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Abstract. We discuss some of the choices that arise when one tries to
make the idea of physical determinism more precise. Broadly speaking,
‘ontological’ notions of determinism are parameterized by one’s choice of
mathematical ideology, whilst ‘epistemological’ notions of determinism
are parameterized by the choice of an appropriate notion of computabil-
ity. We present some simple examples to show that these choices can
indeed make a difference to whether a given physical theory is ‘deter-
ministic’ or not.
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1 Introduction

Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situations of the
beings who compose it — an intelligence sufficiently vast to submit these
data to analysis — it would embrace in the same formula the movements
of the greatest bodies and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes. [19,
chapter II]

In these now famous words, Laplace articulated his vision of an orderly,
mechanistic universe whose history unfolds like clockwork according to fixed
deterministic laws. In essence, this vision may be traced back at least to Dem-
ocritus, and it has remained enormously influential down to the present time
(see e.g. [25] for a modern incarnation). Philosophers still argue over whether or
not the issue of physical determinism has any bearing on the problem of free will
(see e.g. [6]). It is therefore very natural to ask how well Laplace’s claim holds
up in the light of our present-day understanding of science and mathematics.

Broadly speaking, the answer to this question will depend on two kinds of
considerations. Firstly, it clearly depends on what the ‘laws of physics’ actually
are: for example, some proposed formulations of quantum theory appear to allow
for some kind of indeterminacy at the interface between ‘quantum’ and ‘classical’
levels, whilst others do not. Issues of this kind are clearly a matter for the
physicists. Secondly, and less obviously, one can ask how exactly the Laplacian
concept of determinism is to be made precise. It is this latter question that I
wish to consider in this paper.



I will argue, drawing on ideas from computability theory and mathematical
logic, that there are a whole range of different ways in which the idea of deter-
minism might be understood. Some of the choices involved are purely technical
in nature, whilst others touch on deeper philosophical issues. I will show, more-
over that these choices can sometimes radically affect whether a physical theory
is ‘deterministic’ or not, even in the case of very simple theories.

Laplace’s imagery of a hypothetical predictive ‘intelligence’ (nowadays known
as Laplace’s demon) provides a valuable prop for the imagination. Roughly
speaking, we will be asking exactly how the instantaneous state of the universe is
supposed to be ‘presented’ to the demon (that is, what kinds of raw facts about
this state he has access to), and exactly what kinds of ‘analysis’ — particularly
what kinds of infinitary operations — he is supposed to be able to perform on
this data. I hope to show how these considerations can make interesting and
perhaps surprising differences to the conclusions that can be drawn.

1.1 Ontological versus epistemological determinism

As a first stab, we may broadly distinguish between two ways of interpreting
Laplace’s claim, which we call the ontological and the epistemological interpre-
tation. The ontological version would say that given the present state of the
universe (or of some closed physical system), there is, in fact, only one possible
course of history starting from this state in which the laws of physics are upheld
(whether or not we have any way of knowing what that history is). By contrast,
an epistemological version would say that given knowledge of the present state,
there is some way of knowing or ‘working out’ how the future will unfold.

The ontological and epistemological notions of determinism may be under-
stood with reference to the mathematical notions of truth and computability
respectively. Schematically, if histories are represented by mathematical func-
tions from Times to States, ontological determinism claims that some sentence
of the form

∀s : States, t : Times. ∃!h : Times → States. h(t) = s∧Laws Of Physics(h) (†)

is true, where Laws Of Physics(h) might say (for instance) that certain differ-
ential equations are satisfied at every point in space and time, and s specifies
a boundary condition.1 By contrast, epistemological determinism would claim
that there is some kind of computable operation

Φ : States → (Times → States)
1 Some care is needed over the status of the sentence (†). If it is understood purely

as a mathematical statement about some model of physics, it does not succeed in
saying anything about how the actual universe behaves. On the other hand, if it
is understood as referring directly to physically real entities, it does not say what
we want: since there is only one actual course of history, the uniqueness assertion
becomes vacuous — we would really like h to range over all mathematically possible
history functions. Our proposed solution is to understand (†) as a mathematical
assertion, and to supplement it with the following statement, in which T, T ′ range



such that for any state s, the history Φ(s) correctly represents the evolution of
the physical system starting from s. In connection with the ontological claim,
one might imagine a demon so powerful that he can magically survey all possi-
ble history functions and pick out the one with the required property; for the
epistemological version, one might imagine a more modest demon who makes
predictions by following some kind of algorithmic procedure, perhaps involving
idealized ‘measurements’ on the state s.

