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Abstract

We discuss several ways of making precise the informal concept of
physical determinism, drawing on ideas from mathematical logic and com-
putability theory. We outline a programme of investigating these notions
of determinism in detail for specific, precisely articulated physical theo-
ries. We make a start on our programme by proposing a general logical
framework for describing physical theories, and analysing several possible
formulations of a simple Newtonian theory from the point of view of de-
terminism. Our emphasis throughout is on clarifying the precise physical
and metaphysical assumptions that typically underlie a claim that some
physical theory is ‘deterministic’. A sequel paper is planned, in which we
shall apply similar methods to the analysis of other physical theories.

Along the way, we discuss some possible repercussions of this kind of
investigation for both physics and logic.

1 Introduction

Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situations of the
beings who compose it — an intelligence sufficiently vast to submit
these data to analysis — it would embrace in the same formula the
movements of the greatest bodies and those of the lightest atom; for
it, nothing would be uncertain and the future, as the past, would be
present to its eyes. [53, Chapter II]

In these famous words, Laplace articulated his vision of an orderly, mecha-
nistic universe whose history unfolds according to fixed deterministic laws. This
vision may in essence be traced back at least to Democritus, and it has exerted
an enormous influence on scientific thinking down to the present time (see e.g.
[66] for a modern incarnation). Philosophers still argue over whether or not the
issue of physical determinism has any bearing on the question of human free will
(see e.g. [19]). It is therefore very natural to ask how well Laplace’s claim holds
up in the light of our present-day understanding of science and mathematics.
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Broadly speaking, the answer to this question will depend on two kinds
of considerations. Firstly, it obviously depends on what the ‘laws of physics’
actually are: for example, some proposed interpretations of quantum theory
allow for some kind of nondeterminism e.g. in connection with the so-called
‘collapse of the wave function’, interface between quantum and classical levels,
whilst others do not (see [64, Chapter 29] for a survey of the main positions).
Questions of this kind are clearly a matter for the physicists. Secondly, and
less obviously, one can ask how the very concept of ‘determinism’ is to be made
precise. In this paper our concern is primarily with this latter question, though
our investigations will also naturally involve a close scrutiny of the precise ways
in which physical theories are formulated.

As we shall argue by drawing on ideas from mathematical logic and com-
putability theory, there are in fact a host of different ways in which Laplace’s
claim might be formulated. Whilst some of the choices involved are rather tech-
nical in nature, others touch on much deeper issues of physical and metaphysical
ontology. We will show, moreover, that even in for very simple physical theo-
ries, such considerations can radically affect whether a theory is deemed to be
‘deterministic’ or not.

Laplace’s imagery of a hypothetical predictive ‘intelligence’ (nowadays widely
referred to as Laplace’s demon) provides a valuable prop for the imagination,
and a convenient metaphor for expressing many of our ideas. Broadly speaking,
we will be interested in questions such as the following:

• How exactly is the instantaneous state of the universe (or more modestly,
that of some ‘closed’ physical system) presented to the demon? That is,
what kinds of information about this state is the demon supposed to have
access to?

• What kinds of ‘analysis’ is the demon able to perform on this information?
For example, what kinds of infinitary deductions or computations are
permitted?

To elaborate a little further on what lies behind each of these questions:

• Exactly what ‘information’ is deemed to be present in a physical system
at a given instant in time? In particular, which entities or quantities are
considered to be ‘physically real’? As we shall see, the attempt to make
Laplace’s claim precise forces us to be very explicit about the ontological
assumptions that underlie a physical theory.

• What exactly is meant by saying that certain information can be ‘deduced’
or ‘computed’ from certain other information (under the assumption that
certain physical laws hold)? To answer this question, one is naturally led
to draw on ideas from mathematical logic, and here one finds that many
different conceptions of truth, provability and computability have been
elaborated. Moreover, some of the choices here turn out to be related to
deep metaphysical issues. Again, trying to clarify the idea of determinism
forces us to be very explicit about what we are presupposing.
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Our main aims in the paper are as follows. Firstly, we wish to examine
closely various notions of ‘determinism’, and show that the ‘determinism’ or
otherwise of a theory is often very sensitive to details of how the question is
formulated. In particular, we wish to draw attention to the kinds of physical
and metaphysical assumptions that might typically underlie a claim that some
physical theory is ‘deterministic’. We believe that an awareness of such issues
is vital to any attempt to think clearly about physical determinism and its
philosophical implications.

Secondly, we hope to explore an area of overlap between physics and math-
ematical logic which we suspect might repay further study — an area we might
broadly characterize as the metamathematical investigation of physical theories.
Our intention here is to delineate a general field of investigation by means of a
somewhat loose assortment of observations and examples. We hope to continue
this programme with further examples in a sequel paper [56]. We shall dis-
cuss below some of the reasons why we expect this kind of interaction between
physics and logic might be beneficial to both parties.

1.1 Outline of paper

The present paper is structured as follows. In Section 2, by way of preparation
for our discussion, we clarify the stance we intend to adopt on the crucial issue
of the relationship between physical theories and the physical universe itself.
In Section 3 we then discuss semi-formally three possible approaches to formu-
lating a definition of ‘determinism’ for a general physical theory, which we call
metaphysical, logical and computational determinism. Each of these approaches
is itself parameterized by various choices and so may be further subdivided —
in Section 4 we review some of these options and (in some cases) the philosoph-
ical issues they impinge on. Sections 3 and 4 together constitute a high-level
overview of our proposed programme of investigating all these notions in the
case of particular physical theories. Section 5 discusses some further motiva-
tions and ramifications of this programme in terms of its possible benefits for
both physics and logic.

The serious technical work commences in Section 6. Here we propose a gen-
eral logical framework for the discussion of physical theories, oriented initially
towards the investigation of logical determinism. In Section 7 we show how even
the rudimentary issue of representing (a single value of) a continuous parameter
can be approached in two quite different ways — a point-based and an interval-
based approach — and discuss the significance of the distinction between them.
Section 8 is the most technically substantial part of the paper. Here we un-
dertake a detailed investigation of many possible ways of formulating a simple
Newtonian situation (that of a falling object in a uniform gravitational field)
within our framework. Even for this seemingly simple problem, a surprising
number of deep issues arise — we give particular attention to the precise as-
sumptions that are required to support the various approaches. We offer some
brief concluding remarks in Section 9.

Our intention in the sequel paper is to carry on our investigation by working
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up to successively more complex physical situations. As one does so, questions
of computational as well as logical determinism come to the fore. In particular,
we intend to consider (at least) the gravitational N-body problem; the case of a
particle moving in a non-uniform force; and the propagation of electromagnetic
waves as described by Maxwell’s equations. We shall also briefly consider the
outlook for more advanced theories such as quantum field theory.

1.2 Related work

Our work brings together two strands of thought, each of which is represented
in the existing literature albeit in somewhat scattered form. The first strand is
the consideration of foundational questions from the philosophy of mathematics
in relation to physical theories. Typical questions here are: What portions of
mathematics are actually needed for physics? Does the apparent indispensabil-
ity of certain kinds of mathematics constitute an argument in favour of one foun-
dational position over another? Notable contributions in this area have been
made by Feferman [28, 29] and Hellman [41, 42, 43]; we believe our present
results advance the discussion somewhat further (see especially Section 8 be-
low). Similar questions are considered in a somewhat more speculative vein by
Svozil [82, 83, 84], who suggests the possible physical relevance even of ideas
from higher set theory; see also [12] for a contribution from a more constructive
standpoint.

The second strand, which has received far more attention to date, concerns
the issue of computability in connection with physical theories. Here we see our
work as continuing a general line of inquiry initiated by Kreisel [50], and later
informed by the contributions by Pour-El and Richards [69]. The general issues
were further discussed and reviewed by Geroch and Hartle [36] and Shipman [76].
The subject was given new impetus by the ideas of Penrose [62, 63], who has
argued that non-computability might be essential to a physical theory that can
explain human thought processes. Subsequently, questions of computability in
specific physical contexts have attracted attention [13], particularly in relation to
the gravitational N-body problem [78, 14, 94]. The papers of Cooper [15, 16, 17]
discuss the wider issues at stake in a broad intellectual context, whilst Beggs
and Tucker [8] outline a methodological programme similar in spirit to ours.

Whilst our investigations make contact with this body of work at many
points, among recent work in the area the most directly relevant to our concerns
is that of Weihrauch and his colleagues [90, 91, 92], who discuss physical the-
ories in the light of computability notions appropriate for mathematical spaces
involved. Our work makes some further progress in this general direction; in
particular, we argue that alternative perspectives offered by other recent work
in theoretical computer science (e.g. [5, 80]) can make a valuable contribution
here (We should mention, however, that most of the technical substance of our
contribution along these lines will be deferred to the sequel paper.)

Our work also has some affinities with work on ‘hypercomputation’ (e.g.
[18, 47, 26]). However, we see our basic standpoint as somewhat different from
that taken in these works. Whereas most work in hypercomputation is seemingly
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driven by the question of whether some physical system might enable us to
compute a non-Turing-computable function, our basic concern is with whether
some computing agent (or demon) could simulate a physical system. Clearly
the two questions are closely related; however, we hope to show that even if the
former question has a negative answer, there is plenty to discuss in connection
with the latter question.

2 Theories versus physical reality

We wish to stress at the outset that we are going to study the question of deter-
minism as applied to physical theories, rather than to physical systems them-
selves. There are two main reasons for this. Firstly, a theory admits (or ought
to admit) of an exact mathematical formulation which makes questions such as
determinism amenable to rigorous and precise analysis. By contrast, if we try
to study the physical systems themselves, we are forced to make some kinds
of theoretical assumptions about them, and all kinds of doubts may then arise
concerning the validity of these assumptions. We thus draw a sharp distinction
between intrinsic properties of a theory which are open to precise mathematical
investigation, and the issue of whether the theory in fact accurately models the
behaviour of real physical systems. Our concern here is with the former, the
latter being within the province of physics itself. This methodological principle
was enunciated by Kreisel in [50]:1

We are here primarily interested in a distinction between classes of
theories, not classes of phenomena. The reader should not allow
himself to be confused at this stage by doubts about the validity of
a theory with regard to the phenomena for which it is intended.

A second, closely related, reason for focusing on theories is that it does not
even appear possible to give content to the idea that the physical universe itself
behaves deterministically other than by saying that it behaves according to some
deterministic theory. Even this notion is in danger of trivialization if no limits
are placed on the complexity or arbitrariness of the theory, since in an extremal
case the ‘theory’ might be nothing more than a complete record of the actual
history of the universe. This was observed by Russell in [72, pp.398–401] (see
also the discussion in [15, p.85]). For this reason, it seems more fruitful to focus
on the question of determinism for specific (simple) theories.

This does not, of course, mean that we should have no interest whatever
in the question of validity for the theories we consider. To continue the above
quotation from [50]: ‘Naturally, such doubts imply doubts about the relevance
(to those phenomena) of any results about [. . . ] the theory.’ Thus, detailed
metamathematical investigations might appear to be of limited significance in
the case of theories that are already known not to be precisely valid (such
as Newtonian mechanics), but acquire an added dimension of interest in the

1A similar attitude has been echoed by more recent workers; see e.g. [8, 15].
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case of theories that are believed to be candidates for an ‘ultimate’ description
of physical reality. Nevertheless, in view of the complexity and mathematical
sophistication of much of modern physics, it seems reasonable to begin such
investigations by considering some simple and well-understood physical theories,
in order to understand the kinds of issues that can arise, and to try to study
these issues in a relatively simple context. In this paper and its sequel, we
will make a modest start on this programme, drawing our examples from well-
known and mainly ‘classical’ physical theories. We believe that many of the
issues we will consider are likely to be representative of issues that will also
arise for more sophisticated theories (though it remains to be seen how far this
is really the case). Thus, our work could be viewed as a stepping-stone towards
an investigation of present-day physical theories (although this latter task would
be far beyond the competence of the present author).

2.1 Continua in the physical universe?

Questions of the exact applicability of physical theories are particularly thorny
in connection with the use of the mathematical notion of a continuum (e.g.
the real line) in such theories. Most of the questions we will be discussing
are in some way bound up with this notion (indeed, the precise nature of the
continuum will be our main concern in Section 8 below). Consequently, most of
the issues we consider would trivialize if, in fact, it turned out that the universe
could be completely modelled by some discrete, finite mathematical structure.
A brief discussion of this possibility and our attitude towards it is therefore in
order.2

On the one hand, the vast majority of successful physical theories in use
today rely heavily on the calculus, which makes essential use of the notion of
an infinitely subdivisible continuum. On the other hand, we do not yet know
whether genuine continua — or indeed genuine infinities of any kind — actually
occur anywhere in the physical world. For example, the ‘continuous model’ of
space is believed to hold at least down to the ‘Planck scale’ of 10−35 metres, but
it remains a vast leap from this to the idea that that space is a true continuum
in the mathematical sense. Physicists have sometimes expressed unease at the
seeming ontological extravagance of such a hypothesis.3

There have been several interesting attempts to put physics onto a more
‘discrete’ footing (see [64, Chapter 33] for a survey), but it would appear that
this is not so easy to do, and such approaches still have a long way to go in

2I am here indebted here particularly to [64, Chapters 3,33], and to [76, II.D]. For a stim-
ulating discussion which tackles various possible objections to the discrete space hypothesis,
see [33].

3For example, Schrödinger in [74]: ‘The idea of a continuous range, so familiar to mathe-
maticians in our days, is something quite exorbitant, and enormous extrapolation of what is
accessible to us.’ Or Feynman in [32]: ‘It always bothers me that, according to the laws as we
understand them today, it takes a computing machine an infinite number of logical operations
to figure out what goes on in no matter how tiny a region of spaces, and no matter how tiny
a region of time. How can all that be going on in that tiny space? Why should it take an
infinite amount of logic to figure out what one tiny piece of space/time is going to do?’
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order to rival the success of their continuous counterparts. (A challenge for any
such approach, presumably, will be to account for why continuous theories are
so successful for describing the aspects of the universe that we have hitherto
been able to understand.) Most leading-edge physical theories, it seems, still
take the mathematical continuum for granted.

