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2 Proposed research and its context

A. Background

A1l. Introduction One of the fundamental questions at the heart of computer science is: “What
does it mean for an operation or function to be computable in principle?” For the case of functions
on the natural numbers, the work of Church, Turing and Kleene in the 1930s yielded several math-
ematical characterizations of a good class of computable functions, the partial recursive functions.
It is widely agreed that this coincides with the class of functions that can in principle be computed
by a purely mechanical procedure.

The case of functions on the natural numbers is particularly significant, since any other kind of
data that can be manipulated by a computer can ultimately be represented by natural numbers.
However, this does not mean that questions of computability for all other datatypes are thereby
automatically settled. For many kinds of data that occur in computing practice—functions,
streams, continuations, abstract data values, objects, processes—the natural number representa-
tion will typically contain more information than will be accessible to “computations”, at least in
the senses likely to be of interest. This is because computations gain information about such data
values only by interacting with them in ways prescribed by the programming language or envir-
onment. Thus, it is far from immediately clear what should be meant by a “computable function”
on such datatypes; indeed, for some datatypes one can even find rival notions of computability, all
perhaps equally natural and fundamental, arising from different representations of the data values
and different protocols for interacting with them. (See Section B.I.1 below for some examples.)

In the proposed research, we will undertake a systematic investigation of notions of comput-
ability for a wide variety of datatypes, including higher-order function types, recursively defined
types, abstract types, and object classes as in object-oriented programming styles. In each case,
we will seek to identify the important classes of “computable operations”, and to give a variety of
different (syntactic and semantic) characterizations of these classes. We will also investigate the
feasibility of designing programming languages based on some of these notions of computability,
and will test the scope and usefulness of these notions by focusing on some specific application
areas (e.g. search algorithms; exact real-number computation).

On the theoretical side, what this will provide is an understanding of fundamental concepts
of computability for a range of datatypes, analogous to that provided for the natural numbers by
basic recursion theory. On the more practical side, our work will provide semantic foundations
for logics suitable for software development and verification, and will also inform and inspire
the design and implementation of mathematically-based programming languages. Furthermore,
we expect our work to have an impact on the particular application areas we consider, such as
real-number computation.

A2. Relationship to other current research Much recent research in the semantics of com-
putation exhibits a tension between two complementary ways of looking at computational systems:
the extensional and intensional perspectives. Broadly, the extensional perspective focuses on what
is computed—for example, on the mathematical function that relates outputs to inputs—while
the intensional perspective focuses on how a computation occurs, i.e. on the process itself. In
terms of our proposed research, one can loosely say that models of computation are intensional in
nature, whereas notions of computability typically have a more extensional flavour.



The study of intensional models such as those based on games [AJM96, AM96, HO96] has been
a very fruitful area of recent research. Many workers in the field (e.g. Abramsky and his group
at Edinburgh; Hyland, Ong and their groups at Cambridge and Oxford) are currently engaged
in a program of extending these models in various directions, and applying them to a wide range
of datatypes, processes and computational paradigms. The proposed research will complement
this by pushing forward a corresponding extensional theory of computability for a similar range
of computational scenarios. QOur aim is to see how far one can travel into this new territory
whilst maintaining the logical simplicity and clarity afforded by an extensional framework. The
two approaches are of course highly interdependent, and we expect our work to benefit a great
deal from interaction with the researchers mentioned above. The distinctiveness of our proposed
research, however, is that for us it is the notions of computability, rather than the models of
computation, which will be the primary objects of study. Thus, for example, we will be interested
in knowing which intensional settings give rise to the same extensional notion of computability
(see [Lon95, Chapter 7] for some results of this nature); we will also be interested in properties
of the extensional notions that are not dependent on any particular intensional model (see e.g.
[L0a96]).

Along a different axis, the proposed research has affinities with work in the algebraic specifica-
tion tradition by Tucker et al (e.g. [TZ88, TZ90, TZ94, BT95]), who have considered questions of
computability for a range of datatypes such as streams and abstract types. However, our approach
differs from theirs in its emphasis on the ideas and methods of denotational semantics; indeed,
we believe that our programme will furnish a broader, more conceptual framework within which
much of their work may be placed.