The a priori possibility that the behaviour of physical systems might be
mathematically deterministic but not algorithmically computable in nature has
been highlighted by Penrose [22, 23], who has furthermore suggested that physi-
cal laws of this kind might play an essential role in the science of consciousness.

1.2 Drawing finer distinctions

These two varieties of determinism presuppose, respectively, a notion of math-
ematical truth and a notion of computability. Discussions of determinism often
implicitly assume that these are both unambiguous and unproblematic notions:
surely in mathematics the notion of truth is absolute, and Church and Tur-
ing have provided us with the definitive notion of computability. However, an
acquaintance with mathematical logic and computability theory would tend to
suggest that things are not quite so simple.

On the one hand, the concept of mathematical truth certainly touches on
deep philosophical issues. And since the idea of ontological determinism is itself
of such philosophical interest, it is surely natural to ask what philosophical pre-
suppositions this idea rests on. What metaphysical status does an assertion such
as (†) about ‘possible histories’ really have? Different philosophies of mathemat-
ics would answer this question in very different ways. For example:2

– Platonism (the ‘classical’ view of mathematics) maintains that mathemati-
cal sentences like (†) do indeed have a definite truth-value independently of
whether we can know what it is. This view involves a metaphysical commit-
ment to a notion of truth not grounded in empirical or sensory experience.

– Semi-constructivism would subscribe only to a much more limited version of
this idea: if φ(n) has a definite truth-value for each n ∈ N, it is accepted that
∃n.φ(n) has a definite truth value. (This idea is embodied in the so-called
‘Limited Principle of Omniscience’.) There is still a metaphysical commit-
ment here, though it is more moderate than in the case of Platonism.

over actual points in time and S(T ) is the actual state of the universe at time T .

∀h : Times → States.
(∀t, T. Models(t, T ) ⇒ Models(h(t),S(T )) ⇒ Laws Of Physics(h)

This at least isolates the mathematical content of determinism in our assertion (†).
2 For a discussion of the main philosophical issues at stake (from an intuitionist per-

spective), see [7, chapter 7].



– Constructivism regards mathematical statements purely as expressions of
what we can actually do or calculate; there is no reference to any independent
notion of truth. Nothing entitles us to say ∃x.φ(x) other than knowing some
suitable value of x. Under a constructivist reading of (†), our ontological
notion of determinism might closely resemble an epistemological one.

Many further subdivisions and intermediate positions might be mentioned. We
thus obtain a whole spectrum of interpretations of ‘ontological determinism’,
involving varying levels of metaphysical commitment.

Regarding the question of computability, the familiar Turing notion is indeed
generally accepted as the definitive notion for computations involving natural
numbers or other finite entities that can be effectively coded by them. But what
do we mean by computation where infinite entities are concerned, such as real
numbers or continuous functions on the reals? Typically, many different answers
to this question can be given, leading to several plausible but distinct notions of
computability for such entities. Many of the issues, and possible choices, are dis-
cussed in [20], which focuses on computability at higher types over N, an arena of
particular interest within computer science. In other settings (e.g. higher types
over R, or the classical spaces of functional analysis), several computability no-
tions have been proposed and studied (see e.g. [32, 36]), but we are still some way
from seeing the overall picture. The crucial point here is that, in our characteri-
zation of epistemological determinism, the demand for a ‘computable’ operation
Φ might be interpreted in many different ways.

It will be clear by now that there is considerable overlap between the onto-
logical and epistemological notions. On the one hand, ontological determinism
from a constructive standpoint can often be closely related to epistemological
determinism based on some ‘finitary’ computability notion. Indeed, there is an
extensive body of metamathematical work on using computability notions to
model constructive formal systems (see e.g. [35]). On the other hand, ontological
determinism from a non-constructive standpoint can often be related to episte-
mological determinism based on ‘infinitary’ computability notions. For instance,
what ‘exists’ from a semi-constructivist standpoint is closely related to what
is ‘computable’ in the presence of the existential quantifier ∃ : (N → B) → B
where B = {true, false} (see [15]) — that is, what would be visible to a demon
who could ‘see all the natural numbers at once’.3 In the presence of even more
powerful infinitary operations, computability would approach classical notions
of truth (see e.g. [29]).

All these considerations might seem rather arcane, and the suggestion that
any of them might be of relevance to real physical theories might at first seem
rather far-fetched. My purpose in the remainder of this paper is to present a se-
lection of examples to show that these considerations really do make a difference
to the question of determinism, even for simple physical theories.