In the meantime, it seems that we should do what we can with the best theo-
ries available. In view of the prevalence of continua in physical theories, it seems
to us that it is, at the very least, interesting to explore the implications of the
hypothesis that physical continua do exist. Moreover, many different concep-
tions of the nature of the continuum are possible (although this is perhaps not
widely appreciated outside mathematical logic), and so it is natural to consider
the implications of various alternative viewpoints in the arena of physics.4 Even
if, in the end, such an investigation only served to furnish evidence against the
plausibility of e.g. a genuine spacetime continuum, we would still regard this as
an interesting and worthwhile outcome.

3 Some formulations of determinism

In this section we outline, in a semi-formal way, some of the possible ways in
which the notion of determinism might be formulated, and indicate the kinds
of choices that we are led to consider. Throughout this section the issues are
phrased in general terms — we do not as yet concern ourselves with specific
physical theories, as we shall do in later sections. Our purpose here is to convey
at an intuitive level some of the main themes that will recur throughout the
examples that we shall treat more formally later on.

As a first step, we may broadly distinguish between ‘ontological’ and ‘episte-
mological’ versions of Laplace’s claim. Informally, given an initial state of some
physical system, an ontological notion of determinism would say that there is,
in fact, only one thing that can happen, while an epistemological notion would
claim that there is some way to know or ‘predict’ what will happen.

Here we shall try to refine these notions by more precisely formulating three
possible definition of determinism: one with an ontological flavour, which we
shall call metaphysical determinism (following [58]), and two with an episte-
mological flavour, which we shall call logical and computational determinism
respectively. At this stage in the discussion, our point is simply that these give
three different approaches to formulating a notion of determinism — not that
they necessarily give rise to inequivalent notions. Indeed, we shall see later that
each of these approaches can itself be further subdivided, and that in many
cases there is considerable overlap between the three notions.

Let us now explain each of these notions in turn.
4This point is admirably expressed by Feferman at the conclusion of [29]: ‘But as long as

science takes the real number system for granted, its philosophers must eventually engage the
basic foundational question of modern mathematics: “What are the real numbers, really?” ’
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3.1 Metaphysical determinism

Broadly speaking, an metaphysical version of determinism would claim that
for any possible ‘initial state’ of our physical system, there is, in fact, only one
possible course of history starting from this state in which the laws of physics are
upheld — regardless of whether we have any way of knowing what this history
is. Suppose, for example, that we have some physical theory which postulates
a set Times of instants in time, a set States of possible instantaneous states of
the system, and a set Histories of ‘possible histories’. Given a history h and a
time t, let us write h(|t|) for the state at time t according to the history h.5 For
simplicity, we assume throughout the following discussion that t0 ∈ Times is
some ‘start time’ which we regard as fixed. Then a statement of metaphysical
determinism might have the schematic form6

∀s0 ∈ States. ∃!h ∈ Histories. h(|t0|) = s0 (MD)

Intuitively, we are here imagining a predictive demon so powerful that it can
magically survey all potential histories and single out the unique one that sat-
isfies the given initial conditions.

An important question here is: what ontological status do the ‘possible his-
tories’ here really have? It appears that they have to be ‘metaphysical’ entities
rather than strictly ‘physical’ ones: indeed, the uniqueness assertion in (MD)
would become vacuous if h ranges only over ‘physically real’ histories, since
there is in any case only one history — the actual one7 — that can reasonably
lay claim to any kind of physical reality.8 Likewise, States should be construed
as some set of potential states rather than just those that are ever physically
realized. The point here is, of course, a well-known and widely discussed one in
philosophical logic (see e.g. [58]).

In order to sharpen the discussion, let us suppose that, in our theory, we
have some mathematical description of the set States, and Histories is defined
to be the set of all mathematical functions h : States → Times satisfying a
certain specified predicate Laws Of Physics(h). (For instance, this predicate
might say that h satisfies certain differential equations at all times t; the state
s0 in (MD) would then correspond to a boundary condition.) This shifts the
metaphysical discussion to a discussion of the status of mathematical entities

5For the purpose of this illustration, we presuppose a Galilean conception of time in which
the notion of simultaneity is absolute. For relativity theories, one should replace the idea of
‘state at time t’ by that of a general ‘time slice’ through the system; the essence of the ensuing
discussion can then be interpreted in a relativistic setting mutatis mutandis.

6The formulae we give in this section are intended as merely illustrative, and are given in
order to clarify the typical form that some statement might take. They should be interpreted
somewhat informally; a more formal logical framework for our investigations will be presented
in Section 6.

7Even under many-worlds interpretations of quantum theory this point remains valid, since
if one wants to formulate a version of (MD) in such a setting, one must anyway consider states
as pertaining to the entire multiverse.

8Even the supposition of ‘physical existence’ for this one history might be considered
problematic. E.g. following Augustine [3, Book XI.15], we might ask: ‘When does it exist?’
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(such as elements of States and functions from States to Times) and statements
involving them. We will return to this issue in Section 4.1 below.

Of course, if (MD) is understood as a purely mathematical statement about
some model of physics, it does not by itself succeed in saying anything about how
the actual universe behaves. This, however, is quite consistent with our decision
to concentrate on the intrinsic properties of theories and to isolate these from
questions about how the theories relate to physical reality.9 We will henceforth
restrict our attention entirely to the theories and models themselves.

3.2 Logical determinism

In epistemological versions of determinism, the idea is that given complete
knowledge of the initial state, there is some way in which we may know or
‘work out’ how the future will unfold. This idea may itself be understood in
two ways.

A logical version of determinism would claim that given knowledge of all
relevant facts about an initial state and of the physical laws, it is possible to
‘deduce’ facts about future states. The emphasis here is on the idea of logical
deduction or inference; here we may informally imagine our demon as engaging
in reasoning on the basis of some given facts.

Crucial to such a notion of determinism will be the choice of a system of
inference which we may envisage our demon as using. This in turn must pre-
sumably involve a (possibly infinitary) language of some kind — perhaps the
demon’s private language of thought — in which assertions are expressed. Of
course, for a given choice of language, it may not be possible to give a complete
description of an arbitrary state by means of a single assertion; it might there-
fore be too much to demand the deducibility of an assertion of the form ‘the
state at time t1 is s1’. In general, therefore, we may have to content ourselves
with assertions about states which are expressible in the language. Thus, we
might ask for which predicates P0 and P1 of the language can the entailment

Laws Of Physics(h̄) ∧ T (t̄0, t̄1) ∧ P0(h̄(|t̄0|)) ` P1(h̄(|t̄1|)) (†)

be proved within the given system of inference. Here h̄, t̄0, t̄1 are formal free
variables within the language, as distinct from elements h, t0, t1 of the corre-
sponding sets. (We will not bother to distinguish notationally between the
predicate Laws Of Physics and operation (| − |) and their syntactic counter-
parts.) The predicate T (t̄0, t̄1) should be thought of as fixing the times t0, t1

9One possible way of trying to bridge the gap between the model and the physical universe
itself might be to supplement an assertion such as (MD) with the following statement, in
which T, T ′ ranges over actual points in time and S(T ) is the actual state of the universe at
time T .

∀T, T ′ : Times, t, t′ : Times, h : Times → States.
Models(t, T ) ∧Models(t′, T ′) ∧Models(h(|t|),S(T )) ∧ Laws Of Physics(h) ⇒
Models(h(|t′|),S(T ′))

However, it is not clear whether anything interesting is achieved by doing this.
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with reference to constants of the language, e.g. t̄0 = 0 ∧ t̄1 = 1. For the sake
of the discussion we shall suppose that t0, t1 may be uniquely pinned down by
a single predicate T .

A reasonable statement of determinism might then say that there are enough
provable assertions of the above form to uniquely determine the state at t1 from
that at t1. For this, we will still need to appeal to a mathematical notion
of possible states. We therefore assume we have a set States and a notion of
satisfaction for formal predicates P with respect to elements s ∈ States; we
will denote this by |= P (s) rather than by the more correct but cumbersome
|=s̄ 7→s P (s̄). However, a notion of possible histories is no longer required —
in fact, we need never speak (even syntactically) of ‘histories’ other than the
actual one.

First, it is natural to suppose that there are enough definable predicates to
distinguish between any two different states:

(∀P. |= P (s) ⇔ |= P (s′)) ⇒ s = s′

If this is not the case, there is redundancy in our model and we may as well
work with the quotient of States modulo Leibniz equality. Our formulation of
logical determinism now says that for any s0, there is only one s1 that satisfies
all the properties inferrable from properties of s0:

∀s0. ∃!s1. ∀P0, P1. (|= P0(s0) ∧ ‘(†)’) ⇒ |= P1(s1) (LD)

Here ‘(†)’ expresses the provability the entailment (†) given above. If (LD)
holds for every time-fixing predicate T , then by varying this predicate so as to
allow t1 to vary, then under mild metamathematical assumptions we may define
a function h : Times → States and prove that it is indeed the unique function
satisfying the Laws Of Physics predicate. Thus, under rather mild assumptions
about the class of possible histories, (LD) implies (MD).

If the language is powerful enough that arbitrary states can be specified
completely by assertions, we can do better. Suppose that for each s ∈ States
we have a characteristic predicate Ps such that |= Ps(s′) if and only if s = s′;
we shall for readability write Ps(s′) as ‘s′ = s’. In this case, we may restrict
attention to these characteristic predicates:

∀s0. ∃!s1. ‘Laws Of Physics(h̄) ∧ T (t̄0, t̄1) ∧ h̄(|t̄0|) = s0
` h̄(|t̄1|) = s1’ (LD+)

In this setting, clearly (LD+) implies (LD). Conversely, (LD) will imply (LD+)
if our logic satisfies a suitable completeness property, but not in general.

More generally only some states are logically specifiable, we may relativize
(LD+) to a statement (LD+

d ) by taking s0, s1 to range only over some set
Statesd ⊆ States of definable states. It would seem that (LD+

r ) should imply
(LD) if the set of definable states is suitably dense; however, (LD+

d ) will not in
general be implied by (LD) as it imposes the stronger condition that definable
starting states give rise to definable finishing states (if the starting and finishing
times are definable).
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3.3 Computational determinism

By contrast, a computational version of determinism would claim that there is
some way of ‘computing’ the future evolution of the system from a given starting
state s0 — that is, some kind of computable operation

Φ : States × Times → States

Here we wish to say that Φ(s0, t) is in fact the state the system will be in at
time t, whether or not we can prove that it is. In order to express this idea, we
again need recourse to a set of possible histories:

∀s0 ∈ States. ∀h ∈ Histories.
(h(|t0|) = s0 ⇔ ∀t ∈ Times. h(|t|) = Φ(s0, t0)) (CD)

Of course, what exactly we mean by a ‘computable operation’ Φ in this context
requires clarification — we return to this issue below. Clearly (CD) implies
(MD) (assuming Φ is total), but not conversely.

The a priori possibility that the evolution of physical systems might be
mathematically deterministic but not algorithmically computable in nature was
explicitly discussed in [36], and has been highlighted by Penrose [62, 63], who
has furthermore suggested that physical laws of this kind might play an es-
sential role in the science of consciousness.10 The distinction was again taken
up in [13], where some candidates for (metaphysically) deterministic but not
computationally predictable physical systems were proposed.

Let us comment briefly on the relationships between logical and computa-
tional determinism. It is tempting to think that (LD) or (LD+

d ) should imply
(CD) in general, since one way to compute the state at t1 is by enumerating all
possible proofs in the inference system. However, there are several reasons why
this might not be the case. Firstly, a complete linguistic description of a starting
state will typically give us more information than can be computably extracted
from the state itself. (This is analogous to the fact that equality is decidable for
the rationals, but not for the reals.) Secondly, the enumeration trick does not
carry over readily to infinitary inference systems: for instance, in an inference
system with the ω-rule the set of proofs is uncountable. Thirdly, in the case of
(LD), further assumptions on the expressive power of the predicates P0, P1 may
be necessary. Whether (LD) does indeed imply (CD) for some family of cases
will therefore depend on the details of the inference system and the nature of
the computable operation Φ (see Section 4.3).

Conversely, if the logical language is strong enough to specify the operation
Φ, and the evident formula Laws Of Physics(Φ̄(s̄)) is provable in the system,
and the system is strong enough to derive the evident formalization of the
statement of (MD), then (CD) will typically imply (LD). Again, whether all
these conditions are met will depend on the details of the situation at hand.

The ingredients of logical and computational determinism can be combined
into a formulation (LCD) of logical-computational determinism, in which the

10See e.g. [62, page 220]: ‘Computability is a different question from determinism — and
the fact that it is a different question is something that I am trying to emphasize in this book.’
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statement of (LD) is supplemented with the condition s1 = Φ(s0, t1). However,
it is easy to see that under mild assumptions, (LCD) holds iff both (LD) and
(CD) hold.

Some further relationships between these formulations will be discussed in
Section 4.

3.4 ‘Provable’ variants

Each of our statements (MD), (LD), (CD) is itself a mathematical assertion.
We may therefore in principle take one step back and ask whether these state-
ments are themselves provable in some particular meta-system for mathematics.
We thus obtain ‘provable’ variants (MDp), (LDp), (CDp) of these formulations,
which may be expressed by adding a meta-level syntactic turnstile `M at the far
left of the statements given earlier. From this standpoint, the original versions
of these statements may then be distinguished by means of a corresponding
semantic turnstile |=M . (In the case of (LD) we must distinguish notationally
between the turnstiles for the meta-system and those for the object-system,
which may in general be different systems.) A version of (MDp) raised its head
briefly in the above discussion of equivalences.

In a sense, it is the provable variants that we naturally find ourselves inves-
tigating when we consider particular theories, since e.g. if (MD) were true but
not provably so in any formal system that we ourselves believe in, we would
never find this out. However, the point of introducing the provable variants
is not really because we care about the difference in the case of strong meta-
systems such as ZF set theory — it would be astonishing if there were a plausible
physical theory for which the statement of metaphysical determinism furnished
an example of Gödelian incompleteness! — but rather because we will wish to
consider the provable variants in the case of weaker meta-systems, as we shall
be interested in the precise strength of the mathematical principles required to
conduct the proofs of the semantic versions.