Our interest in general notions of computability has arisen from our study of realizability models
[Lon95, LS97]. These have already given us a good handle on computability at higher types over
the natural numbers, and we expect that the ideas of realizability will continue to play a major
role in our research.

B. Programme and methodology

The proposed research will investigate classes of computable functions for a range of datatypes,
including finite types over the natural numbers, recursive types, abstract types and object classes.
It will also consider the more general question of what constitutes an “effective datatype”.

There are two general criteria that we shall employ throughout the programme for deciding
what should be considered a fundamental “notion of computability”, or class of computable en-
tities. The first is that such a class ought to arise from some intuitively compelling model of
computation (e.g. register machines; dialogue games). The second (more objective) criterion is
that a class should admit a variety of independent mathematical characterizations (as is the case
for the partial recursive functions, for example). Our work on realizability models has already
given us examples of such contrasting characterizations of the same extensional class (see [Lon95,
Chapter 7]). The kinds of contrast we have in mind include the following:

e Syntactic characterizations (as the set of entities definable in some formal language) versus
semantic characterizations (as the set of entities present as elements of some mathematical
structure).

e Characterizations in terms of intensional objects that happen to behave extensionally (picked
out e.g. by an extensional collapse construction) versus characterizations in terms of “inher-
ently extensional” objects of some kind.

e Characterizations that involve different intensional models of a significantly distinct flavour.

Our strategy will be to proceed from more familiar to less familiar kinds of datatype. The rest
of this section describes, in order, the specific topics on which we will focus.



I. Computability at finite types

The higher-order function types (or finite types) over the natural numbers have received a great
deal of attention in recursion theory and computer science. From our point of view they are a good
place to start our investigations of computability, not only because because there is already an
established tradition of research in this area, but also because many other interesting and useful
datatypes can be obtained from finite types, e.g. as retracts (see II below). Indeed, many results
relevant to our concerns are already known, although at present they are scattered rather widely
across the literature in recursion theory, domain theory, type theory and programming language
semantics.
Our proposed research in this area falls broadly into two parts:

I.1. General theory of effective type structures Much previous work has been devoted to
studying particular definitions of higher-type computability. We will take a more abstract view
and develop a general theory of such notions. A mathematical framework for such a theory is
provided by a notion of “effective finite type structure”, together with a notion of “simulation” of
one such type structure within another (see [Lon97]). Simple though these definitions are, we have
recently shown that they give surprisingly powerful conceptual tools for unifying and clarifying
much of the existing material. In addition, this abstract approach will shed light on particular
concrete notions of computability, via a consideration of their place within the space of all possible
such notions. For example, we are currently aware of three good notions of “computable partial
functional” of finite type:

e The sequential computable functionals definable in Plotkin’s language PCF [Plo77]; these
may be characterized semantically via the games of Abramsky, Hyland et al [AJM96, HO96].

e The parallel computable functionals definable in PCF with ‘parallel-or’ and ‘exists’ opera-
tions [Plo77]; these coincide with the effective elements of Scott’s classical domain model,
and also with the partial functionals present in the familiar category of PERs [Lon95].

e The strongly stable or intensionally-sequential computable functionals (see 1.2 below).

Whilst the first of these notions is weaker than the other two, Longley has recently shown that
the second and third have no common upper bound. This fact is already a striking result, which
one can interpret as saying that there can be no ultimate hierarchy of “all” possible computable
functionals—a kind of “Church’s anti-thesis for higher types”.

One of the early goals of the project will be apply these abstract ideas to produce an extended
survey paper on notions of computability at higher types, bringing together a diverse body of ma-
terial within a uniform framework, and making explicit the connections between different strands
of existing research. In particular, there is a significant corpus of work in the recursion-theoretic
tradition from the ’60s and ’70s (e.g. [Kle63, GH77]) which is sometimes regarded as difficult and
obscure—we will place this work in a modern setting and relate it to more recent developments
in computer science. Our treatment will cover both total and partial notions of computable func-
tional. In general it is the partial notions that arise more naturally from programming languages;
however, the total notions—and their relation to the partial ones—are also of interest to computer
science, as is shown by work of Berger [Ber93] and Plotkin [Plo97].

