ≥ kw for each w ≤ d, we have that 〈x0, . . . , xd, 0〉 is a minimal leaf
node for F∞.

13

Now let K be some natural number larger than any that has featured in the
construction so far, and define

G1 = λg. case g(0) of (
yd+1 ⇒ K

| yd ⇒ case g(xd) of (K ⇒ K | j ⇒ 2i)
| · · ·
| y1 ⇒ case g(x1) of (K ⇒ K | j ⇒ 2i)
| y0 ⇒ case g(x0) of (K ⇒ K | j ⇒ 2i)
| i ⇒ 2i

) .

Here we understand i, j as ‘pattern variables’ that catch all cases not handled by
the preceding clauses. In particular, the clauses j ⇒ 2i, i ⇒ 2i mean that unless
g possesses some special property explicitly handled by some other clause, we
will have G1 · g = 2(g · 0) = G0 · g. Again, we leave it as an exercise to check
that G1 is strongly total.

Properties of G1

Let us first check that G1 ∈ G. Suppose w ≤ d and i < nw; we will show
G1 ∈ Gw

i . Consider an arbitrary g ∈ V w
i (note that g is not assumed to represent

a total function); we want to show that G1 · g = vw
i . From the definition of V w

i

we have g · 0 = rw
i0, so for u > w, we have g · 0 6= yu by choice of yu. If also

g · 0 6= yu for each u ≤ w then G1(g) = 2(g · 0) = G0(g) = vw
i as required. If

g · 0 = yu for some u ≤ w, then G1(g) = case g(xu) of (K ⇒ K | i ⇒ 2(g · 0)).
However, since xu < mu ≤ mw we have g(xu) = rw

ixu
, and K was assumed to

be larger than this, so once again G1(g) = 2(g · 0) = vw
i .

We now work towards showing that B ·F∞ ·G1 ·〈〉 = K. Set B1 = B ·F∞ ·G1,
and for w ≤ d + 1, denote 〈x0, . . . , xw−1〉 by xw.

Claim: B1 · (xw.0) = yw for all w ≤ d + 1.
Proof of claim: Recall that yw = B0 · (xw.0); which has the form 2t.s where

s = θ(yw) = B0 · (xw.0.0t) and t is minimal such that xw.0.0t is a leaf for F∞.
Note also that if 0 < t′ ≤ t then B0 · (xw.0.0t′) = 2t−t′ .s, which is distinct from
yw (this is the point of the doubling in the definition of G0), and also from all
the other yu since θ(y0), . . . , θ(yd+1) are all distinct.

We may now see by reverse induction on t′ ≤ t that B1 · (xw.0.0t′) = 2t−t′ .s.
When t′ = t, this holds because xw.0.0t is a leaf for F∞ so B1 · (xw.0.0t) =
B0 · (xw.0.0t). Assuming this holds for t′+1 with t′ < t, because xw.0.0t′ is not
a leaf we have

B1 · (xw.0.0t′) = G1 · (λz.B1 · (xw.0.0t′ .z))

= case B1 · (xw.0.0t′ .0) of (· · · | i ⇒ 2i)

= case 2t−(t′+1).s of (· · · | i ⇒ 2i)

= 2t−t′ .s ,

14

using the observation that 2t−(t′+1).s is distinct from all of the yu.
In particular, B1 · (xw.0) = 2t.s = yw, so the claim is established.
Next, we show by reverse induction that B1 · xw = K for all w ≤ d + 1. For

the case w = d + 1, we have by the above claim that B1 · (xd+1.0) = yd+1, and
since xd+1 is not a leaf for F∞, we have

B1 · xd+1 = G1(λz. B1 · (xd+1.z))
= case B1 · (xd+1.0) of (yd+1 ⇒ K | · · ·)
= K .

For w < d + 1, again we have by the claim that B1 · (xw.0) = yw, and the
induction hypothesis gives us B1 · (xw.xw) = B1 · (xw+1) = K. Since xw is not
a leaf for F∞, we have

B1 · xw = G1(λz. B1 · (xw.z))
= case B1 · (xw.0) of

(· · · | yw ⇒ case B1 · (xw.xw) of (K ⇒ K | · · ·) | · · ·)
= K .

In particular, when w = 0 we have B1 · 〈〉 = B1 · x0 = K. Since K is assumed
to be larger than c, we thus have

B′ · F∞ ·G1 · 〈〉 = P · F∞ ·G1 = c 6= K = B · F∞ ·G1 · 〈〉 .

Since this argument applies for B any genuine restricted bar recursor, we may
conclude that B′ is not a restricted bar recursor after all. This completes the
proof.

3 Other type structures

As mentioned in [3] (Corollary 6.3.33), it follows readily from our main theorem
that bar recursion fails to be T + min definable in many other models besides
SP0. The proof follows the same method as that of Corollary 6.3.32, but for the
sake of completeness we spell it out here.

We work in the setting of a total type structure A over N: that is, an ex-
tensional simply-typed λ-algebra A with A(N) = N. We shall moreover assume
that A models Kleene primitive recursion—that is, A contains elements Suc and
Primrec satisfying the relevant equations from Definition 1. In such a model,
there is a unique functional Cases satisfying the relevant equations, and it is
definable as

Cases = λxfg. Primrec (f0) (λyz.g0) x .

This means that A satisfies all the relevant conditions from Section 1, so the
definitions of the various notions of bar recursor make sense for A. The leading
example we have in mind is the type structure Ct of total continuous functionals;

15

however, other models such as the hereditarily majorizable functionals may also
hold some interest.