3 It is interesting to note that critiques of the Limited Principle of Omniscience some-
times take the form that it comes precariously close to presupposing the existence
of such a ‘demon’. See for example Wittgenstein [38, §352].



1.3 Infinities in the physical universe?

The questions of mathematical ideology discussed above, as well as the com-
putability considerations we have mentioned, are closely bound up with the
mathematical idea of ‘the infinite’. Consequently, many of the issues we are dis-
cussing would trivialize if, in fact, the universe could be completely modelled by
some discrete, finite mathematical structure. A brief discussion of this possibility
is therefore in order; see also [24, chapters 3,33], [30, II.D], and [5].

The vast majority of successful physical theories in use today rely heavily
on the calculus, which presupposes the mathematical idea of an infinitely sub-
divisible continuum. However, we do not know whether genuine continua — or
infinities of any kind — actually occur anywhere in the physical world, and physi-
cists have sometimes expressed unease at the seeming ontological extravagance
of this assumption (see e.g. [11, pp. 57–8]). There have been several interest-
ing attempts to put physics onto a more ‘discrete’ footing, but it would seem
that this is not so easy to do, and most leading-edge physical theories still make
extensive use of the mathematical continuum.

In view of this, it seems to us that it is interesting to explore the implications
of the supposition that physical continua do exist. Even if, in the end, such an
investigation served only to convince us of the implausibility of this supposition,
this would still be a valuable outcome. Of course, investigations of this kind are
perhaps of academic interest for physical theories that are already known not
to hold ‘all the way down’, but they acquire an added dimension of significance
for theories which are proposed as candidates for an ‘ultimate’ description of
physical reality.

In this short article, my intention is not to map out a coherent programme
of research, nor to consider current leading-edge physical theories in detail, but
merely to collect together a few observations, based on known mathematical
results, in order to illustrate the kinds of issues that can arise, and thus perhaps
to indicate that the general area merits further exploration.

2 Determinism and the constructive continuum

First, I would like to explore some implications of adopting a strictly construc-
tivist mathematical stance à la Bishop [3], by focusing on a childishly simple
problem in Newtonian physics. A particle in one dimension is initially at rest,
and no forces act on it: what happens to it?

Suppose we model this problem using a physical theory such as the following:4

States = R, Times = R, Laws Of Physics(h) ≡ ∀t. ḣ(t) = 0,
s = c (a constant), t0 = 0

4 The standard Newtonian formulation of this problem would of course involve the
second time derivative, but even the simplified version we give here will serve to
illustrate our point.



The existence of suitable solutions, and even their computability (given c) is of
course unproblematic; the issue is with the uniqueness part of (†). The problem
is that, assuming h(0) = c and Laws Of Physics(h), we cannot constructively
conclude that h(t) = c for all t. This is because the Fundamental Theorem of
the Calculus, saying that any continuous function has a unique antiderivative
modulo an added constant, is not constructively valid.

One can understand the problem better by considering an alternative func-
tion h satisfying the above conditions within the universe of effective mathe-
matics (which provides one possible model for constructive mathematics — see
e.g. [14]). Such a solution is easy to construct using the well-known Kleene tree
[15, §LII]. Looked at from a classical perspective, h is at most points a locally
constant function, but one whose value jumps around, with discontinuities at a
set of points homeomorphic to Cantor space. However, the values of t at which h
is discontinuous are all non-computable reals — so seen from within the effective
universe, h is continuous and has derivative 0 everywhere! Such a pathological
history function is clearly ludicrous in physical terms, but the point is to ask
how precisely we intend our theory to rule out such a possibility.

One might suppose that the problem could be fixed simply by strengthening
our Laws Of Physics predicate in some way. But the same problem will beset
any proposed predicate Laws Of Physics(h) which is local in character:5 that
is, any predicate of the form ∀t. L(h, t), where L satisfies

∀h, h′, t. (h, h′ agree on some neighbourhood of t) ⇒ (L(h, t) ⇔ L(h′, t))

This is because the pathological solution above is locally just fine: at every point,
it agrees locally with some globally constant function which we do want to allow.

There are, of course, many possible responses to this problem, e.g.:

1. Accept the non-determinism. (This would be silly: any theory that fails to
predict that everyday objects do not jump about in this erratic fashion must
be judged sorely deficient.)