Besides the value of its conceptual contribution, we expect our abstract framework to inspire
insightful new technical results. For example, we might inquire whether there are any other
interesting hierarchies of computable partial functionals to be discovered. Such hierarchies could
conceivably form a basis for new kinds of programming language, for instance. Ultimately we
might hope to obtain a classification theorem, to the effect that the only “good” hierarchies were
those in some concretely described class.

I.2. The intensionally-sequential computable functionals We will also devote some time
specifically to the third (and much the least well-known) of the above classes of computable
functionals. This class is especially interesting, as it embodies an intuitively “sequential” notion



of computability that is stronger than PCF. Its discovery is in essence due to Ehrhard [Ehr96],
who showed that the functionals intensionally computable by sequential algorithms coincide with
the strongly stable functions in a certain domain-theoretic model. Since then, the implicit notion
of computability has been brought more clearly into focus via a realizability model discovered
independently by van Oosten [00s97] and Longley. Most recently, Longley has given a syntactic
characterization of this class of functionals as those definable in PCF extended with a certain
“universal” functional H.

Rather remarkably, although H cannot be implemented in the purely functional fragment of
a language such as Standard ML [MTH90], it can be implemented using non-functional features
of ML such as exceptions or references. However, the behaviour of H is purely functional, in
the sense that it acts extensionally on its inputs. This suggests the possibility of a programming
language that incorporates the power of H into its functional fragment. There are good practical
reasons why this might be useful. For example, there are natural examples of programs in PCF+H
which we believe would be (variously) impossible, inefficient or just inelegant to implement in pure
PCF. For such programs, one would gain the transparency and ease of reasoning offered by pure
functional programming, as well as increased scope for compiler optimization.

Besides consolidating our theoretical analysis of the intensionally-sequential functionals, we will
investigate the practical applicability of this notion of computability. We will do this mainly by via
prototype implementations (e.g. in Standard ML) of simple programming languages based on this
notion. Firstly, this will allow us to investigate issues of computational feasibility and efficiency.!
Secondly, these implementations will allow us (and others) to experiment with functional programs
or styles of programming, and discover the kinds of task to which such an extended functional
language is well-suited. We have in mind two particular application areas:

e Search algorithms. It seems that intensionally-sequential computation can be used to ad-
vantage in constructing general-purpose search algorithms, since control information is made
available which can be exploited to prune the search tree.

o FEzact real-number computation. Representations of real numbers via streams of approxim-
ations allow computations to be demand-driven and free from error accumulation. It seems
that certain natural operations (e.g. Riemann integration for discontinuous functions) are
not computable in PCF but become computable in the intensionally-sequential setting. Here
we expect our ideas to have an impact on current research in real-number computation by
Edalat, Escardé et al [EE96]. However, the connections between their setting and ours have
yet to be explored in detail.

II. Other concrete datatypes

As mentioned above, many interesting datatypes—such as lazy lists and trees—arise as retracts
of finite types. This means that notions of computability for the finite types can often be cheaply
extended to corresponding notions for these other datatypes—provided, of course, that both halves
of the retraction are themselves considered “computable” in the sense under consideration. (The
point of this last caveat is that the class of computable retracts of finite types will vary from one
notion of computability to another.)

In the case of intensionally-sequential computation, we anticipate that we will be able to obtain
a very large class of types (including, for instance, arbitrary concrete data structures and recursive
types) as computable retracts of finite types. (This is because of the existence of a universal finite
type, of which all other finite types are retracts.) This should allow us to extend our various
characterizations of this notion of computability easily to these other types, and indeed to expand
our investigation of its practical programming possibilities in this way.

In some cases we wish to consider concrete types that do not arise as retracts in this way. Here
the situation is much less clear: do the basic notions of computability remain the same, or do
some of them split into several distinct notions in the presence of these extra types?