Let us now consider the lines along which our three main formulations may
themselves be further subdivided.

4 Truth, provability and computability

Broadly speaking, throughout the above discussion we have appealed repeatedly
to three basic notions, whose precise nature was left somewhat open:

• A notion of truth for mathematical statements. Of course, all of our for-
mulations are to some extent contingent on such a notion, simply because
they are all mathematical statements; but the dependency is particularly
marked for those notions, such as (MD), which rely heavily on abstract
notions such as potential states and potential histories.

• A notion of provability. This clearly features in the formulation of (LD),
and also in that of the ‘provable’ variants as discussed in Section 3.4.
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• A notion of computability, which features in (CD) in the requirement that
the operation Φ be computable.

And it could be fairly said that the notions of truth, provability and computabil-
ity (and the relationships between these notions) constitute the very core of
modern mathematical logic. Our purpose, then, is to see how ideas and expe-
rience from logic can contribute to the clarification and study of our various
notions of determinism.

What we find from the study of logic is that for each of these three fundamen-
tal notions, many different conceptions and formulations have been developed
and studied. In fact (as we shall explain), for none of them is there a single,
definitive conception or definition which suffices for all the applications we have
in mind. We therefore obtain, for each of our three flavours of determinism,
a whole range of interpretations according to which concept of truth, provabil-
ity or computability is adopted. Let us now examine each of these three basic
notions in turn.

4.1 The notion of mathematical truth

Recall that in the case of metaphysical determinism (for example), we are inter-
ested in whether (some instance of) the formula (MD) is a true. Many physi-
cists and mathematicians might feel that, once we have succeeded in bringing
the question of determinism for some theory down to a purely mathematical
question, we have removed all fuzziness or doubt concerning what the question
means, and it only remains to answer it. Implicit in such a view, typically, is
a (sometimes tacit) assumption that regardless of whether we are able to know
or decide whether a given mathematical statement is true or not, there really is
some ‘fact of the matter’ about its truth or falsity which we are trying to dis-
cover. This is often referred to as a Platonist view of mathematical truth.11 It
is the ‘classical’ philosophy of mathematics, and is widely held by many working
mathematicians and physicists today.

However, some mathematicians, logicians and philosophers have not been
comfortable with this view, and with its apparent metaphysical commitment to
a realm of ‘truth’ beyond human knowledge and beyond empirical investigation.
After all, they might ask, what meaning does (MD), with its implicit quantifi-
cation over ‘potential histories’, really have? Naturally, when we make such
statements we may be entertaining a certain picture in our minds — probably a
vague picture of some ‘space of potential histories’ — but this picture does not
(they would claim) refer to anything. Moreover, even if the metaphysical sta-
tus of ‘potential histories’ could be clarified, there remains the issue of whether
quantification over them has any meaning. Our understanding of quantification
(they might argue) derives from our experience of being able to check properties

11The question of whether statements of mathematics have a determinate truth-value inde-
pendent of our knowledge can in principle be distinguished from the question of whether the
entities considered by mathematics have an independent ‘existence’. Our focus here is mainly
on the issue of Platonism with regard to mathematical truths rather than entities.
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exhaustively for finite collections of objects, and extrapolations of this idea to
infinite collections are simply illusory.

This rejection of the Platonic view by some workers has led to the develop-
ment of several alternative approaches to mathematics under the broad umbrel-
las of constructivism and finitism (see [87, Chapter 1] for a survey). We shall
not describe these schools of thought in detail here, but a common feature of
them is that mathematical statements are not regarded as meaningful unless
they can be endowed with some kind of empirical content. Moreover, the law
of excluded middle ` φ ∨ ¬φ, unproblematic to the classical mathematician, is
typically rejected by such schools, and this has far-reaching consequences for
the development of constructive or finitist mathematics.

Many intermediate positions between strict constructivism and full-blown
‘set-theoretic Platonism’ have also been developed: these differ, roughly, in re-
gard to which kinds of mathematical entities and truths are accepted as having
knowledge-independent existence. For instance, in positions we shall broadly
call semi-constructivist, one accepts the principle that if some property P (n) of
natural numbers is meaningful for each natural number n then there is a ‘fact of
the matter’ about whether or not ∀n.P (n) is true; however, one typically rejects
principles involving more powerful appeals to the infinite. An important exam-
ple of a semi-constructivist position, for our purposes, is that of predicativism
(see e.g. [30]).

It is not our purpose here to take a side in all these debates, but merely
to point out that one’s metaphysical attitude towards mathematical statements
will affect how one construes the idea of metaphysical determinism. And since
the idea of determinism is itself of such philosophical interest, it is surely nat-
ural that one should wish to scrutinize the philosophical presuppositions that
one’s concept of determinism rests on. The ‘natural’ reading of metaphysical
determinism as we have presented it (that is, the way one would expect it to be
understood by a reader not forearmed by an acquaintance with the philosophy
of mathematics) is, we would suggest, tacitly dependent on a Platonistic view.
However, there is nothing to stop us from interpreting the statement (MD)
from the standpoint of other mathematical ideologies; we thus obtain a whole
spectrum of possible interpretations of (MD), each with its concomitant set
of philosophical presuppositions. Constructive readings, in which truth is in
some degree identified with knowability, will naturally tend to approximate to
versions of (LD), (CD), (MDp) or perhaps all of these. Similar remarks also
apply to computational determinism (which also refers to potential histories),
and to a lesser extent to logical determinism, since in (LD) we still have the
idea of quantification over potential states.

Laplace’s appeal to the imagery of a demon is particularly telling at this
point, and it is instructive to relate it to some recurring themes in the Platonist-
constructivist debate.12 Presumably for Laplace this was a mere figure of speech,
and he would have regarded the question of whether or not such an ‘intelligence’

12See also [21], to which we are indebted for some of the ingredients of the following discus-
sion.
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really exists as irrelevant to the point he was making. However, to remove
any suspicion of counterfactuality, one might try to reformulate the essence of
Laplace’s claim without recourse to the idea of a demon. Suppose a classical
mathematician does this along the lines of (MD). A constructivist might then
challenge him as to the meaning of his quantification over all potential histories,
which appears to lack empirical content. The classicist might respond that
though we only have direct experience of finite quantifications, we can form
by analogy a perfectly clear conception of what it would mean to check an
infinite set of things for a certain property. If pressed to convey the nature
of this analogical conception more clearly, he may find himself led naturally,
perhaps even inevitably, to appeal to the idea of what would be knowable to
some agent or process that could ‘see all potential histories at once’ (or could in
some other way perform the requisite search).13 So we are back to the idea of a
demon again! The classicist might protest, of course, that this is only a way of
suggesting what he means, and that the hypothetical nature of this manner of
speaking does not seriously impugn the coherence of the underlying conception.
By contrast, the constructivist might maintain that the impossibility of such
infinite searches is precisely the point at issue, and that the classicist’s inability
to express his conception in any fundamentally better terms betrays the fact
that the conception partakes essentially of this hypothetical character — and
therein (he might say) lies its fatal flaw.14

In other words, the mere imagery of Laplace’s demon tends to smuggle into
our conception the idea of the abstract possibility of a being with the requisite
infinite powers of surveillance — and it is precisely this idea that is rejected as
meaningless by the constructivists. We are not thinking here primarily of the
hypothesis involved in postulating a being that has complete access to each of
the raw physical facts that comprise the state of the universe, but of the con-
ception of the demon as being able to perform arbitrary unrestricted infinitary
manipulations of these facts. This conception, when scrutinized, appears to be
wedded to a Platonistic view of truth for the statements in question.

One might object that potential states, potential histories and the like are
not really mathematical objects, but rather metaphysical objects of some other
kind (perhaps having some hybrid mathematical-physical status), so that one’s
philosophy of mathematics had no bearing on one’s attitude to statements such
as (MD). This, however, would seem to be merely a terminological quibble.
Of course, one is at liberty to reserve the term ‘mathematics’ for e.g. some au-
tonomous mental activity bearing no relation to the external physical world.
But even if one regards potential states and histories as entities of some other
kind, exactly the same questions and debates that arise in the context of math-

13This idea is expressed with particular clarity by Wittgenstein [93, §352]: ‘ “In the decimal
expansion of π either the group ‘7777’ occurs, or it does not — there is no third possibility.”
That is to say: “God sees — but we don’t know.” But what does that mean? — We use a
picture; the picture of a visible series which one person sees the whole of and another not.
. . . Here saying “There is no third possibility” or “But there can’t be a third possibility!” —
expresses our inability to turn our eyes away from this picture.’

14Once again, we are trying not to take sides here!
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ematics carry over to these other entities. In this case, one should understand
the term ‘Platonism’ in the above discussion as meaning ‘Platonism with regard
to the truth of such statements as (MD)’.

4.2 Formal systems and provability

As we have noted, logical notions of determinism, as well as the ‘provable’
version of metaphysical determinism, depend on some idea of logical inference,
perhaps as presented by a formal system. Here there is less to say, as the
existence of many different formal systems (e.g. covering different portions of
mathematics) is very familiar and hardly requires comment.

Of course, we are here interested primarily in deductions, not in arbitrary
formal systems, but in systems expressing principles that it is reasonable to
believe in. The spectrum of possible philosophies of mathematics which we
outlined in Section 4.1 is thus closely paralleled by an array of formal systems for
mathematics which embody (more or less) the principles and rules of inference
that are deemed acceptable by these philosophies. Although one should beware
of making too close an identification between a philosophical stance and a formal
system that embodies it (indeed, many philosophies explicitly resist the idea that
the content of mathematics can be exhaustively captured by a formal system),
there is no doubt that the study of these formal systems has contributed greatly
to an elucidation of the various foundational positions and the relationships
between them. We recommend [27] for an overview of this area.

One may also consider formal systems with infinitary rules, such as the ω-
rule for arithmetic. For such systems, the notion of provability will clearly tend
to approximate to that of truth.

4.3 Notions of computability

Let us now turn to the question of computability as it features in computational
notions of determinism. Here, there is a prevalent assumption that the notion of
‘computability’ is unambiguous and well-understood — more specifically, that
if one accepts (some version of) the Church-Turing thesis, the Turing definition
gives us all we need by way of a working definition of computability, as all other
reasonable definitions turn out to be equivalent to this one. Of course, the
Church-Turing thesis can itself be questioned (and has been in recent proposals
for ‘hypercomputation’, e.g. [18, 47, 26]), but that is not the main issue we wish
to discuss here. Our point, rather, is that the situation alluded to above only
really gives us a canonical notion for functions acting on natural numbers, or
on other finite entities that can be effectively coded by them in an essentially
canonical way.15 But what do we mean by computation where infinite entities
are concerned, such as functions on N, real numbers, continuous functions on
the reals, or elements of even larger ‘spaces’? Such questions are crucial to
how one formulates the notion of computational determinism, since states of a

15Equivalently, we get a canonical notion of a (single) computable real number, as in Turing’s
famous paper [88].
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physical system may typically be represented by real numbers (e.g. for positions
and velocities of particles), functions on real numbers (e.g. for gravitational or
electromagnetic fields), or even distributions over spaces of such functions (e.g.
for quantum field theory).

In fact, as soon as one leaves the realm of natural numbers and other fi-
nite objects, the issue of computability becomes much more complex. Broadly
speaking, we have to decide how we think of an infinite object as being given
to us, and what kinds of manipulations we are allowed to perform on it. Even
if we restrict our attention to ‘computations’ that that manipulate the infinite
data only in intuitively ‘finitary’ ways, the situation is still complex. For com-
putations that take ordinary functions on N as data, there are already some
choices to be made, and the situation becomes rapidly more complex as one
passes to higher types (see [54] for a survey and discussion). In other contexts,
such as that of computable metric spaces, there is arguably a single canonical
computability notion which may be characterized in several ways (see e.g. [80]).
A fairly clear overall map of much of this territory is now emerging, though
the picture is still unclear for some parts of the landscape, such as higher type
operations over the reals (see [7, 59]).

Typically, the computability notions we have in mind are based on finitary
manipulations of the data; such notions invariably specialize to the familiar
Turing notion if we restrict attention to the natural numbers. It is also possible,
however, to consider notions in which certain infinitary operations are allowed
(such as Kleene’s higher type computability in the presence of various quantifiers
[48, 73]). Such notions are of interest since they tend to relate closely to semi-
constructive or classical notions of truth.

Our point, then, is that the ‘states’ and ‘histories’ featuring in a physical
theory are likely to be highly infinitary objects, for which there may or may
not be a canonical notion of computability. In the context of computational
determinism, therefore, we will have to think carefully about how we consider
the state of the universe to be given to our demon — in particular, it need not
be given by symbols on a Turing tape. Even in contexts where only one notion
of computability can appropriately be applied, this fact will require justification.

It is interesting to note that workers who have considered issues of com-
putability for physical theories have concentrated, for the most part, on the
question of whether the theory can ever give rise to ‘first-order’ non-computable
phenomena, such as a single measurable real number that is not computable
from the initial conditions, or a means of computing a ‘non-computable’ func-
tion N → N (see e.g. [50, 69, 36, 78]). The more general question of the com-
putability of an entire history from an initial state has received less attention
to date.16 One might surmise that this stems from an uncertainty regarding
the right way to discuss computability in this setting, and it is here that an
acquaintance with the body of work mentioned above may be of use.

16A notable exception is the work of Weihrauch and his colleagues [90, 92, 91].
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4.4 Relating notions of determinism

It will be clear by now that there are close connections, and some substantial
overlap, between the three formulations of determinism that we have been con-
sidering. Some relationships of a ‘general’ nature — that is, those that could
be discussed without reference to specific conceptions of truth, provability and
computability — were observed in Section 3.3; the tendency of these observa-
tions was that (LD) or (CD) usually implies (MD). We now briefly summarize
the kinds of more specific connections between particular formulations that one
might expect; some of these have already been alluded to in the course of the
above discussion.