2. Abandon the continuous model of time.
3. Abandon the locality principle. For example, we might postulate an addi-

tional physical law saying that h had to be uniformly continuous on any
compact interval, a non-local property.6

4. Abandon strict constructivism, and admit some additional mathematical
principle that allows us to deduce the uniqueness of h. One minimal such
principle would be a weak (double-negation sanitized) version of König’s
Lemma for binary trees (cf. [31, Chapter IV]), which can certainly be justified
on the philosophical premises of semi-constructivism.7

5 The idea that the laws of physics ought to be local in character seems quite deeply
ingrained in the informal conception of a ‘mechanistic’ universe. For an illuminating
discussion of the ‘locality principle’ from a physicist’s perspective, see [11, Chapter 2].

6 This is in fact the notion of continuity adopted by Bishop-style constructivists in
order to obtain a viable theory.

7 Or, for that matter, on the premises of Brouwerian intuitionism.



One impression that emerges from this situation is that there is some kind of
trade-off between the strength of the physical assumptions (as in 3) and that
of the mathematical (or metamathematical) assumptions (as in 4) needed to
conclude determinism. It does not pay to be too parsimonious on both fronts.

3 Finite dimensional systems

From a semi-constructivist or Platonist standpoint, it seems that for physical
systems with States = Rn governed by ordinary differential equations (e.g. n-
body problems), both ontological and epistemological determinism are relatively
unproblematic. Indeed, there is a now well-established canonical computability
notion for total functions f : Rn+1 → Rn (first introduced by Lacombe [17] and
Grzegorczyk [13]), and this notion appears to suffice for predicting behaviour in
all cases of physical interest.

The essence of this notion of computability is that one can compute the
output f(x) to within any desired ε > 0 if one knows the input x to within
some δ > 0 dependent on ε and x. (In particular, all computable functions
are continuous). We can therefore think in terms of a demon equipped with
an infinite sequence of measuring devices of increasing resolving power, who is
able to make affirmative observations on the state corresponding to open subsets
of Rn, and follows some effective procedure for processing the results of such
observations. The set of all observationally affirmable properties that hold at
time 1 (say) can then be computably determined from the set of all affirmable
properties at time 0.

However, even in this relatively unproblematic setting, a couple of caveats
need to be made. The first concerns physical systems whose behaviour exhibits
singularities — whose state at time 1 can be discontinuous in the state at time
0. One example (described in [22, chapter 5]) is the collision problem for three
elastic billiard balls: the classical physical theory does not determine what hap-
pens if the three balls collide at exactly the same point in time. At the very
least, one should here modify one’s claim of determinism to a conditional state-
ment involving a computable partial function Rn+1 ⇀ Rn. It is fair to add here
that the relationships between candidate definitions of computability for partial
functions on the reals remain to be fully clarified.

A second caveat is a rather technical one concerning the notion of effective
procedure involved: the demon had better not be following a program in a deter-
ministic, sequential programming language. More specifically, imagine that once
the demon has decided to test for some property like ‘x > 1

2 ’, he is commit-
ted to obtaining an answer before he can proceed with anything else. If indeed
x > 1

2 , the demon will eventually discover this by means of a sufficiently precise
measurement; but if x = 1

2 , he will be side-tracked into making measurements
of increasing precision forever.8 The problem can be overcome if the demon is
allowed to use a ‘parallel conditional’ operator of the kind used in [9].
8 This is reminiscent of the fact that even functions as simple as addition are not

computable in the sequential version of Real PCF [10].



4 Infinite dimensional systems

For physical systems with infinite state spaces (e.g. continuously varying fields
governed by partial differential equations), the picture gets considerably more
interesting. As an example, we will consider the wave equation for a scalar field
ψ(x, t) in three space dimensions: ∇2ψ = ψ̈. We take the set States to be some
space of functions s : R3 → R2: the first component of s(x) gives the instanta-
neous value of ψ at x, while the second component gives its time-derivative ψ̇.
We are therefore interested in the computability or otherwise of an operation of
type [R3 → R2] → [R4 → R2].

The theory of second-order computability over the reals is far from trivial, and
there are various choices available to us. First, let us briefly consider one choice
that will not work well here: namely, Kleene-style higher-type computability in
the spirit of [15]. In this approach, functions are treated as oracles, so that the
only way to extract information about a function [R3 → R2] would be to apply
it to particular values x. Suppose then that we consider the style of computation
envisaged in Section 3 augmented with such oracle calls. This would mean that
a computation of the value of ψ(0, 1) (say) to within some ε > 0 would only be
able to interrogate the initial state s at finitely many points before returning an
answer. It is easy to see that this is not enough, since the true value of ψ(0, 1)
cannot be determined even up to ε from such a finite sample.