L An inefficient prototype implementation of the functional H has already been constructed!



Another challenging problem (recently considered by Plotkin) is to find good notions of totality
for recursive types. Besides deepening our understanding of computability for these types, such
notions would lead to useful logical principles for reasoning about termination of programs.

IT1. Abstraction and information hiding

II1.1. Abstract types A more ambitious and speculative part of our programme will be the in-
vestigation of issues of computability for abstract types. In many modern programming languages,
facilities for data abstraction are very important for the modular design of large programs. The
basic idea is that we can only interact with the data values through some prescribed interface.
Indeed, the finite types are abstract types in a certain sense, since (typically) the only way to
interact with a function is via application.

Taking an extensional or “behavioural” view of datatypes, one is led to consider questions such
as the following:

e Which functions to and from the abstract type are computable?
e When are two elements of the abstract type observationally equivalent?

e When are two implementations of the same abstract type signature observationally indistin-
guishable?

Even for abstract types with first-order signatures, these questions present a significant challenge.
There is already a substantial body of work in this area from the algebraic specification community
(see e.g. [TZ88, BT95, GM82, BHW95, HS96]). However, as far as we are aware, there has so
far been very little work on truly denotational models for abstract types that capture notions of
computability and behavioural equivalence (as achieved for simply-typed languages by the models
in [Plo77, AJM96], for example).

We will seek natural and robust notions of computability for reasonable classes of abstract
types, and investigate both syntactic and semantic characterizations of these notions. We expect
that existing formalisms for abstract types (as in e.g. [MP82]), along with now well-known ideas
of coinduction and bisimilarity (see e.g. [Pit94]), will be useful in constructing suitable syntactic
models. Moreover, we are hopeful that some kind of realizability will allow us to obtain good
semantic characterizations. A first line of attack will be to follow up the idea that implementations
of abstract types can be regarded as values with System F types [MP82], and as such have
interpretations in standard realizability models. To produce a semantic counterpart to abstraction
we may need to go beyond these standard models; for example, by constructing permutation
models. On the other hand, it may be that to obtain good models we will need to go beyond
the usual notions of realizability. For example, in the standard setting the intensional models of
computation are combinatory algebras, in which application is the fundamental operation, whereas
it might be advantageous to consider intensional settings (such as Milner’s w-calculus [Mil92]?) in
which some more general kind of interaction was primitive.

In conjunction with our study of particular models, we will spend some time trying to give
general descriptions of datatype abstraction in terms of appropriate categorical structure. In
particular, given a category C' to be thought of as a category of “concrete types and computable
functions”, we hope to make precise some notion of “the category of abstract types over C” which
inherits its notion of computability from C.

The practical benefits of a semantic representation of abstraction will be to underpin principled
language design, and to provide a basis for tools and techniques for program development and
analysis.

I11.2. Object classes A related problem is to find appropriate notions of computability for
object-oriented languages such as Java [GJS96]. Object classes closely resemble abstract types in
that internal representations are hidden and interaction is possible only via exported operations;
they differ, of course, in that objects may have mutable state and so may be destructively modified
in the course of computations. We are therefore led to think less in terms of mathematical functions



that return an output given an input, and more in terms of operations that convert some initial
configuration of objects into a final configuration. But this need not be at odds with an extensional
treatment of computability, if we consider such operations to have linear function types [Gir87]
rather than the usual intuitionistic ones.

We hope that our study of abstract types, coupled with ideas from linear logic, will point
the way towards an extensional treatment of computability for object classes. In the present
programme we will undertake some preliminary exploration of these ideas; detailed investigation
of this area may be a topic for future research.

IV. General notions of effective datatype

All the topics above are concerned with extending our understanding of computability to embrace
particular classes of datatype. Alternatively one could ask a more fundamental question: what
is a good general notion of an “effectively implementable datatype”? A good answer to this
question might provide a kind of “Church’s thesis” at the level of types, and would be likely to
have repercussions in many areas of computer science.