On the one hand, the statement (MDp) understood with reference to a con-
structive meta-system will usually imply a form of (CD), since in virtually all
proposed formal systems for constructive mathematics, one can extract from a
proof of ∀s∃h · · · some kind of computable operation for finding an h given an s.
Likewise, it will imply a form of (LD), since a proof of ∀s∃h.A(s, h) provides an
operation which, given an s, yields not just a suitable h but a proof of A(s, h)
for this particular s, h. In fact, there is already an extensive body of metamath-
ematical work on relating constructive formal systems to computability notions
(e.g. by means of realizability interpretations), and also on investigating notions
of constructive provability from a more syntactical point of view. (See e.g. [86]
for a monumental treatment of much of this material.) Some of this work is
clearly relevant to the question of relating notions of determinism in particular
cases.

Moving higher up, (MD) from non-constructive standpoints can sometimes
be related to version of (CD) based on infinitary computability notions. For
instance, what ‘exists’ from a semi-constructivist standpoint is closely related to
what is ‘computable’ in the presence of the (second-order) operation of existen-
tial quantification over the natural numbers (see [48]) — informally, what would
be computable to a demon who could ‘see all the natural numbers at once’. In
the presence of even more powerful infinitary operations, computability would
approach classical notions of truth (see e.g. [73]). On the other hand, the proof-
theoretic analysis of semi-constructive and more powerful systems sheds impor-
tant light on how these are related to various conceptions of truth (see e.g. [27]).
In fact, a full survey of all the work that is potentially relevant to our concerns
would rapidly lead us into an review of a huge area of mathematical logic!

One may now roughly imagine the possible formulations of determinism
as occupying a two-dimensional space, with three columns corresponding to
our three basic flavours, and with a vertical spectrum ranging from the most
powerful (e.g. Platonistic) notions at the top to the weakest (e.g. finitist) notions
at the bottom. The import of the above observations is that there are many
horizontal connections between formulations in different columns. In view of
the multitude richness of these connections, it might perhaps seem by now that
it is the vertical dimension that really holds most of the interest, with (MD),
(LD) and (CD) merely playing the role of different formulations. However, the
three approaches are still of value and interest in their own right in that they
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offer different perspectives and ways of thinking which enrich our understanding.
Moreover, in particular cases, most of the interest lies not in the mere existence
of horizontal correlations but in the details of which particular notions can be
correlated, and in what way. When we look closely, of course, we find that the
precise relationships are often rather subtle and our formulations do not map
neatly onto a simple one-dimensional axis.

What we are proposing in this paper and its sequel, then, is a detailed
investigation of possible notions of determinism, their interrelationships, and
their applicability to specific, precisely articulated physical theories, using ideas
and methods developed in mathematical logic. We will make a start on this
programme in both papers, by presenting a selection of examples to show that
even for very simple physical theories there is something to explore, in that the
‘determinism’ of a theory often turns out to be quite sensitive to the precise
definition of determinism, the details of how the physical theory is formulated,
and the metaphysical assumptions adopted.

5 Some further motivations

Now that we have laid out in informal terms the main ideas of the paper and
the kind of interplay between physics and logic that we wish to explore, we are
in a position to explain more fully some of the reasons why this kind of interplay
seems to us interesting and potentially fruitful, beyond the general philosophical
interest of the notion of determinism.

Our discussion so far has been somewhat oriented towards the ‘grand ques-
tion’ of whether, and in what sense, the universe as a whole behaves according
to a deterministic theory. From this point of view, our present investigation of
simple physical theories could be seen as a stepping-stone to a more ambitious
study of current theories which could have interesting scientific or philosophical
repercussions. However, there is another perspective which is also interesting,
particularly with regard to the more ‘down-to-earth’ theories we will consider.
In many of these cases we already know in practice that the theory is determin-
istic in practice, in the sense that it enables the successful prediction of certain
future events (such as eclipses). Thus, here it is not the determinism of the
theory that is in question, but rather the adequacy of our formulation of the
theory and of the notion of determinism in question. If the formulation of such
theories does not allow us to infer some reasonable statement of determinism,
we may conclude that there is something deficient about the formulation in the
sense that it does not by itself explain the observed phenomena it is designed to
explain; we are thus led to consider what other missing principles or covert as-
sumptions need to be explicitly incorporated. In other words, we are subjecting
physical theories to a discipline of axiomatization analogous to the axiomatic
formulation of mathematics; such a discipline can only serve to rigorize our
thinking and clarify our presuppositions.

It will be clear by now that there is no particular need to limit our consid-
erations to the Laplacian problem of determining the future from the present.
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Any ‘predictive’ problem in physics, such as that of determining a field through-
out a region from information about its values on the boundary, would do just
as well. Indeed, the whole of the above discussion of notions of determinism
could be framed more abstractly in terms of the general question of which col-
lections of physical facts abstractly imply [resp. enable us to compute, or allow
us to deduce] which other physical facts. We have chosen here to concentrate
on questions of Laplacian determinism partly in order to give the discussion
a focus (examples relating to determinism being as good as any others), and
partly because of the perceived philosophical significance of this topic.

We next mention two possible further motivations for our inquiry — one
regarding what physics might have to contribute to logic, and one regarding
what logic might have to offer to physics.

5.1 Indispensability arguments

The first of these relates to the issue of whether physics has any light to shed on
the debates between competing philosophies of mathematics. On the one hand,
the apparent indispensability of certain mathematical entities and principles as
ingredients of scientific theories has sometimes been urged as one kind of jus-
tification for a realist attitude towards these entities and principles themselves.
Such ‘indispensability arguments’ were first developed by Quine and Putnam;
the general position is summarized by Maddy [57] as follows:17

We have good reason to believe our best scientific theories, and math-
ematical entities are indispensable to those theories, so we have good
reason to believe in mathematical entities. Mathematics is thus on
an ontological par with natural science. Furthermore, the evidence
that confirms scientific theories also confirms the required mathe-
matics, so mathematics and science are on an epistemological par as
well.

Early versions of this argument were somewhat coarse-grained, and tended to
speak of ‘mathematics’ as a monolithic structure as if it stood or fell as a whole.
However, the discussion has been considerably sharpened by the work of Fefer-
man [29, 28], who asks exactly which mathematical entities and principles are in
fact indispensable for which scientific theories. Much of the value of Feferman’s
contribution lies in his insistence in bringing the discussion down to specific, de-
tailed questions about the strength of particular formal systems for particular
applications, and the precise ontological commitments needed to justify these
systems. A useful methodology here is provided by the Reverse Mathematics
program of Friedman and Simpson (see [77]), which investigates the necessity of
certain key axioms for certain theorems by showing that the theorem actually
implies the axiom (typically, in the presence of less controversial axioms and

17We find a similar attitude expressed in Deutsch [20]: ‘Mathematical entities are part
of the fabric of reality . . . We have no choice but to assume that the incomprehensible
mathematical entities are real too, because they appear inextricably in our explanations of
the comprehensible ones.’
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inference rules). Results of this kind allow one to make precise the idea that a
certain axiom or principle is indeed ‘indispensable’ for some desired conclusion.

Feferman’s conclusion is that in fact a rather modest system based entirely on
the principles of predicativism (such as Weyl’s system W) is sufficient for devel-
oping practically all of “scientifically applicable mathematics”, with some pos-
sible (and disputed) exceptions arising e.g. from the use of infinite-dimensional
spaces in quantum mechanics. Thus, for Feferman, the success of real analysis
(for example) in physical theories does not furnish any justification for impred-
icative concepts such as that of the completed powerset of the natural numbers,
let alone any ‘higher’ set theory. Although it might be traditional to make use
of such concepts in the classical development of the relevant parts of analysis,
it is not necessary to do so. However, it remains to be seen whether Fefer-
man’s contention holds good for the further reaches of modern physics, such as
quantum field theory.

In a series of contributions highly relevant to our concerns, Hellman [42, 41,
43] concurs with Feferman on the sufficiency of predicativist principles for large
parts of applied mathematics, but argues that a stricter constructivist stance
is not sufficient for physics, despite of the impressive body of analysis that can
be developed constructively as in [9]. Hellman’s main counterexamples draw
on rather advanced physics, such as the spectral theorem for linear operators
in quantum mechanics, or the Hawking-Penrose singularity theorems in general
relativity. As we shall see below, some interesting problems in a similar vein in
fact arise much earlier on, in connection with even the most rudimentary parts
of physics. One possible merit of the more down-to-earth examples we shall
consider is that they lie much closer than Hellman’s to what can be directly
validated by observation (e.g. by the predictive success of some classical theory),
and the case that such observation serves to confirm the required mathematics
would therefore seem to be correspondingly strengthened.

5.2 ‘Constructivization’ of physical theories

We now venture to suggest, even more speculatively, some possible ways in
which this area of investigation might provide a fruitful source of inspiration for
physics itself.18

In the study of fundamental physics, it is natural to try to develop theories on
as economical an ontological base as possible. By ‘ontology’ here one ordinarily
understands what physical entities are supposed to exist, but one might also
seek to cut down on one’s mathematical ontology in order to keep one’s overall
metaphysical commitments to a minimum.

As already suggested, difficulties seem to arise if one’s mathematical ontology
is too restricted — at least for physical theories as they are usually formulated.
However, as we shall see in later sections, the level of mathematical ontology
that is required is often quite sensitive to the finer details of which physical

18The author is not himself a physicist, and is only too aware of his lack of expertise in the
subject. He wishes to offer these ideas humbly as tentative suggestions arising from experience
in another discipline.
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entities or relations are treated as ontologically real. There is therefore at least
the possibility that one might be led by metamathematical considerations to
recast one’s physical ontology in more ‘finitistic’ terms, if this seemed to lead
to a more economical system overall.19

How might one arrive at such an alternative physical ontology? It is here
that ideas from logic may be able to help. Indeed, the problem at hand is
broadly analogous to that of putting mathematical concepts and theories on a
more constructive or effective footing, and considerable experience in this arena
has been gained by logicians over several decades. A very pertinent case in
point is that of topology. The classical ‘point-set’ development of this area of
mathematics makes heavy use of highly infinitistic concepts from set theory;
however, it turns out that the essential content of large portions of the theory
can be developed on a much more modest ‘constructive’ base in the form of
locale theory (see [46, 89]). Here there is, so to speak, a switch in the basic
ontology: rather than considering the points of a space to be its fundamental
constituents, we take its abstract lattice of open sets as primary. This simple
idea turns out to lead to a rich and compelling theory.

In fact, there is by now a rather extensive body of material, in a broad and
loosely defined area spanning aspects of locale theory, domain theory and com-
putability theory, and offering a variety of perspectives on this general idea that
a more finitary, ‘effective’ handle of certain topological spaces can be obtained
by giving primacy to some concept of ‘region’ or ‘observable property’, and rel-
egating ‘points’ to the role of a convenient idealization or limit concept. (As
representatives of this general area we mention [2, 24, 23, 6, 5, 10, 80, 81, 90].)
Most of the more recent work here comes from theoretical computer science, and
derives its impetus from the desire for appropriate theories of computability for
the spaces typically arising in classical analysis.

Now that these ideas are approaching maturity and some compelling mathe-
matical structures and concepts are starting to emerge, it may be that the time
is ripe for seeing whether such ideas can be applied to the ‘reconstruction’ of
portions of physical theory. For instance, in one’s treatment of the spacetime
manifold, one might ascribe ontological reality not to points in spacetime (whose
physical status might in any case seem dubious) but rather to intervals or re-
gions. Indeed, various approaches having something like this general flavour
have already been proposed (see e.g. [71, 35, 22]), but our suggestion is that the
mathematical theory mentioned above may have something to contribute. The
hope is that this might ultimately lead to a simpler and more economical formu-
lation of physical theories, and one which makes their computability properties
more transparent. The general tendency of such a simplification would be to
bring ontology into closer alignment with epistemology.20

19A similar programme is suggested by Shipman at the end of [76]: ‘Feynman’s dictum
that it shouldn’t take an infinite amount of information to describe what is going on in a
finite region of spacetime still seems reasonable, and the task before us is to come up with
better theories and models, more constructive and finitary in nature but compatible with the
quantum world we live in.’

20Our proposal seems to be along similar lines to a suggestion in [65, Chapter 3].
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Our suggestion, then, is that work in logic and computer science might
provide a source of inspiration for alternative ontologies for physical theories.
In this paper we will make a few preliminary forays in this direction, and give
a rudimentary impression of what such an approach might look like.

6 A logical framework for physical theories

In this section we propose a simple logical framework for describing physical
theories, their respective ontologies and their predictive power. The purpose of
the framework is to allow us to formalize physical theories to the extent that
they become amenable to precise logical analysis. We regard our proposal only
as a first attempt at a suitable general framework for the logical discussion of
physics, and one which invites further improvement. For the time being, we are
content if our framework is helpful for the discussion of the particular examples
we shall consider. Our presentation in this section leans rather heavily towards
logical notions of determinism, which is what will chiefly occupy our attention
in the next few sections. Later on, we will see how the same ideas also enable
us to discuss computability issues.

Any physical theory requires an ontology — intuitively, a stock of concepts
corresponding to entities which are deemed by the theory to ‘exist’. Moreover,
a theory will treat certain properties or attributes of these entities as being
ontologically real.21 The totality of ontologically real facts about a system (at a
given time t) will constitute a description of the state of the system according
to the theory. For various theories, we will be investigating the question of
whether, and in what sense, the ontologically real facts about a system at a
time t0 determine the ontologically real facts at a time t1 later than t0.

Of course, we may take the view that the entities acknowledged by the
theory are all that exists, in which case the set of ontologically real facts will
constitute a complete description of the physical system — or we may take
the view that there may be other entities but we are simply not choosing to
talk about them, in which case our set of facts will simply provide a certain
window onto the physical reality. The latter perspective means that we can use
the same framework to study more epistemically oriented kinds of determinism,
/eg/ we can consider what can be predicted or deduced from certain observable
facts without committing ourselves to the view that these are all the facts there
are. For simplicity, however, we will tend to favour ontological language in the
ensuing discussion, as if we are adopting the former perspective.

