
NOTIONS OF COMPUTABILITY AT HIGHER TYPES I

JOHN R. LONGLEY

Abstract. This is the first of a series of three articles devoted to the conceptual problem of

identifying the natural notions of computability at higher types (over the natural numbers) and

establishing the relationships between these notions. In the present paper, weundertake an extended

survey of the different strands of research to date on higher type computability, bringing together

material from recursion theory, constructive logic and computer science, and emphasizing the

historical development of the ideas. The paper thus serves as a reasonably comprehensive survey

of the literature on higher type computability.

Contents

1. Introduction 3
1.1. Motivations 6
1.1.1. Constructive logic and metamathematics 6
1.1.2. Descriptive and admissible set theory 6
1.1.3. Abstract computability theories 7
1.1.4. Semantics and logic of programming languages 7
1.1.5. Subrecursion and complexity 8
1.1.6. Real number computability 8
1.1.7. Computability in physics 9
1.2. Overview of the series 9
1.3. Outline of the present paper 10
1.4. Notation 11
1.5. Prerequisites 13
1.5.1. Types and type structures 13
1.5.2. The ë-calculus 14
1.5.3. Cartesian closed categories 16
1.5.4. Historical remarks 17
2. Early work: Computability at type 2 18
2.1. Prehistory 18
2.2. Banach-Mazur functionals 18
2.3. Computations on pure functions 18
2.4. Computations on Kleene indices 21
3. Total computable functionals 24
3.1. System T and related type systems 24

Logic Colloquium ’00
Edited by René Cori, Alexander Razborov, Stevo Todorčević, and Carol Wood
Lecture Notes in Logic, 00
c© 2003, Association for Symbolic Logic 1



2 JOHN R. LONGLEY

3.1.1. Gödel’s T 25
3.1.2. Kleene’s S1–S8 27
3.2. Kleene computability: S1–S9 28
3.2.1. Kleene’s work 28
3.2.2. Recursion in normal objects 33
3.2.3. Hierarchies 36
3.2.4. Set recursion 37
3.3. The total continuous functionals 38
3.3.1. Early work: Kleene and Kreisel 38
3.3.2. Further characterizations 41
3.3.3. Degrees and relative computability 42
3.3.4. Recent work 43
3.3.5. Type two effectivity 44
3.4. The hereditarily effective operations 44
4. Partial computable functionals 47
4.1. Partial monotone functionals 48
4.1.1. Platek’s thesis 49
4.1.2. Kleene’s later work 52
4.2. Partial continuous functionals 55
4.2.1. Scott’s approach 55
4.2.2. Ershov’s approach 57
4.2.3. Later developments 59
4.2.4. PCF and parallelism 60
4.2.5. Operational semantics 63
4.3. PCF and sequential computability 64
4.3.1. PCF versus S1–S9 64
4.3.2. The full abstraction problem 66
4.3.3. Intensional semantics for PCF 69
4.3.4. Other work 72
4.4. The sequentially realizable functionals 73
5. Realizability models 77
5.1. Type structures in realizability models 79
5.2. Domains in realizability models 82
6. Non-functional notions of computability. 83
6.1. Structures over N 83
6.2. Structures over N⊥ 84
6.3. A realizability perspective 86
7. Conclusion and prospectus 87
7.1. Acknowledgements 88
Appendix A. Summary of type structures 89
Appendix B. Remarks on bibliography 90



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 3

§1. Introduction. This article is essentially a survey of fifty years of research
on higher type computability. It was a great privilege to present much of this
material in a series of three lectures at the Paris Logic Colloquium.
In elementary recursion theory, one begins with the question: what does it
mean for an ordinary first order function onN to be “computable”? As is well
known, many different approaches to defining a notion of computable func-
tion — via Turing machines, lambda calculus, recursion equations, Markov
algorithms, flowcharts, etc. — lead to essentially the same answer, namely
the class of (total or partial) recursive functions. Indeed, Church’s thesis pro-
poses that for functions from N to N we identify the informal notion of an
“effectively computable” function with the precise mathematical notion of a
recursive function.
An important point here is thatmany prima facie independentmathematical
constructions lead to the same class of functions. Whilst one can argue over
whether this is good evidence that the recursive functions include all effectively
computable functions (see Odifreddi [1989] for a discussion), it is certainly
good evidence that they represent a mathematically natural and robust class
of functions. And since no other serious contenders for a class of effectively
computable functions are known, most of us are happy to accept Church’s
thesis most of the time.
Now suppose we consider second order functions which map first order
functions to natural numbers (say), and then third order functions which map
second order functions to natural numbers, and so on. We will use the word
functional to mean a function that takes functions of some kind as arguments.
We may now ask: what might it mean at these higher types for a functional
to be “computable”? (Some reasons why we might want to ask this will be
discussed shortly.)
A moment’s reflection shows that a host of choices confront us if we wish
to formulate a definition of higher type computability. For example:1

• Domain of definition. Dowewish to consider partial or total computable
functionals? Do we want them to act on partial functions of the next
type down, or just on total functions? Should they act only on the
“computable” functions of this type, or on somewider class of functions?