We suspect that there are several reasonable answers to the above question, depending on just
how general one wishes to be. We hope to make a start in identifying some of these notions and
understanding the relationships between them. More particularly, from a certain point of view it
seems reasonable to suppose that the notion of effective data algebra is no more general than the
class of algebras that can be implemented as abstract types (cf. [TZ90]). In any case, it would
be good to provide evidence for the status of some such good class of datatypes by giving several
independent characterizations and showing that they coincide.

C. Relevance to beneficiaries

The proposed research is largely foundational in nature, and as such its main contribution will be
to provide an understanding of certain fundamental concepts which will enable further progress in
a number of areas of more direct practical concern. There are two main areas on which we expect
our work to have a particular impact:

e Logics for program verification and development. A simple and usable program logic should
have a clear operational interpretation of a kind that would be readily understood by pro-
grammers. In [Lon95, LP97] we have argued that in order to provide mathematical found-
ations for such logics, one should consider semantic models that closely reflect the notions
of computability and behavioural equivalence embodied by the programming language. Our
research will provide an in-depth understanding of many such models and their relation-
ships to particular kinds of programming language. In this way it will provide mathematical
underpinnings for current work on formalisms and tools for correct software development,
such as the ongoing work at Edinburgh on Extended ML [KST97] and on proof assistance
for programming (Lego, LAMBDA), and for related work elsewhere (e.g. Glasgow, Cornell,
SRI, INRIA).

o Language design and implementation. A thorough mathematical understanding of funda-
mental and natural notions of computability will enable the design of programming lan-
guages that embody these notions in a clean and principled way. This will be most evident
in parts 1.2 and II of the project, which will specifically investigate the practical feasibility
and benefits of a programming language based on the notion of intensional-sequentiality.
The theoretical understanding gained from other parts of the project (e.g. part III on data
abstraction) can also be expected to have an influence on future language designs.

In addition, we anticipate that part 1.2 will have an impact on current work on computation
with infinitary datatypes, e.g. exact real-number computation (Edalat, Escardé, di Gianantonio).
This is itself a lively research area with promising applications to statistical physics, neural nets
and dynamical systems. Finally, our work will provide foundational concepts for research on



complexity theory for higher types (Cook, Kapron, Hofmann), and perhaps even for more general
datatypes.

D. Dissemination and exploitation

The main dissemination vehicles for the foundational results of this project will be conference and
seminar presentations, WWW publication of preprints and reports, and journal and conference
publications.

We will also develop prototype implementations and example application programs (primarily
as student projects) to be disseminated among the international programming community via
the Internet. This collection will form the basis for a course, given at MSc/PhD level, in the
application of semantics to programming practice.

Our links with companies such as Persimmon, Harlequin and Abstract Hardware Limited will
provide a rich source of problems/solutions.

E. Justification of resources

Manpower Longley will work full-time on the project as a postdoctoral research associate for
the whole three years. Funding for Longley is requested on the AR1A to start at spinal point 9
with annual increments. We also seek funding for 15% of a computing officer (AD3.3) to provide
infrastructure support for language prototyping and applications. and 5% of a secretary (CN3.3)
to support publication and dissemination of our results. Profs. Plotkin and Fourman will each
contribute an average of three hours a week for the parts of the project in which they are involved
(see Diagrammatic Workplan), and also conduct termly project review meetings.

Travel We plan to attend an average of two international conferences a year, e.g. LICS, MFPS,
POPL, ICALP, MFCS, CSL, TACS, CTCS, CAV, TPHOL, LAFACS. We request travel and sub-
sistence support for five one-week visits to European centres (e.g. Aarhus, Sofia-Antipolis, Pisa),
and one ten day visit to a number of centres within the US (e.g. CMU, SRI/Stanford, Pennsylvania,
Montreal, Cornell). These visits will be made in conjunction with overseas conference travel. We
also request support for two 2-3 day visits per year within the UK (e.g. Oxford, Cambridge, QMC).

Equipment A workstation, maintained over the project period, is requested to support language
prototyping and the evaluation, in applications, of the novel language features we propose. We also
request an appropriate contribution to consumables, shared networking, and fileserver provision.
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