Rather than get embroiled in concerns over what it means for something
to ‘exist’, we shall take the ‘ontology’ of a theory to mean the total repertoire
of concepts that one requires in order to articulate the theory. In particular,

21For example, in a Newtonian theory of celestial mechanics, one treats particles as real
entities possessing the real attributes of mass, position and momentum at any point in time,
but it is not necessary to treat gravitational fields as real. By contrast, in Maxwell’s theory of
electromagnetic waves, we are led to treat the electromagnetic fields themselves as ontologically
real, since electromagnetic waves may carry energy even in a vacuum.
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this might include not only physical concepts such as that of a particle or wave,
but mathematical concepts such as that of a real number or a set of reals, if
these turn out to be indispensable for expressing the theory. What is important
here is not so much whether one thinks of these entities as ‘really existing’, as
whether certain facts and relations involving them are considered to be onto-
logically meaningful.22 One might, of course, hold that mathematical entities
enjoy a quite different kind of ‘existence’ from physical ones, but for our present
purposes there is no particular need to draw a sharp distinction between the
two. Indeed, we will sometimes wish to postulate entities of a somewhat hybrid
character, such as sets of points in time.

6.1 Languages for physical theories

A physical theory will thus comprise, among other things, a language for repre-
senting ontologically real facts. Our notion of a language is reminiscent of that
of a signature for a logic. For our purposes, a language L will consist of the
following:

• A collection (typically finite) of type symbols, e.g. Particles, Positions,
Times, ω, Pω. These correspond to the types of entities we wish to talk
about. We do not distinguish formally between physical and mathematical
entities.

• For each type name, a class of constants of that type.23 These will be used
as names for the particular entities that may feature in ontologically real
facts. Intuitively, we will need a constant for each entity that is treated
as ‘existing’; this often means we will require infinitely many constants
of certain types (e.g. one for each position in space that a particle might
occupy). We will use ordinary identifiers as examples of constants, and
checked identifiers (e.g. x̌) for metavariables ranging over constants.

• A collection of relation symbols, each with a given arity consisting of some
argument slots each with an assigned type. For instance, a theory might
have a ternary relation symbol P (− : Particles,− : Positions,− : Times)
to represent the fact that a given particle has a certain position at a
certain time. Arities may in principle be allowed to be infinite, though in
practice we will consider only finite arities in our examples. The relation

22One might therefore argue that it is ultimately only the facts that are ontologically real,
and that the role of concepts corresponding to entities is merely to provide a language for
expressing these facts. ‘The world is the totality of facts, not of things’ (Wittgenstein, Trac-
tatus §1.1). This suggests that one should really consider theories modulo some relation of
mutual interpretability, two theories being considered equivalent if they express the same
facts, regardless of whether there is any correspondence between their respective classes of
entities. However, for the purpose of this paper this more sophisticated point of view will not
be required.

23In the spirit of Gödel-Bernays set theory, we shall say ‘a class of Xs’ (rather than ‘a set of
Xs’) when we do not mean to imply that the Xs in question can be collected into a completed
totality which can be apprehended as a whole (either by the demon or by ourselves). Thus,
‘a class of Xs’ means roughly ‘a notion of an X’.
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P should be distinguished from e.g. the formula P (A, x, t) obtained by
filling its slots with certain variables (see below); nevertheless, by abuse
of language we shall sometimes speak of ‘a relation P (A, x, t)’.

By filling the argument slots in relations with constants of the appropri-
ate type, we obtain the atomic propositions, (written e.g. as P (Ǎ, x̌, ť)).
The intention is that atomic propositions express potential facts, and a
particular physical system will be described (according to the theory) by
some class of atomic propositions corresponding to the actual (i.e. true)
facts.

• A class of formulae, including all atomic propositions, and closed under
certain (possibly infinitary) conjunctions and disjunctions. That is, for
certain conjoinable sets S of formulae we have a formula

∧
S, and for

certain disjoinable sets T we have a formula
∨
T . We suppose that all finite

sets are both conjoinable and disjoinable, and usually write φ1 ∧ · · · ∧ φn

and φ1 ∨ · · · ∨ φn for
∧
{φ1, . . . , φn} and

∨
{φ1, . . . , φn} respectively. We

also write > for
∧
∅ and ⊥ for

∨
∅.

Usually, the class of formulae will contain atomic formulae constructed
using (typed) variables as well as constants, and will also be closed under
binary implication and universal and existential quantification (denoted
by ⇒,∀,∃).

The possibly infinite sets S, T here are not themselves treated as entities in
the theory, and need not be considered to ‘exist’ by the demon. Nevertheless, we
do require that the demon has some way of contemplating the resulting formulae∧
S,

∨
T , whether by knowing about suitable indexing sets for S, T or otherwise,

and this, as well as the explicit ontology embodied by types and relations, needs
to be taken into account when assessing the metaphysical commitments that a
theory depends on.

We do not include function symbols in our definition of a language. This is
because we see functions as themselves a kind of ‘entity’, and the spirit of our
approach is to make explicit, as types of the language, all the kinds of entities
we need to refer to. A particular language could, of course, feature a type ρ
of functions from type σ to type τ , together with an ternary relation symbol
AppEq(f : ρ, x : σ, y : τ) (corresponding to ‘f(x) = y’), plus laws asserting
totality and single-valuedness of this relation. As usual, we can enrich our
language with function symbols if we wish, on the understanding that formulae
involving them are simply shorthand for the corresponding formulae involving
relations. In practice, we will do this only rarely below.

Some further remarks to clarify the intentions behind the above machinery
are in order. We are thinking of our language not as a finitary medium for com-
munication between agents such as ourselves, but as a framework for expressing
all true facts about a physical system, and moreover as an idealized ‘language of
thought’ for a supposed demon who can see all these true facts. This explains
the infinitary aspects of the above definition. We intuitively conceive of the
demon as looking at the universe ‘from outside’, and able to observe whatever
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facts it pleases without affecting the state of the system in any way. Moreover,
we suppose the demon to be ‘outside physical time’ in the sense that it can
make as many observations as it likes on a single instantaneous state without
any physical time elapsing in between, and any ‘thinking’ on the demon’s part
is likewise assumed not to cost any physical time.24

Intuitively, the true atomic facts are the things that the demon has imme-
diate access to as it looks at the physical system. For convenience, we treat
facts as affirmable from the demon’s perspective: if a fact is true, the demon
will ‘eventually’ be able to see it; but if a fact is not true, the demon will not
in general be able to detect its absence. (Refutable facts, if required, may of
course be incorporated into the framework via their negations.) However, there
is no requirement that true facts should be affirmable to an observer within the
physical universe.

By contrast, we may informally think of general formulae as expressions of
things such as a demon might know, believe, or entertain as a possibility in the
course of a deduction. This allows for a level of logical superstructure on top
of the realm of brute physical facts. In contrast to atomic propositions, we do
not presuppose a notion of truth for general formulae; this leaves us free, if we
so wish, to take a purely formalist or instrumentalist view which eschews any
notion of ‘meaning’ for such formulae. An exception is made for conjunctions
and disjunctions, which we understand as having their ‘usual’ meaning — see
below.

6.2 Theories and logical entailments

We now describe the remaining ingredients which we shall consider to constitute
a physical theory. For our purposes, a theory T will consist of a language L as
above along with the following:

• A class L of distinguished formulae of L called laws. Typically, these may
express the ‘physical laws’ postulated by the theory. However, they may
also include any necessary axioms for the ‘mathematical’ notions that
are involved in the theory. Once again, we do not need to distinguish
formally between physical and mathematical laws here: we are concerned
only with the totality of assumptions that form the basis of the theory.
We sometimes need to consider infinite classes of laws since certain laws
are given schematically: e.g. we might wish to include φ ∨ ¬φ as a law
for every formula φ. We may imagine that all the laws are known to and
believed by our predictive demon.

• Some sets of general formulae, called surveyable sets, such that each sur-
veyable set is conjoinable and disjoinable, and every finite set is surveyable.
The intuition is that if S is designated as surveyable and the demon can

24Even in this highly idealized scenario, there will be plenty of interesting questions to
discuss. In the sequel paper we will briefly touch on alternative scenarios in which the demon
behaves somewhat more like an agent within the physical universe itself.
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see each formula φ of S to be true, then it can see the truth of all of these
formulae at once, and can hence see the conjunction

∧
S to be true.

• A consequence relation S ` φ between sets of propositions and proposi-
tions, capturing some notion of logical entailment. We require ` to have
at least the following closure properties:

– if φ ∈ S then S ` φ;

– if S ` φ and S v T then T ` φ;

– if S ` φ for each φ ∈ T and T ` ψ, then S ` ψ;

– if S is conjoinable [resp. disjoinable] and φ ∈ S, then {
∧
S} ` φ [resp.

{φ} `
∨
S];

– if S is surveyable then: S `
∧
S, and if T ∪ {φ} ` ψ for all φ ∈ S

then T ∪ {
∨
S} ` ψ;

– ` is closed under the usual (intuitionistic) inference rules for the
connectives ⇒,∀,∃ (if these are present).

If A is a class of propositions, we will for convenience write A ` φ to mean
S ` φ for some S ⊆ A.

A further word about the status of sets of formulae. As we have mentioned
these are not themselves entities that the demon knows about (except in the
weak sense that it must be able to form the corresponding formulae) — rather,
they are our way of describing what the demon can do. For us, however, these
sets have the status of entities. Thus, in order to discuss what the demon can and
cannot see, we may need to suppose that we ourselves can see a little more than
the demon can. (Note also the third clause above, where we implicitly assume
that T is surveyable to us, though not necessarily to the demon.) This is a
rather common situation in metamathematical studies. That said, we usually
will not need to suppose we can see much more than the demon — in fact, our
concept of a set can be left rather vague, and only needs to be strong enough
to support whatever we want to use it for. We do not ourselves need to assume
a full-blown Platonic universe of sets in order to discuss a demon with only
modest powers of surveillance.

We should comment briefly on the difference between the formulae ∀x :
σ.φ(x) and

∧
x̌:σ φ(x̌). The former will typically be proved in the usual mathe-

matical way, that is, by (finitary) reasoning involving a hypothetical ‘arbitrary’
element x. This does not in itself involve an ability to ‘survey’ the type σ, but it
does require that we believe in the type σ in order to parameterize our reasoning
by an arbitrary element of it. By contrast, a surveyable conjunction is ‘proved’
by proving all the conjuncts separately — this is typically an infinitary princi-
ple, but an advantage is that we are not so strongly committed to the presence
of the type σ in the theory. Thus, if each conjunct φ(x̌) separately is equivalent
to some ψx that makes no reference to σ, we could write

∧
x:σ ψx, where σ is

now treated as a meta-level type. Finally, a non-surveyable conjunction can
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typically not be proved by either means, though the individual conjuncts can
be inferred from it.

When considering logical determinism, we will normally take ` to be a syn-
tactically defined entailment relation, generated e.g. by certain inference rules
which we are free to specify. However, we may also be interested (e.g. for
metaphysical determinism) in semantic notions of entailment, depending for
instance on Platonic notions of truth for the natural numbers or other math-
ematical structures. Such notions can typically be captured in our framework
by postulating sufficiently many surveyable sets (this of course relies on the
availability at the meta-level of the notions of truth in question).

The following examples illustrate typical uses of surveyable sets. Suppose T
is a theory containing the type ω of natural numbers, with constants 0, 1, 2, . . ..
By a formula context φ[− : ω] we mean, informally, a formula with zero or more
occurrences of a ‘blank’ of type ω; by plugging a constant ň into these blanks
we may obtain an ordinary formula φ[n].25 We may say T is a weak ω-theory
if for each formula context φ[− : ω], the set Sφ = {φ[0], φ[1], . . .} is surveyable.
Thus, for instance, if T contains the language and inference rules of first order
arithmetic, a weak ω-demon will be able to see all classically true statements of
first order arithmetic.

We may also say T is a strong ω-theory if it satisfies the following ‘collection
principle’: Given any set S and any formula context φ[−1 : σ1, . . . ,−r : σr,− : n]
such that for any constant ň : ω there is some choice of constants b̌1, . . . , b̌r such
that S ` φ[b̌1, . . . , b̌r, ň], there is a surveyable set T such that

• each ψ ∈ T has the form φ[b̌1, . . . , b̌r, ň],

• S ` ψ for each ψ ∈ T

• for each ~n : ω we have φ[b̌1, . . . , b̌r, ň] ∈ T for some choice of the b̌i.26

Intuitively, whereas a weak ω-demon can verify an ω-indexed family of facts
given to it by means of a formula, a strong ω-demon has the power to ‘notice’
many infinite families of facts for itself. It is easy to see that any strong ω-demon
is also a weak ω-demon. Analogous survey principles can be defined for other
types besides ω.

6.3 Models for theories

The central problem we wish to study (for various theories) is roughly as follows:
given a class A of atomic propositions describing the state of a physical system,
which statements φ can the demon infer, in the sense that S ∪ L ` φ for some
S ⊆ A?

Some further definitions are useful in order to clarify which classes A we
regard as reasonable here. First, we suppose we have identified a class R of

25In the case of a theory with variables, a formula φ with a free variable n could play more
or less the same role.

26Note that for a given ň there may be many possible choices of the b̌i here — this is what
makes our condition a ‘collection principle’ rather than a ‘choice principle’.
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propositions that are relevant to the initial state of the system (or any other
‘given’ conditions). Typically, this might include all atomic propositions that
describe conditions at time 0. The idea is that we do not expect to be able to
deduce any such facts that are not given to us already, since we suppose A to be
a complete description of the system with respect to such facts. Moreover, if we
are able to deduce some disjunction of such facts, it is reasonable to expect that
we can directly observe at least one of the facts. This motivates the following
definitions:

• A relevance class is a class R of formulae closed under arbitrary (existing)
disjunctions and surveyable conjunctions. (Intuitively, it is natural to
extend our notion of ‘observable fact’ in this way, since the facts we can
infer will always be closed under these operations.)

• A model for our theory T relative to R is a class A of atomic propositions27

satisfying the following plenitude condition:

If T ⊆ R is disjoinable and A ∪ L `
∨
T , then there is some

φ ∈ T such that A ∪ L ` φ.

The plenitude condition is not itself something the demon needs to know about
or use in its deductions; rather, it is a meta-law we use to ensure that the class
A of given facts is compatible with the theory, given that it is supposed to be
‘complete’ for formulae in R. Note that by specializing the condition to the case
T = ∅, we obtain the consistency condition A ∪ L 6` ⊥; this sets that the given
facts themselves conform to any constraints imposed by the laws.