Our demon must therefore somehow be able to observe properties of s that
pertain to whole regions of R3, rather than simply its value at particular points.
One could of course endow the demon with the ability to survey regions by
adding a suitable quantifier such as ∃R to its repertoire, but this would seem like
overkill. It seems more interesting to regard certain kinds of observations over
regions as ‘atomic’, and ask whether some finitary style of computation involving
these observations will suffice.

4.1 The Pour-El/Richards approach

A more suitable approach involves the theory of computability for Banach spaces
developed by Pour-El and Richards [27, 28], who have moreover made a particu-
lar study of the wave equation in their setting. In this theory, one first axioma-
tizes the notion of a computability structure on a Banach space X, consisting of a
set of computable sequences N → X with certain closure properties. An element
x ∈ X is considered computable if x, x, x, . . . is a computable sequence.

Although computability structures are defined axiomatically, it turns out for
quite general reasons that, for all naturally occurring spaces X, there is only one
reasonable choice of computability structure. This gives the theory the attractive
feature that the notion of computability is intrinsic for such spaces. However,
this computability notion is sensitive to the choice of norm on the space: thus,
for instance, there exist continuous functions s : R3 → R2 with compact support
which are non-computable if regarded as elements of C(R3,R2) (the space of
bounded continuous functions with the supremum norm), but computable if
regarded as elements of L2(R3,R2). Insofar as the choice of norm is up to us



rather than given ‘by nature’, we therefore have a range of possible computability
notions even at the level of individual states.9

Next, consider linear maps T : X → Y between Banach spaces with com-
putability structures. A major theorem of [28] asserts that, under modest condi-
tions, T maps computable sequences to computable sequences iff T is bounded.
In fact it is very reasonable to regard such maps T as the computable maps
X → Y , as is shown by results of [32, 33]. Specifically, the set of computable ele-
ments of a Banach space with computability structure can naturally be endowed
with a computable representation in the sense of Weihrauch [36] (or alternatively
with an effective domain representation in the sense of Scott and Ershov). It can
then be shown that the linear maps that satisfy the Pour-El/Richards conditions
are precisely those whose action on computable elements is computable in the
Weihrauch sense (or alternatively in the sense of effective domain theory).

In the case of the supremum norm, these notions have especially good creden-
tials. A natural and robust notion of second order computability over the reals
has been studied in [2], where several non-trivially equivalent characterizations
are given. Here one is able to perform computations on first order functions f
by making use of ‘compact-open observations’ about them: ‘f(x) ∈ U for all
x ∈ K’, where U is open and K is compact. This is one way to make precise the
idea of ‘atomic observations over regions’ mentioned earlier. Now let X be the
Banach space C(I3,R2) (we here replace R by the unit interval I to avoid some
annoying technical complications). Then the computable maps X → X turn out
to be precisely the linear maps that are computable in the sense of [2].

Given the good credentials of this notion, it is perhaps all the more surprising
that the solution operators for the wave equation are not computable in this
sense. For simplicity, let X = C(R3,R2), and let T : X → X be the operator
that maps a wave state at time 0 to the wave state at time 1 that results from
it. It was shown in [26] that T : X → X is not computable — in fact, that there
is even a computable state s such that the first component of T (s)(0) is a non-
computable real. An important aspect of the example given in [26] is that though
the first component of s is computable, its space-derivative is non-computable.

What about the computability notions arising from spaces with other norms?
One important example considered in [28] is the energy norm ‖−‖E given by:

‖〈s0, s1〉‖2
E =

∫∫∫
R3
|∇s0 |2 +s21

In physical terms, this corresponds to the total amount of energy present in
a wave state, and it satisfies the axioms required for a norm. The fact that
energy is conserved as the wave propagates says that the operator T is bounded
by 1, and is therefore a computable map. The wave equation thus provides a
good example of a physical theory for which the question of epistemological
determinism is sensitive to the computability notion adopted.
9 Interestingly, in the case of quantum mechanical systems this issue seems not to

arise, since the physical theory itself makes essential use of an inner product which
gives us a preferred choice of norm. See [1].



The precise conditions under which the solution operator is or is not com-
putable have been investigated in some detail by Weihrauch and Zhong [37]. As
these authors point out, different choices of norm (or topology) correspond to
different notions of ‘possible affirmative observation’ on states, and it is a mat-
ter of physics to investigate whether any of these choices correspond to what is
observable by means of ‘idealized physical measurements’ of some kind.