• Representation of functions. If we wish to perform “computations” on
functions, how do we regard the functions as given to us? As infinite
graphs? As algorithms or “programs” of some kind? Or as oracles
or “black boxes”, for which we only have access to the input/output
behaviour?

• Protocol for computation. What ways of interacting with functions do
we allow in computations? For example, do we insist that calls to func-

1Many of these points are also made in a survey article by Cook (Cook [1990]), whose point
of view is very close to our own.



4 JOHN R. LONGLEY

tions are performed sequentially, or do we allow parallel function calls?
Do we insist that terminating computations are in some sense finite
mathematical objects, as must be the case if we are seeking a genuinely
effective notion of computability— or do we allow infinite computations
in accordance with the infinitistic nature of the arguments?

• Extensionality. Do we want to restrict our attention to computable func-
tions (as implicitly assumed in the preceding discussion)? Or do we want
to consider computability for other, possibly non-extensional, operations
of higher type? If the latter, what do we mean by an “operation”?

The spirit in which we are asking these questions is not to demand definitive
answers to them, but tomake the point thatmany choices are possible. Indeed,
as we shall see, manydifferent responses to the above questions are exemplified
by the definitions of higher type computability that have been proposed in the
literature. Moreover, the effects of all these choices escalate rapidly as we
climb up the types. For example, if two definitions yield different classes of
computable functions of type ó, it may be difficult even to compare these
definitions at type ó → N, since the domains of the functions may differ.
Indeed, we often find that a question needs to have a positive answer at type
ó in order to be even meaningful at type ó → N.
It thus appears that very many approaches to defining higher type com-
putability are possible, but it is not obvious a priori whether some approaches
are more sensible than others, or which approaches lead to equivalent notions
of computability. Moreover, in contrast to the first order situation, there does
not seem to be a clear canonical pre-formal notion of “effective computability
at higher types” to which we can refer for guidance. (This is hardly surpris-
ing, in view of the fact that there are several possible pre-formal conceptions
of what a function is.) In short, it is unclear in advance whether at higher
types there is really just one natural notion of computability (as in ordinary
recursion theory), or several, or indeed no really natural notions at all.
This paper is the first of a planned series of three articles devoted to the con-
ceptual problem of finding good, natural notions of higher type computability.
Whereas previous work in the area has explored various particular notions of
computability in some detail, our wish is to take a step back and look at the
overall picture. Our main objectives are as follows:

• To discover what natural notions of computability exist at higher types,
and to collect evidence for their naturalness.

• To develop some basic “recursion theory” for each of these notions,
analogous to the elementary parts of ordinary recursion theory.

• To investigate how these notions of computability are related.
• To provide a coherent framework for pulling together and organizing the
existing knowledge in the area.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 5

We will be concerned mainly with objects of finite type (that is, nth order
operations for some n ∈ ù). In principle one can also consider transfinite
types, though we will touch on these only occasionally.
Many ideas and results relevant to our project are already known, although
they are rather widely scattered across the literature in recursion theory, con-
structive logic and computer science, andhave never previously been presented
together as contributions to a single subject. In this article we will give a fairly
comprehensive survey of the work to date on different approaches to higher
type computability. This will amass some rawmaterial for our project. In two
sequel papers, we will present a more systematic view of much of this material,
proposing some simple general frameworks for discussing the “space of pos-
sible notions of computability”, and showing that within these frameworks a
reasonably cohesive picture does indeed emerge from the disparate strands.
To expand on our working philosophy a little further: It appears (to us)
that a priori considerations are by themselves of limited use in determining
what are the natural notions of higher type computability — any particular
definition one can write down seems to involve some choices which might be
felt to be arbitrary. We are therefore led to adopt a more empirical attitude:
we can explore a range of possible definitions, and see what natural notions
emerge and how they are related. Various criteria may be used to determine
which notions of computability count as “natural”, for instance:

• Whether they arise from some intuitively appealing informal concept of
“computation”.

• Whether theyadmit awide rangeof independentmathematical character-
izations — the more independent the better.

• Whether they occupy some special position within the space of possible
notions of computability.