We can now see that even non-surveyable conjunctions and disjunctions can
be useful. For instance, a theory might contain a law of the form

∧
x̌(

∨
y̌ φ[x̌, y̌]),

where the conjunction and all the disjunctions are non-surveyable, and each
φ[x̌, y̌] ∈ R. The presence of such a law imposes a genuine constraint on models:
for any particular x̌ we can infer

∨
y̌ φ[x̌, y̌], and the plenitude condition then

ensures that some particular φ[x̌, y̌] is inferrable. By contrast, it does not seem
that a law of the form

∧
x̌(

∨
y̌(

∧
ž φ[x̌, y̌, ž])) succeeds in saying anything if the

ž-conjunctions are not surveyable. (The situation is reminiscent of the rather
special status of Π0

2 sentences in logic.)

7 Representing a single continuous parameter

As a first example of the use of the above framework, let us consider some
theories which seek merely to express the value of a single continuous parameter
— for the sake of definiteness, the position of a stationary single point particle in
a one-dimensional space. Even for this utterly trivial scenario, some significant
issues arise, and we shall here discuss two kinds of representation in particular.
Of course, this is not yet a test case for notions of determinism, since there is

27For the avoidance of doubt, this is a rather more syntactic notion of model than is usually
considered in model theory!
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nothing to ‘predict’; however, we shall see in the sequel paper that in less trivial
scenarios the choice between these representations can indeed make a difference
as regards determinism.

There are really two aspects to the problem: that of characterizing the
‘background space’ (if we decide to assume there is such a thing), and that of
characterizing the position of the particle within it. Let us first try to capture
some aspects of the background space conceived as a set of points.28

7.1 A point-based view of the line

The theory described here will be called the background theory B. We will use
a language containing a type Positions, plus constants x̌ : Positions intended
to represent points (that is, potential positions of the particle). Let us suppose
that these constants constitute a set, which we also denote by Positions. For
convenience we fix on two distinguished constants 0̂, 1̂ : Positions in order to
fix an origin, scale and choice of positive direction for our line. We now take a
relation Distinct(x, x′) for saying that two positions are not the same.29

More generally, we will want a model to contain enough facts to determine
the geometry of the line. We are not too concerned here about minimality of
presentation, so let us be quite generous in our choice of relations. Consider the
language of arithmetical expressions t given by

t ::= x | 0̂ | 1̂ | t0 + t1 | −t0 | t0 ∗ t1 | q.t0
where x ranges over variables of type Positions and q ranges over all rationals,
considered here as scalar multipliers. (Note that the type of rationals is not itself
present in our theory.) For each pair t, u of such expressions with position vari-
ables among x1, . . . , xr, we give ourselves a relation symbol Lesst,u(x1, . . . , xr),
which for readability we usually denote by ‘t < u’. We will always consider our
relevance class R to include all atomic propositions constructed from such rela-
tions — intuitively, we take it as read that all relationships of this kind between
points should be apparent to the demon.

As laws for the theory, we may for convenience take all true formulae of the
form ∧

x̌1,...,x̌r

∨
y̌1,...,y̌s

φ(x̌1, . . . , y̌s)

where φ is some propositional combination of formulae t < u over x1, . . . , ys

(we allow ⊥ to appear in such formulae). By ‘true’ here we mean ‘true in the
standard theory of the real numbers’; note that the set of formulae in question
is decidable. We also take the two Archimedean laws:∧

x̌

∨
n∈Z

x < n.1̂
∧
x̌,y̌

(Distinct(x̌, y̌) ⇒
∨
n∈Z

1̂ < n.(x− y))

28That is, we here treat all the points in space as ‘existing’ in their own right, independently
of whether they are occupied by the particle or not. This attitude towards the background
space is sometimes referred to as manifold substantivalism, e.g. in [22].

29We here follow the intuitionistic treatment of the real numbers in treating distinctness
rather than equality of points as a positive property.
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(Note that these provide examples of disjunctions that are not parameterized
by a type of the theory.) Finally, we have a law∧

x̌,y̌

(Distinct(x̌, y̌) ⇔ x < y ∨ y < x)

which in principle allows us to dispense with Distinct .
All this is now enough to ensure that, in any model, each x̌ ∈ Positions can

be uniquely correlated (at the meta-level) with an ordinary real number ρx̌. For
this purpose, the disjunctions in the Archimedean laws need not be surveyable;
however, for most other purposes it is useful to take them to be so.

Note that ρ may map different constants to the same real number. This
has nothing to do with the idea of infinitesimals, which are ruled out by the
Archimedean laws, but simply arises from the fact that it is possible to have
many names for the same point. This is harmless since, in this case, the names
will satisfy precisely the same logical properties. A much deeper issue is that
the mapping ρ need not be surjective — this in effect impinges on the question
of what we mean by ‘the’ real numbers. We will examine this issue in detail in
Section 8.

A variant B= of the above theory may be obtained by also adding relations
Eqt,u(x1, . . . , xr), written for readability as ‘t = u’, and allowing such formulae
to appear in the set of true formulae we take as laws. In this case, we say our
theory describes a space with decidable equality. For a weak ω-demon, this is
in effect true anyway, since we may regard ‘t = u’ as merely an abbreviation
for the surveyable conjunction

∧
n∈Z n.(t− u) < 1̂. However, if we do not wish

to assume ω-surveyability, it is of interest to see whether decidable equality on
points is required for whatever we wish to prove.

7.2 The position of a particle

We now turn to the question of representing the position of the particle itself.
We consider two approaches, which differ in whether or not a point position can
be captured by a single fact. Perhaps surprisingly, this is somewhat orthogonal
to the issue of decidable equality for the points themselves.

In the first approach (which we take to correspond to the common ‘naive’
conception), we simply introduce a relation Is At(x) which allows us to say that
the particle is precisely at a given point. We include all the resulting atomic
propositions in the class of relevant facts. The ‘physical laws’ for the system
may be taken to be:

•
∨

x̌,x̌′(Is At(x̌) ∧ Is At(x̌′) ∧Distinct(x̌, x̌′)) ⇒ ⊥

•
∨

x̌ Is At(x̌)

(For most purposes, the disjunction need not be surveyable.) A model of this
theory will then essentially be a model for B together with a chosen position.
The crucial point here is that the fact Is At(x̌) is considered to be ontologically
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real — thus, the position of the particle is in effect visible to our demon to
infinite precision at a single glance.

The second approach is what we shall call an interval-based approach to
positions. This may be motivated by more epistemic considerations. A human
agent, if confronted with a point particle, could not ascertain its position exactly,
but could at best make a succession of ever more precise measurements to within
certain diminishing error bounds. We may therefore, by analogy, imagine a
demon who is likewise able to observe the position of the particle only by means
of such measurements, albeit to any required finite precision. Of course, we
might still suppose that the particle ‘really’ had an exact, determinate point
position which the demon’s observations were approximating; or we might go
a step further and take the view that the supposed unknowable ‘real position’
was a chimera, and that this ‘nest’ of individually observable facts was all there
was.

We may work with the same background theory B, and take a relation
Is In(x̌, y̌), informally meaning that the particle is somewhere in the open in-
terval (x, y) (which we take to be empty if x 6< y). We work with open intervals
since these intuitively correspond to affirmable properties: if the particle is in
(x, y) then a sufficiently precise observation will be able to discover this fact
(see [89]). We may now give ourselves the following laws:

• Is In(x̌, y̌) ⇒ x̌ < y̌

• Is In(x̌, y̌) ∧ x̌′ < x̌ ∧ y̌ < y̌′ ⇒ Is In(x̌′, y̌′)

• Is In(x̌, y̌) ∧ Is In(x̌′, y̌′) ⇒ Is In(x̌, y̌′)

Thus far, our theory allows for the possibility that the particle’s position is
only determined to within some interval. Indeed, this might be useful for some
kinds of physical theories in which the value of some parameter is simply not
ontologically determined to arbitrary precision — that is, the universe simply
does not bother to make up its mind exactly what the value is.30 Suppose,
however, that we want to enforce the property that the position is determined
to within arbitrarily small intervals. This can be achieved e.g. by the following
laws:

•
∨

n∈Z Is In(−n.1̂, n.1̂)

• Is In(x̌, y̌) ∧ x̌ < x̌′ < y̌′ < y̌ ⇒ Is In(x̌, y̌′) ∨ Is In(x̌′, y̌)

In any model for the theory, it will now be the case that we can (classically)
identify a unique real number specifying the position of the particle. However,
within the theory itself we will not in general be able to infer any single fact

30This may sound very reminiscent of the status of parameters such as position and mo-
mentum in quantum mechanics, but that is not quite the kind of underdetermination we have
in mind here. Even discussions of quantum mechanics tend to be framed in terms of some
underlying ontological reality (e.g. the wave function) involving determinate real or complex
parameters. Here we have in mind a theory in which the bottom level of ontology is one of
intervals.
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that specifies the position precisely. This will only be possible if enough sets
of converging intervals are surveyable. Even for a weak ω-demon this may not
be the case, since we cannot specify the facts we wish to conjoin uniformly by
means of a single formula. However, to a strong ω-demon, the two approaches
to specifying the particle position are essentially equivalent.

Once we have formulated this approach, it is very tempting to abandon the
background space altogether and adopt a more ‘relationalist’ approach in which
only the properties of the particle ‘exist’. Thus, in place of the binary predicate
Is In we might take a family of nullary predicates (i.e. proposition symbols)
Is Inx,y parameterized at the meta-level, satisfying laws precisely analogous to
those above.31 We did not do this to start with, as we wanted to clarify the in-
dependence between decidable equality and determinate position. However, the
more consistently ‘pointless’ perspective will be developed further in Part II.32

The point- and interval-based views of particle position represent two dif-
ferent responses to the question: ‘What information are we given when we are
given a particle with position?’. We should briefly mention here that there is
yet a third approach, and it is the one commonly taken in many schools of
constructive mathematics and computable analysis (e.g. [9, 90]). Here, a point
on a line may be given by a Cauchy sequence of certain ‘known’ points (e.g.
the rational ones) with some known rate of convergence. This approach is, in a
sense, intermediate between the two discussed above, since given such a Cauchy
sequence, it is within the competence of a weak ω-demon to infer a single fact
expressing the precise position. However, we tend to favour the interval view to
the Cauchy sequence one for the purpose of our investigations, for the reason
that a single point may be approached by many different Cauchy sequences, so
that a Cauchy sequence embodies not just the position of the point but also
a ‘choice of representation’. Thus, if we model the position by a Cauchy se-
quence, we are providing more information than would appear to be present in
the physical situation (unless some exotic physical ontology is adopted). The
interval view seems closer to an intuitive model of what the demon might ‘see’
as he looks at the particle.33

Even a fourth and fifth possibility might be mentioned as curiosities. For
instance, a position might be specified by an oracle to which one feeds some af-
firmable property one wishes to test (specified by e.g. an open rational interval).
If the oracle manages to affirm the observation, it will return ‘yes’; otherwise, it
will keep on trying forever, and one will not have the opportunity to ask further
questions. (This is the sort of thing that could happen if the demon is following
instructions in a purely sequential programming language.) This severely limits
the kinds of computations that one can perform. The fifth possibility is that

31Of course, we will lose almost all of the geometry from the theory if we do this, and will
have to incorporate it in some other way.

32In the meantime, the reader may wish to consult [6, 5, 10] to gain an idea of where we
are heading.

33Actually, the interval and sequence approaches turn out to be very closely related, and
it can be shown that in many contexts the difference does not matter (see [5, 80]). There
are, however, some situations in which it does matter: see, for example, the discussion of the
dichotomy principle in Section 8.5 below.

33



the position is specified by a finite ‘program’ that can compute approximations
to the desired point as closely as desired. This, again, gives us much more
information than we would normally consider to be physically present, and is
also limited in that it can only represent the ‘computable’ points. We mention
these possibilities not as serious candidates for consideration here, but simply
to emphasize the fact that the way a continuous parameter is given to us makes
a big difference to what we are able to do with it.

8 Derivatives and the time continuum

8.1 A simple Newtonian problem

We are now at last in a position to investigate the question of determinism
for some very simple physical theories within our framework, with a view to
scrutinizing the implicit physical and metamathematical assumptions. We shall
start with a childishly simple problem: that of the motion of a single point
particle of mass 1 in one dimension under a constant force F , according to
Newton’s second law of motion.

We will try to formalize the ‘classical’ conception of this scenario. The
state of the system at any instant in time will be given by two parameters:
the position and momentum of the particle. There are thus three ‘continua’
involved: position, momentum and time. We will model each of these in the
classical point-based way:34 that is, we postulate the background theory B for
the type Positions exactly as in Section 7.1, and similarly for Momenta and
Times. We use x, p, t as variables ranging over Positions, Momenta and Times
respectively, and x̌, p̌, ť as metavariables ranging over the constants of these
types. We also take relations PosAtTime(t, x) and MomAtTime(t, p) to express
the (exact) state of the particle at time t, and give us laws analogous to those
for Is At to say that the particle has a unique position and momentum at each
time t.

Next, we may take 0̂ : Times as our starting time, and stipulate that our rel-
evance class P consists of all atomic propositions of the form PosAtTime(0̂, x̌)
and MomAtTime(0̂, p̌), together with all atomic propositions relating to the ge-
ometry of our three continua. A model A for our theory w.r.t. P will thus consist
of two facts PosAtTime(0̂, x0) and MomAtTime(0̂, p0) giving the initial state
of the system, together with enough facts to provide models of the background
theory for each of the continua.