Let us suppose that the class of ‘physically realizable’ affirmative observations
(in some idealized sense) corresponded precisely to the topology induced by some
norm ‖ − ‖obs. The effective domain of closed balls for this norm (say) would
then constitute an epistemic (i.e. information-theoretic) model of the physical
system, and states (considered as functions R3 → R2) would appear as maximal
consistent sets of affirmable observations. However, a more minimalist ontology
might then reject these ‘ideal’ elements in favour of a purely finitary theory of
possible observations, in which idealized mathematical points would be aban-
doned in favour of a theory of intervals or regions, somewhat in the spirit of
[8]. Indeed, one can conceive that this might offer one way of putting the whole
physical theory on a more ‘constructive’ or ‘finitary’ footing as suggested in [30].

If it turned out that T were computable with respect to ‖−‖obs, we would be
in the very pleasing situation that the set of potentially observable facts at time 1
was computably determined by the set of such facts at time 0 — and this would
also systematically explain why the ontologically underlying non-computable
values of the wave function ψ (on computable arguments, for computable initial
states) can never surface at the level of what is measurable. However, if (as the
author suspects is more likely), T were not computable with respect to ‖−‖obs

we would face a dilemma similar to the one encountered at the end of Section 2:
either certain kinds of state information must be considered as ontologically
real though they are not observable even by approximation, or the future state
cannot be effectively predicted from the present state.

Conclusion and acknowledgements

In this short paper we have barely scratched the surface of our proposed area of
investigation, and many of the issues we have highlighted demand much more
detailed discussion than we have provided. Nevertheless, we hope that our selec-
tion of examples has persuaded the reader that the task of elucidating different
notions of determinism is interesting and worthwhile, and that this may prove
to be a fruitful area of interaction between physics and computability theory.

I am grateful to Gordon Plotkin, Matthias Schröder, Alex Simpson and Alan
Smaill for helpful comments and discussions, and to the anonymous referees for
valuable suggestions and pointers. Barry Cooper’s papers [4, 5] provided much
of the initial stimulus for my reflections, as well as a helpful guide to the existing
literature on determinism and computability.



APPENDIX: A thought experiment concerning
non-computability in the physical world

We here present a simple thought experiment in connection with the question of
whether non-computability ever manifests itself in the physical world. Though
this stands somewhat apart from our present inquiry into possible interpreta-
tions of determinism, it is clearly relevant to whether the laws of physics are
deterministic in a strong epistemological sense, and provides another example of
the application of ideas from computability theory to such questions.

It is tempting to imagine that — because non-computability is an infinitary
property that cannot be detected from any finite sample of data, and because
every continuous function on [0, 1] can be approximated arbitrarily closely by a
computable one, and so on — it cannot possibly make any kind of observable
difference whether the laws of physics are computable or not. The following
experiment suggests one possible sense in which this is not the case.

The experiment involves the Lacombe tree [18], a variation on the Kleene tree
which deserves to be better known. The Lacombe tree is a computable binary
tree T (that is, a decidable prefix-closed set of finite sequences over {0, 1}) such
that

– every computable infinite sequence over {0, 1} eventually exits from T ; but
– classically, the set of infinite sequences that eventually exit from T has some

measure m < 1
2 within {0, 1}N.

One may therefore imagine setting up 100 instances of the following appa-
ratus. Some physical device not known to have computable behaviour (perhaps
a Geiger counter) is set up to generate a stream of binary digits, which are fed
into a computer. At each stage, the computer tests whether the finite sequence
received so far is a node of T . If, at some stage, the sequence is found to have
exited from T , a light is turned on.

After allowing the experiment to run for some finite period of time, we return
and count how many of the lights have come on. If the answer is fewer than
m.100, we cannot conclude anything — perhaps we have just not waited long
enough for the other sequences to exit yet. However, if the answer is 95 (say), this
provides good evidence that the infinite sequences generated by our devices are
not being drawn at random from the classical set {0, 1}N, but from some more
restricted set, perhaps the set of computable sequences. If one supposes that
the choice is between ‘all sequences’ and ‘the computable sequences’, we thus
have a probabilistic semi-decision test for whether the behaviour of our physical
devices is computable. (Interesting further questions arise if we also consider the
possibility of other sets, such as the set of hyperarithmetic sequences.)

We hasten to add that this experiment would be of no use in practice, in view
of the hyper-astronomical length of time one would have to wait for a significant
number of lights to come on.
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