There has already been much research over the last fifty years exploring dif-
ferent approaches to higher type computability, and we feel the time has come
for bringing this material together and trying to make sense of the big pic-
ture. In view of our goals, it is natural that we should favour an eclectic
attitude — since we do not know in advance where to look for good notions
of computability, we should cast our net as wide as possible and embrace the
diversity of definitions that have been proposed.
Our enterprisewill be justified in retrospect if it does in fact lead to a coherent
and satisfying picture. We will then be in a strong position to attempt a more
conceptual explication of those notions of computability which we suspect to
be fundamental.
To anticipate the outcome of our project, we will argue that, for computable
functionals at least, there is in fact a manageable handful of around six natural
and robust notions of higher type computability, each with a variety of dif-
ferent characterizations and some pleasing intrinsic properties. Although it is



6 JOHN R. LONGLEY

possible that there are other equally natural notions of computable functional
awaiting discovery, the fact that very many attempts at defining a notion of
computable functional lead to one of the known notions suggests (in this
author’s opinion) that the current picture is probably by now reasonably com-
plete. For non-functional notions of computability, the situation is at present
much more open-ended, but we are at least able to unify much of what is
currently known in a satisfying way.

1.1. Motivations. Before proceeding further, we should mention some of
the reasons why computability at higher types is interesting. Besides its in-
trinsic mathematical and conceptual appeal, the subject lies at an intriguing
juncture between several areas of mathematical logic and computer science,
and has (actual or potential) connections with the following areas. For rea-
sons of space, however, we will say relatively little about these applications in
the rest of the paper, choosing to concentrate on clarifying the basic notions
of the subject.

1.1.1. Constructive logic and metamathematics. Historically, the first appli-
cations of the ideas of higher type computability were to the metamathematics
of constructive systems. Computable objects of finite type can often be used
to give interpretations of logics — such as realizability interpretations — that
endow formulae with some kind of constructive content. For instance, we
might stipulate that a realizer for a formula φ ⇒ ø is a computable function
mapping realizers for φ to realizers for ø; in this case, formulae with nested
implications will naturally lead us to consider higher type objects.
On a technical level, such interpretations can be used to obtain consistency
and independence results for constructive logics. On a conceptual level, they
can be helpful for clarifying various constructive views of mathematics, often
from a classical standpoint. A good early discussion of possible applications
of this kind appears in Kreisel [1959, Sections 1,2]. The area was exten-
sively developed by Troelstra and his school (Troelstra [1973]), and by Beeson
(Beeson [1985]), who focused on realizability and related interpretations.
In a somewhat similar spirit is Feferman’s use of computable higher type
objects in connection with systems for explicit mathematics and theories of
finite type (Feferman [1975], [1977b]). These systems are typically intended to
reflect “semi-constructivist” standpoints that suffice for most of mathematical
practice. For other recent applications of this kind, see Kohlenbach [2002].

1.1.2. Descriptive and admissible set theory. Logical quantifiers may be re-
garded as objects of higher type: for instance, existential quantification over
the natural numbers can be seen as a (non-computable) object 2∃ : 2N → 2,
where 2 = {0, 1}. There are interesting relationships between computability
relative to such quantifiers and logical complexity: for instance, a function
on N is computable relative to 2∃ (in a certain sense) iff it is definable by a
hyperarithmetic predicate (see Section 3.2.1 below). This aspect of higher



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 7

type recursion theory was an important ingredient Kleene’s early work in the
area, and was developed further byMoschovakis and others (see Section 3.2).
The relationship between higher type (relative) computability and logi-
cal definability also manifests itself in connections with admissible set theory.
These connections can be exploited to apply forcing techniques from set theory
to the solution of degree-theoretic problems for higher types (see Sacks [1990],
and Section 3.2.2 below). Furthermore, a natural generalization of certain
ideas from higher type computability leads to a good notion of “computabil-
ity” on arbitrary sets, closely related to Gödel’s notion of constructibility in
set theory (see Normann [1978b], and Section 3.2.4 below).

1.1.3. Abstract computability theories. There is an enormous literature on
finding suitable notions of computability for various kinds of mathematical
objects, such as rings, fields, topological spaces, Banach spaces, or ordinals.
(Griffor [1999] provides a good starting-point for references on these topics.)
In view of this, it is not surprising that attempts have been made to develop
abstract theories that offer a uniform account of “computability” for a wide
range of structures (see e.g., Moschovakis [1969], Friedman [1971], Tucker
[1980]). Several of these approaches are clearly described in Hinman [1999].
Some approaches to abstract computabiliy can themselves be seen as instances
of a more general theory of inductive definability (Aczel [1977]).
Higher type computability, and especially Kleene’s early work, has inspired
many of the ideas in these abstract approaches, and has played a useful role as
a motivating example. In turn, these abstract approaches have then suggested
simpler, clearer ways of presenting higher type computability. Both directions
of influence may be discerned in the work of Moschovakis (see Moschovakis
[1974a], [1983], [1989]).