Now everything is in place except the laws that determine the actual dy-
namics of the system. Of course, the solution we are hoping to arrive at (in

34We will start by considering a point-based approach since the concepts involved are already
familiar in this setting. An interval-based treatment is also interesting, but requires the
development of some further ideas, e.g. because the treatment of differentiation is not entirely
straightforward. We will comment briefly on the interval-based approach at the end of this
section, and will study it in much more detail in the sequel paper.
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traditional notation) is

x(t) = x0 + p0t+ Ft2/2, p(t) = p0 + Ft

More precisely, for any triple (ť, x̌, p̌) satisfying these relations, we might hope
to derive

A ∪ L ` PosAtTime(ť, x̌) ∧MomAtTime(ť, p̌)

where L consists of all the laws of our theory. It would be perfectly possible to
achieve this by simply adopting suitable translations of the above equations as
‘laws’ of our theory — this would be tantamount to postulating some kind of
unexplained or ‘unmediated’ connection between the state at time 0̂ and that
at time ť. However, it is more in the spirit of traditional physics (and certainly
more Laplacian in spirit) to try show how this global behaviour arises from
local laws and properties, and this is what Newton’s second law seeks to do. In
traditional notation, the dynamical laws may be written

ẋ(t) = p(t), ṗ(t) = F

(where a dot denotes differentiation with respect to time). With the affine
geometry of our various continua in place, we may express the above laws in
our framework in Weierstrass style, e.g. as follows (helping ourselves to a little
syntactic sugar):

∀t.∀ε > 0.∃δ > 0.∀t′. |t′ − t| < δ ⇒ |(p(t′)− p(t))− F (t′ − t)| < ε|t′ − t|

Here we straightaway encounter a dilemma: how do we treat the quantifiers in
such a formula? For each of the quantifiers independently, we in principle have
the following options (listed here roughly in decreasing order of metaphysical
commitment):

1. Translate the quantifier by a corresponding surveyable conjunction or dis-
junction in our system. This would succeed in capturing the naive ‘classi-
cal’ meaning of the quantifier, at the price of some surveyability assump-
tions.

2. Translate the quantifier by a non-surveyable conjunction or disjunction.
This weakens the required metaphysical commitment, but may result in
a formula from which less can be deduced. For example, if this choice is
adopted for all the quantifiers, it seems that the formula does not succeed
in saying anything at all (see the discussion at the end of Section 6.3).

3. Treat the quantifier as an object-level syntactic construct of the theory,
equipping it with suitable laws, such as the usual intuitionistic rules for ∀
and ∃, and try to find some way of assigning a meaning to the quantifier
other than by appealing to a survey principle. In particular, one might
propose some kind of constructive reading of ∃δ, saying that we have some
way of finding a δ. For example, we might postulate that some kind of
‘modulus information’ was actually present in the physical state of the
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system — a rather bizarre proposal from a physical point of view.35 More
generally, any ‘way’ of finding a δ would seem to depend on importing
some further kind of ontological or metaphysical assumption.

4. Treat the quantifier as in 3, but do not attempt to assign any meaning
to it. This would correspond to a formalist or instrumentalist attitude,
which treats the theory as an uninterpreted piece of syntax that happens
to yield the right answers under certain formal manipulations.

There is not much to say about option 4 here — it can be made to work, but the
author’s strong preference is to hope that a more intelligible and conceptually
satisfying explanation of physics might be forthcoming. We regard 3 as a some-
what exotic proposal, taking us well beyond the classical Newtonian conception
— we will not pursue it here, although something of a similar flavour will resur-
face when we consider an interval-based approach. This leaves us with 1 and 2.
In the case of the outer quantifiers ∀t,∀ε, it makes no difference to provability
which we choose, so for economy let us take these to be non-surveyable. As we
have remarked, we then need to treat at least one of ∃δ and ∀t′ as surveyable.
Here, it is natural to ask what is needed in order to be able to apply the theory.
To anticipate what we shall discover below, it would seem to be necessary and
sufficient to treat the ∃δ quantification as surveyable, and this is the choice we
provisionally adopt.

In fact, we do not require the full strength of surveyability over all possible
time lengths δ, but can get away with just a surveyable quantification over ω,
of a kind that is acceptable to a weak ω-demon:∧

t

∧
ε>0

∨
n

∧
t′

|t′ − t| < 2−n ⇒ |p(t′)− p(t)− F (t′ − t)| < ε|t′ − t|

(Technically, we do not even need to postulate a type ω here, only the dis-
joinability and surveyability of a certain family of formulae.) The ‘δ-version’
of the above statement, if desired, can then be deduced using a version of the
Archimedean axiom (see Section 7.1) in which the disjunction over n is taken
to be surveyable.

8.2 Some problems for logical determinism

We may now ask: in what sense is this theory deterministic? Here it is not the
computability of the intended solution that is in doubt, nor the fact that this
solution does indeed satisfy the above laws, but rather the question of unique-
ness. Are our laws sufficient to ensure that the intended solution is the only
solution (metaphysical determinism)? More particularly, can the values of x and
p at a given time ť be inferred from x0, p0 in the theory as we have presented

35This particular proposal also seems to involve a kind of prescience: the state can only
‘know’ that a particular δ is suitable for a given t and ε if it is sure that the force is not going
to increase wildly at time t + (δ/2). But perhaps there are other versions of the idea that do
not suffer from this problem.

36



it (logical determinism)? For the sake of concreteness, we will concentrate here
on the latter question, although many of the same issues apply to the former
question as well.

As things stand, the answer is ‘not always’, since there is nothing to say
that Times constitutes a complete continuum. The problem arises even for
the ‘trivial’ case where x0 = 0̂, p0 = 0̂ and ť = 1̂. For instance, a perfectly
reasonable model can be given in which all points in time correspond to rational
numbers; one may then consider the set of all facts arising from the trajectory
given by

x(t) =
{

0 if t < 1/
√

2
1 if t > 1/

√
2

p(t) = 0

This satisfies all the laws of the theory — in particular the dynamical laws
hold at all points in time, since the ‘time’ at which the discontinuity occurs
does not exist! Of course, this particular trajectory can easily be excluded by
postulating further properties of Times (e.g. that it is algebraically closed); but
in fact, essentially the same problem will arise for any set of laws for Times
that is framed in terms of first-order logic. (We have in mind attempts to add
in some countable set of ‘completeness laws’ for Times, none of which involve
the relations PosAtTime and MomAtTime.) Indeed, such a set of laws will
always have a model in which the set of instants in time is countable, and
by replacing 1/

√
2 by any classical real not represented by an instant in time,

one may construct a complete model for the whole theory as before. (This
shows, incidentally, that we cannot infer PosAtTime(1̂, 0̂) no matter how many
surveyable sets are admitted.)

As we shall see below, the problem can be overcome by postulating certain
higher-order entities of an intuitively ‘non-physical’ nature, and (more essen-
tially) by adding completeness laws which do involve the state of the particle.
Let us suppose, however, that we are reluctant to do either of these things before
we have exhausted all other options. Let us see what else we can try.

Firstly, the following objection to our argument might be raised. Recall
that our relevance class includes all atomic propositions that pertain to the
geometry of Times; thus, any model A will have to contain, among other things,
a complete description of this geometry via atomic facts. (Informally, the demon
is assumed to know exactly what the future part of the time-line is going to
consist of before it arrives.) Granted that there are some models that describe
time-lines with gaps; but we are only really interested in what can be inferred
from models A that describe the time continuum as she actually is. Suppose that
A includes a point-by-point description of a time-line that is in fact complete,
whether or not the demon has any way of seeing this or even of expressing the
concept of completeness. Can we then infer PosAtTime(1̂, 0̂) from A ∪ L?

Surprisingly, the answer appears still to be no. It is fairly easy to see this if
all surveyable sets are at most countable: a ‘proof’ of PosAtTime(1̂, 0̂) will then
have the form of a well-founded countably branching tree, and can therefore
mention only countably many of the geometrical facts. We may then construct
a countable submodel validating all these facts; re-running the above argument
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then leads to a contradiction. For the case where arbitrary surveyable sets are
admitted, it seems likely that a similar conclusion may be proved by means of a
set-theoretic reflection argument, though we have not checked the details. The
reader will get a feel for the problem by trying to construct, relative to the above
scenario, a derivation of A ∪ L ` PosAtTime(ť, 0̂) for any time ť later than 0̌;
there appears to be a ‘Zeno-like’ problem even in getting off the starting block.

8.3 Locality and physical laws

One might also wonder whether the problem could be fixed simply by varying
or strengthening our statements of the dynamical laws in some way. However, it
is easy to see that exactly the same problems will beset any proposed dynamical
laws which admit the intended solutions and are ‘local’ in character — that is,
laws of the form ∀t. L(t), where L(t) is a local predicate. By a local predicate we
informally mean a formula L(t) such that for any time ť and any two possible
histories (i.e. trajectories) h, h′ that agree on some ε-neighbourhood of ť, L(ť)
holds for h iff it holds for h′. We may capture a rather mild version of this notion
without reference to possible histories as follows: L(t) is a local predicate, if
whenever A,A′ are both complete models for the theory without the dynamical
laws, containing exactly the same geometrical facts, and such that for all ť′ in
some ε-neighbourhood of ť we have

PosAtTime(ť′, x̌) ∈ A iff PosAtTime(ť′, x̌) ∈ A′,
MomAtTime(ť′, p̌) ∈ A iff MomAtTime(ť′, p̌) ∈ A′

we have A ∪ {L(ť)} ` ⊥ iff A′ ∪ {L(ť)} ` ⊥. The point is that the pathological
trajectories involving jumps that were used in the above arguments are locally
just fine — that is, each point in time has some neighbourhood in which these
trajectories agree with some globally constant trajectory which we do wish to
allow. Thus, no set of local dynamical laws can rule out the jumping trajectories
without ruling out these constant trajectories too.

An example of a possible set of non-local laws for this situation was men-
tioned earlier: the laws that simply say the particle follows the expected tra-
jectory. However, we contend that any non-local theory can hardly be called a
formalization of the original Newtonian theory — if we accept non-locality, then
we are really considering a physical theory of a very different kind. Indeed, the
idea that the laws of physics ought to be local in character (with respect to both
time and space) seems to us to be an important ingredient of the informal Lapla-
cian idea of a mechanistic universe. Certainly, the discovery of (experimentally
confirmed) non-local phenomena in quantum theory was widely considered to
be deeply shocking, and represented a profound shift in our understanding of
the kind of universe we are in.

It is tempting to think that the jumping trajectories could be excluded by
postulating some upper bound on the speed at which our particle can move
(such as the ‘speed of light’). Taken literally, this is a fallacy: there is no time
when the speed of the particle is anything exceptional. However, one might still
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ask whether something like the following (mildly non-local) Lipschitz condition
might suffice (here λ > 0 is some constant specified by the theory):

PosAtTime(t, x) ∧ PosAtTime(t′, x′) ⇒ |x′ − x| ≤ λ|t′ − t|

This condition expresses a particularly strong kind of uniform continuity. How-
ever, it turns out that not even such a condition as this will suffice. In fact,
given any dense countable subset D of the classical reals and any λ > 0, one
may construct a function f : D → R which is locally constant and satisfies
the above Lipschitz condition, but is not globally constant. We have in mind
a ‘Devil’s staircase’ construction, similar in flavour to the construction of the
Cantor space.36 This example would seem to suggest that quite a strong kind
of non-locality is required to rule out the jumping trajectories.

8.4 How much completeness do we need?

Suppose that at this point we concede that there is a case for admitting some
non-physical, e.g. ‘set-theoretic’ entities into our theory. For instance, in classi-
cal real analysis one assumes a least upper bound axiom: every bounded subset
of R has a least upper bound. For this, we need to admit the notion of an
arbitrary ‘subset of R’ into our discourse. In fact this is overkill: it is sufficient,
and more ontologically economical, to admit the notion of a countable sequence
N → R, and postulate that every Cauchy sequence has a limit (see [28]; cf. the
discussion of Section 5.1). The concept of ‘sequence’ here is still a second-order
one, but of a milder kind. Let us now see how these ideas may be deployed in
our setting.

First, since in Newtonian physics one typically conceives time and space
continua as an ‘inert backdrop’ against which events take place, it is natural
to try to give a self-contained description of the nature of the time continuum
without reference to the state of the particle. For instance, we might postulate
a type P(Times) of subsets of Times, and perhaps other types as well, together
with certain relations and laws (including a least upper bound axiom for Times),
but without any use of the relations PosAtTime and MomAtTime. Perhaps
surprisingly, such an approach is still bound to fail: despite the seemingly higher-
order character of our system, and despite the fact that it may even be possible
to prove the existence of ‘uncountable sets’ within the system, the whole theory
still has a countable model,37 and our earlier ‘jumping’ arguments can still be
applied.

The reader may be getting worried by this point, since after all, in classical
mathematics it is possible to prove that the differential equations in question
have unique solutions subject to the initial conditions. Indeed, by directly trans-
lating this classical theory to the physical setting of Times, we do in fact obtain

36Superficially, at least, our construction uses the axiom of choice. However, we are here
only using this construction in a heuristic role, to argue that there is no hope of showing
logical determinism for the theory in question. For this, it suffices to assume that the required
metatheory is consistent — and it would be clutching at straws to hope that it is not!

37This is often known as the Skolem paradox.
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a formulation for which logical determinism holds. So what is the catch? It
is that this classical approach, when analysed, turns out to depend crucially
on the fact that points in time may be specified in terms of the trajectories
that are supposed to take place within time! Thus, a ‘standalone’ approach to
characterizing the points of the time continuum will not do — we are driven
to accept that our theory of the content of this continuum must be (directly or
indirectly) intertwined with our theory of the events that might occur in it. The
idea of this kind of interdependence might not seem so unfamiliar to a modern
relativity theorist, but it is perhaps surprising that we seem to be driven to this
idea even to express the naive Newtonian conception precisely.

To emphasize this idea yet further, one may consider the effect of imposing
(possibly global) a priori constraints on the class of permissible trajectories. The
stronger the constraints, the less completeness we need to assume for Times
in order to make logical determinism work. For example, if the trajectory is
assumed to be given by a polynomial in t, the density assumptions on Times
already suffice. If the trajectory is merely assumed to be computable, it suffices
to suppose that Times contains points for all computable reals. If one just
assumes the trajectory is continuous (a local condition), a stronger completeness
principle for Times becomes necessary.

In the classical conception, the implicit interdependence between times and
trajectories is not generally noticed, precisely because it is naturally mediated
by the postulated ‘set-theoretic’ entities to which both sides are independently
related. For example, a sequence may be constructed from a trajectory in
various ways, and a point in time constructed from a sequence by taking its
limit.