As explained in Section 5.1 of [3], any model A satisfying these conditions
admits a partial interpretation [[−]]A− of the language Klexmin, which we here
regard as the simply-typed λ-calculus with constants 0, Suc, Primrec and an
additional construct

Γ ` M : 1
Γ ` Min(M) : 0

(It is important here that we do not treat Min simply as a constant of type 2,
since such a constant would have no suitable interpretation in the total models
of interest.) The qualifier ‘partial’ here means that not all Klexmin terms need
receive denotations in A; nevertheless, we may say that an element x ∈ A(σ) is
µ-computable if x arises as the denotation of some closed Klexmin term M : σ.

In Definition 6.2.1, we also presented an interpretation of Klexmin terms
in SP. In that interpretation, variables were interpreted by themselves (more
precisely, x was interpreted by the procedure xη). For our present purposes, we
adjust this definition to yield an interpretation [[−]]SP

− in which variables might
also be interpreted via a valuation ν in SP0. Specifically, the clauses involving
variables in the definition of [[−]]SP

− are as follows:

• If x ∈ dom ν, then [[x]]SP
ν = ν(x); otherwise [[x]]SP

ν = xη.

• [[λx.M]]SP
ν = λx.[[M]]SP

ν (assuming by renaming that x 6∈ dom ν).

From the compositionality of this interpretation, it is clear that [[λx.M]]SP
ν · p =

[[M]]SP
ν,x7→p.

With all this in mind, we may frame the following consequence of our main
theorem:

Corollary 8 Within any total type structure A satisfying the conditions above,
no restricted Spector or Kohlenbach bar recursor (and hence no ordinary one
either) can be µ-computable, or even µ-computable relative to the System T
recursors if these exist in A.

Proof We show this for restricted Kohlenbach bar recursors, the argument
being precisely analogous for the others. We proceed by setting up a logical
relation Z between SP0 and A: at type N, we simply take Z(n, n) for all n ∈ N,
and we lift this to higher types in the standard way. The following facts about
Z may be easily checked with reference to the appropriate definitions from [3]:

1. Any System T recursors that exist in A are related via Z to the standard
System T recursors in SP0.

2. If Γ ` M : σ is a Klexmin term, ν, ν′ are valuations of Γ in SP0,A re-
spectively with Z(ν, ν′) elementwise, and [[M]]Aν′ is defined, then [[M]]SP

ν ,
[[M]]Aν′ are Z-related. (This is similar to the logical relations lemma, but
the proof requires a separate induction case for the Min construct.)

16

3. If N is a closed λ-term possibly involving 0, Suc, Primrec, Cases, then
[[N]]SP, [[N]]A are Z-related. Hence every strongly total element in SP0 is
Z-related to a strongly total element in A and vice versa.

4. For any ~x and j, the elements ~x jω in SP0(1) and A(1) are Z-related.

5. If Z(F, F ′) where F ∈ SP0(2) and F ′ ∈ A(2), then F, F ′ have the same
Kohlenbach leaves.

6. The canonical representatives of the operation (x, z) 7→ x.z in SP0 and A
are Z-related.

Now suppose for contradiction that a restricted Kohlenbach bar recursor
B′ is µ-computable, possibly relative to some System T recursors. Then there
exist a Klexmin term M and a (possibly empty) valuation ν′ of certain variables
as System T recursors such that [[M]]Aν′ = B′. Writing ν for the valuation
of the same variables as the standard System T recursors in SP0, and taking
B = [[M]]SP

ν , we have by facts 1 and 2 above that Z(B,B′). We claim that B
satisfies the axioms for a restricted Kohlenbach bar recursor, i.e. for all strongly
total F,G we have:

• B · F ·G · x = 2x + 1 if x is a Kohlenbach leaf,

• B · F ·G · x = G · (λz. B · F ·G · (x.z)) otherwise.

But these follow readily from the corresponding properties for B′ in the light of
facts 3–6 above.

On the other hand, it is easy to see that B = [[M]]SP
ν is LWF: if ~x are

the variables of ν and ~R the corresponding System T recursors in SP0, then
B = [[λ~x.M]]SP · ~R, where [[λ~x.M]] is left-bounded (and hence LWF) by Theo-
rem 6.3.18, and the ~R are of course LWF; hence B is LWF by Theorem 6.3.14
We thus have a contradiction with Theorem 7, and the proof is complete. �

In a similar vein, one may readily show that in type structures over N⊥
such as the model PC of partial continuous functionals, no bar recursor can
be T + min definable; we leave the outworking of the details to the interested
reader.

References

[1] Bergstra, J.: Continuity and Computability in Finite Types. PhD thesis,
University of Utrecht (1976)

[2] Kohlenbach, U.: Theory of Majorizable and Continuous Functionals and
their Use for the Extraction of Bounds from Non-Constructive Proofs:
Effective Moduli of Uniqueness for Best Approximations from Ineffective
Proofs of Uniqueness. PhD thesis, Frankfurt (1990)

17

[3] Longley, J. and Normann, D.: Higher-Order Computability. To appear in
‘Computability in Europe’ series, Springer (2015)

[4] Spector, C.: Provably recursive functionals of analysis: a consistency proof
of analysis by an extension of principles formulated in current intionistic
mathematics. In: Dekker, J. (ed.) Recursive Function Theory, Proceedings
of Symposia in Pure Mathematics, Volume 5, pp. 1-27. AMS, Providence
(1962)

18