We will now outline what we consider to be a natural formalization of this
common classical picture, using the minimum of ontology needed to do this
without distorting the informal picture too much. Even within these constraints,
some interesting choices arise, as we shall see.

8.5 A classical approach

Our approach will be inspired by the existence of a simple constructive proof
of the following result: if f : [0, 1] → R is continuous and differentiable with
zero derivative everywhere, then f is constant. It might come as a mild surprise
that this is possible, since theorems of constructive analysis (as developed e.g.
in [9]) usually require the stronger hypothesis of uniform continuity on every
compact interval (a non-local condition).38 Let us sketch how the proof goes (a
more detailed presentation is given in [1, Section 8.2]). We will content ourselves
with deriving a contradiction from the hypothesis that f(0) = 0 and f(1) = 1.
We will construct a sequence of closed intervals [x0, y0], [x1, y1], . . . such that, for
each i we have yi − xi = 2−i; f(yi)− f(xi) > 2i+1; and [xi+1, yi+1] is either the

38In the conference version of this paper [55], we claimed, erroneously, that the result in
question was not constructively provable, and that this could be seen by means of a recursive
counterexample based on the Kleene tree (or singular coverings). Regrettably, the construction
we then had in mind was fatally flawed.
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left or right half of [xi, yi]. We start by setting [x0, y0] = [0, 1]. Given [xi, yi] as
above, let εi = 2i(f(yi)−f(xi))−1/2, let zi = (xi +yi)/2, and compute f(zi) to
within 2−i−2εi. By this stage, either we know that f(zi)− f(xi) > 2i+2, or we
know that f(yi)− f(zi) > 2i+2. We may therefore set [xi+1, yi+1] to be [xi, zi]
in the first case, and [zi, yi] otherwise. Now let r be the real number determined
by this nest of intervals. It is easy to see that f cannot have zero derivative at
r, since there are r′ arbitrarily close to r with f(r′)− f(r) > (r′ − r)/2.

Our theory is, in effect, designed to be the minimal natural theory that
suffices to support this proof. In effect, our theory simply requires that the
time continuum is just as complete as it needs to be to deal with the possible
histories that can arise. We will not give full details of our theory, but merely
point out the principles of interest, and will freely use sugared notation where
it makes the ideas clearer.

We will consider that we have achieved our goal if, in the case F = 0, given
a model in which p(0) = p0, we can deduce Distinct(p(1), p0)) ⇒ ⊥. If we wish
to go on to infer that p(1) = p0 (i.e. MomAtTime(1̌, p0)), we require dedicable
equality for the space Momenta (see Section ??).

The first interesting principle we require is the following dichotomy principle
for Momenta:

p < q ⇒ (x > p ∨ x < q)

There is no intrinsic problem understanding this ‘classically’, in that the formula
x > p ∨ x < q already has meaning as a surveyable disjunction of affirmable
facts. However, the assumptions we will need to adopt below would be weakened
if the principle could be invested with constructive content which gave us a way
of picking an appropriate disjunct for given p, q, x. The principle is typically
accepted in constructive approaches to analysis in which reals are presented
in terms of more intensional objects such as Cauchy sequences (as in [9]) or
recursive indices (as in [1]). However, the principle seems less innocuous in
our present setting, in which x is given to us simply as a ‘point in momentum
space’, since any choice operation for the disjunction in question will necessarily
be discontinuous.39 (In effect, we are led to ask whether we should endow
our demon with the ability to arbitrate in a ‘race’ between two observation
processes, perhaps taking place in the demon’s ‘virtual time’.) From a formal
point of view, it will be enough if we can define predicates ψp[p, q, x], ψq[p, q, x]
such that we can derive

p < q ⇒ ((ψp ∧ x > p) ∨ (ψq ∧ x < q)) ∧ ¬(ψp ∧ ψq)

This is indeed possible if we have decidable equality for momenta, but if this
route is taken, our proof is relying on this fact in a very essential way.

Next, we see that in the proof above, a succession of disjunctive choices of
the above kind is assembled into an infinite sequence. To capture this, we may
postulate a ‘mathematical’ type InfSeq of infinite binary sequences over 0,1,

39The dichotomy principle fails in some models for constructive mathematics, such as the
realizability model over Scott’s Pω with the extensional real number object (see [5]). This
model will play an important role in our sequel paper.
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ranged over by g. We also use a type FinSeq of finite binary sequences, ranged
over by s, though this is of course mild by comparison. We will write e for the
empty finite sequence, s.0 and s.1 for the sequences obtained by appending a
single bit to s, and g |n for the finite sequence obtained as the first n bits of
g. The sequence formation principle we require may now be framed as follows
(subject to some qualifications which we are about to discuss).

φ(e) ∧ (∀s.φ(s) ⇒ φ(s.0) ∨ φ(s.1)) ⇒ (∃g.∀n.φ(g |n))

Of course, to conduct the above proof we only require this for a particular
formula φ(s), which says something about the momentum of the particle at the
endpoints of the time interval corresponding to s.

In fact, this is more or less the right formulation if we follow the classi-
cal treatment of the dichotomy principle — note that the subformula φ(s) ⇒
φ(s.0)∨φ(s.1) meshes with the simpler of the two dichotomy formulae above. In
this setting, the present formula expresses the principle of countable dependent
choice, interpreted classically. We regard this as a definitely non-constructive
and not even semi-constructive principle, since it asserts the existence of com-
pleted infinite objects which it does not give us any way to define.

Alternatively, we may follow the constructive interpretation of dichotomy,
which can be justified on semi-constructive grounds. For this, we need to replace
φ(s) ⇒ φ(s.0)∨φ(s.1) by one of the same shape as the more complex dichotomy
formula. Our formula now expresses a much more modest principle of unique
choice, of a kind that can be verified by a strong ω-demon.

Another issue concerns the quantifier ∃g. To express this via a surveyable
disjunction over InfSeq would certainly be overkill: since the premises of the
formula are supposed to give us the wherewithal to construct such a g, what
we really want our formula to say is that some particular g has the required
property. We can achieve this effect by Skolemizing the existential quantifier —
that is, by postulating a function which constructs a suitable g from values of
the free variables of φ(s) (excluding s itself). Of course, the Skolem function will
itself have to be described in terms of relations; the end result is that we replace
the quantifier ∃g by a unique-existential quantifier, for which no surveyability
properties are needed.

Finally, we come to the completeness axiom for Times itself. This says that
every infinite sequence is a binary representation for some actual point in time.
We will assume we have (a relation for) a function ζ : FinSeq → Times mapping
finite sequences to dyadic points in an obvious way.

∀f : InfSeq .∃t : Times.∀n. |t− ζ(f |n)| < 2−n

With this in place, we can now complete the proof, provided that in our state-
ment of differentiability the disjunction over n is surveyable (see Section 8.1).
We thus (at last) have a reasonable candidate for a logically deterministic for-
mulation of our Newtonian problem.

Let us now briefly return to the question of metaphysical determinism for
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our theory. By means of the above ideas, one can in fact prove an assertion

L ` PosAtTime(t0, x0) ∧ MomAtTime(t0, p0) ⇒
∀t : Times. PosAtTime(t, x0 + p0t+ Ft2/2)

and this by itself captures the essence of metaphysical determinism with no
reference to histories at all. (This is rather dependent on the fact that we can
give a complete logical description of the solution for this particular problem.)
We will thus obtain (MD) itself in any reasonable extension of the theory that
admits the type Histories. Moreover, the whole of the above discussion on what
is needed to yield (LD) carries over to (MD), so it would appear that the
necessary prerequisites for obtaining (LD) and (MD) are essentially the same.

8.6 Some remarks on indispensability

Having reached this point, it is natural to ask whether the ontological prerequi-
sites of the theory can be pruned down still further. This question clearly has
relevance to the indispensability arguments which we discussed in Section 5.1.

The author’s view is that, on the whole, this can only be done at the cost
of some artificiality and arbitrariness, and to the detriment of the explanatory
power of the theory. (To take an extreme case, we can eliminate all uses of
surveyability and all mathematical entities by the device we mentioned at the
outset: we adopt the theory that simply says that the particle’s trajectory
follows the expected formula.) As we noted, this is unsatisfying in that it does
not offer any kind of explanation of how or why this behaviour arises. Most
of the obvious ways of applying Occam’s razor to the above theory, we claim,
represent a step in this direction.

The prime candidate for elimination is the type of infinite sequences. One
can, in principle, short-circuit the reference to sequences by rolling together
the sequence formation law with the completeness law for Times, along the
following lines (here ζ(s), ξ(s) are the endpoints of the evident dyadic time
interval corresponding to s):

(φ(e) ∧ (∀s. φ(s) ⇒ φ(s.0) ∨ φ(s.1)) =⇒
∃t.∀n.∃s. φ(s) ∧ (|t− ζ(s)| < 2−n ∨ |t− ξ(s)| < 2−n)

It seems difficult to assess the status of this proposal. To the author, the above
formula looks bizarre if it is considered purely as a purely physical law (that is, if
we are able to banish any idea of sequences from our mind while contemplating
it). We also feel that there is some loss in explanatory power resulting from
the elision of an intermediate step in the above proof. On the other hand, one
might argue that there is not much essential metaphysical difference between
the two formulations anyway, since one could take the view that Times itself
offers a ‘model’ for some (rather moderate) mathematical theory of the reals as
completed objects.

What seems more clear is that attempts to eliminate all uses of surveyable
infinities from the theory tend to result in a radical depletion of its explana-
tory power, in that they are forced to build in as assumptions some significant
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principles for which we would rather have an intelligible explanation. This
tends to point towards the conclusion that the philosophical premises of strict
constructivism, for instance, do not provide an adequate basis for a satisfactory
understanding of physics. Of course, this conclusion could in principle be refuted
by finding some ‘satisfying’ logically deterministic formalization not requiring
ω-surveyability.

We remark briefly here on a few other approaches that might be tried. One
might ask whether the situation is any different for a theory based on intervals
rather than points, in view of the close connection between points and completed
infinite sequences. We will discuss interval formulations for various physical
theories in the sequel paper, and in particular will investigate the advantages of
such formulations for obtaining a good computability theory. In the meantime,
suffice it to say that for the Newtonian problem we have been considering, an
interval formulation does not by itself seem to dispel the problems we have
been discussing, and in particular some ingredient such as ω-surveyability is
still required in order to obtain logical determinism.40 Similar remarks apply to
attempts to capture the desired uniqueness of solutions by postulating properties
of the abstract sheaf of (local) continuous functions over the time continuum.

Another possibility, naturally suggested by the interval setting, is to over-
come the obstacles by postulating some Brouwerian principle such as bar induc-
tion for the time continuum. However, it turns out that these principles, whose
original home was a theory of (idealized) mental constructions, give rise to some
rather strange effects if applied to the description of an ‘external’ physical real-
ity. Though we shall not attempt to argue the case in detail here, this approach
would seem to lead to a theory in which the properties of physical entities are
inextricably linked with the possible mental constructions or ‘proofs’ that the
ideal human mathematician can perform. (We believe this conclusion could be
made to stand out more clearly by a careful analysis of possible formulations
of the kind we have undertaken for the point-based approach.) Such a view,
we suggest, is only plausible in the context of a highly mentalistic or solipsistic
attitude to the physical world.

Strictly constructive approaches, then, may not be enough. However, our
theory of Section 8.5 would seem to sit very comfortably with e.g. a predicativist
position (at least in spirit — as we have seen, the fact that we are trying to
reason directly about physical entities affects the formal details of our theory
in various ways). Our findings are thus very consonant with those of Hellman
[41], who concludes that

Classical, non-constructive concepts and reasoning would seem in-
dispensable to some of our best science. However, [. . . ] none of
the objections to constructivism reviewed here tells against predica-
tivism, or at least not without further argument.

However, we have arrived at our conclusions by a somewhat different route,
40There does seem to be one strictly constructive approach which seems very satisfactory

from a physical point of view, although it is a rather surprising one. It will be presented in
the sequel paper.
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namely the close scrutiny of the relationships between mathematical and phys-
ical concepts in one very simple physical situation. It seems clear that if even
the simplest Newtonian theory is problematic, similar issues will arise for any
physical theory based on continua and the ideas of differential calculus.

9 Conclusions and prospectus

In this paper we have discussed various possible ways of making precise the
idea of physical determinism and the kinds of choices that are involved. We
have emphasized in particular the varying degrees of physical and metaphysical
commitment that underwrite these notions of determinism. We have proposed
a general logical framework for the precise articulation of physical theories, with
the intention of allowing questions of determinism to be rigorously investigated.
We have found that many issues and choices arise from the attempt to formulate
even the simplest physical situations.

We believe that the discussion of Section 8 (in particular) amply demon-
strates the subtlety and complexity of the issues involved, and the ways in
which questions of determinism are highly sensitive to precise details of the for-
mulation and of the ontological assumptions made. In general terms, one may
informally observe a kind of trade-off or complementarity between the respective
strengths of the physical and metaphysical assumptions needed to yield a logi-
cally deterministic theory (as one would surely hope to obtain in the case of our
simple Newtonian scenario). For instance, the problems discussed in Section 8
can be addressed either by postulating stronger physical assumptions (e.g. non-
local physical laws), or by postulating the existence of mathematical entities
and the ω-surveyability of certain sets. In other words, it does not pay to be
too parsimonious on both fronts. The existence of such a trade-off in principle
is not in itself surprising (as can be readily seen by reflecting on some extremal
positions), but the specific ways in which this kind of complementarity works
out in an ‘everyday’ physical situation would perhaps not have been expected.

In the present paper we have focused largely on problems relating to logical
determinism, since in the very simplest physical situations the issue of com-
putability is unproblematic. As we shall see in the sequel paper, this will change
when we move on to consider more complex situations, such as the evolution of
an electromagnetic field under Maxwell’s equations (a situation already studied
in some detail in [69, 70, 92]). In this and other situations, our investigations
of computability will involve a close scrutiny of possible alternatives regarding
physical ontology, along the lines hinted at in Sections 5 and 7.
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