1.1.4. Semantics and logic of programming languages. Ideas from higher
type computability have inspired the design of modern functional program-
ming languages. This started with the theoretical work of Scott and Plotkin
(Scott [1969], Plotkin [1977]), which led eventually to the design of fully
fledged programming languages such as StandardML (Milner, Tofte, Harper,
and MacQueen [1997]).
In addition, much work in theoretical computer science has been concerned
with the semantics of programming languages. Finding a well-matched se-
mantic model for a programming language is often tantamount to finding a
good mathematical characterization of the notion of computable operation
it embodies. As argued in Longley and Plotkin [1997], Longley [1999a], this
can often help us to design a good logic for proving properties of programs
in the language. The finite types over the natural numbers are a good target
for study here, because many other computational datatypes of importance
can be obtained easily as retracts of these types (this will be explained in Part
II).



8 JOHN R. LONGLEY

Ideas from higher type computability also play a role in Feferman’s ap-
proach to computation on abstract datatypes (see e.g., Feferman [1996]). In
the longer term, we expect that an understanding of higher type computability
will contribute particularly to the study of object oriented languages, which
naturally support higher order styles of programming.

1.1.5. Subrecursion and complexity. Notions of higher type computation
can also be used to study the computational complexity of ordinary first order
functions. Many interesting subrecursive notions of first order computability
(that is, notions that do not allow the computation of all general recursive
functions) can be conveniently characterized via systems for higher type recur-
sion. For example, the ε0-recursive functions (i.e., the provably total functions
of Peano arithmetic) are precisely those definable in Gödel’s System T (see
Section 3.1). Furthermore, an ordinal stratification of these functions, corre-
sponding to the extended Grzegorczyk hierarchy, can be defined very elegantly
using some simple higher type functionals (see Schwichtenberg [1975], [1999]).
As argued in Schwichtenberg [1999], it seems that in giving definitions of func-
tions there is some inherent connection or trade-off between type complexity
and ordinal complexity.
Recently, characterizations of this kind have been achieved for much lower
complexity classes, including even the polytime computable functions (see
Bellantoni, Niggl, and Schwichtenberg [2000] and the papers cited therein).
In addition, of course, one can look for natural complexity classes at higher
type. Ideas from higher type computability have informed the definition of
complexity-theoretic notions (see e.g., Cook [1990]), but it seems thatmany of
the basic notions of higher type complexity are still open to discussion. Indeed,
in order to formulate a notion of feasible computation at higher types (for
instance), we will have to confront all the choices mentioned earlier, andmany
others besides. Clearly, a good understanding of higher type computability
will stand us in good stead if we wish to clarify the fundamental notions of
complexity at higher types.
The current state of the art regarding feasible computation at higher types
is described in detail in Irwin, Kapron, and Royer [2001a], [2001b]. Other
subrecursive notions of computability at higher types have been considered in
Schwichtenberg [1991], Niggl [1993].

1.1.6. Real number computability. The connection between computability
over the reals and higher type computability was recognized as far back as La-
combe [1955a], [1955b], [1955c] andGrzegorczyk [1957], and latermanifested
itself in the context of constructive interpretations of systems for analysis (e.g.,
in Troelstra [1973]). Notions of computability over the reals and other met-
ric spaces underpin constructive recursive analysis of the Markov school on
the one hand (see Aberth [1980], Beeson [1985]), and classical computable
analysis on the other (see Pour-El and Richards [1989], Weihrauch [2000b],



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 9

Bauer [2000]). Interest in real number computability has also recently been
awakened within computer science (see Escardó [1996]), and exact real num-
ber computation appears attractive as a potential application area for higher
type programming. For example, integration for real functions corresponds to
a second order computable operation over the reals, and hence to a third order
computable operation over N (see Simpson [1998]); an operator for solving
differential equations might therefore involve a fourth order operation overN.
Higher types over the reals, and some associated notions of computability,
have recently been considered e.g., in Normann [2001], [2002], Bauer, Es-
cardó, and Simpson [2002], Korovina and Kudinov [2001]. As with higher
type complexity, it appears that the natural notions here are still open to dis-
cussion — though once again, a good understanding of the higher types over
N will surely help.

1.1.7. Computability in physics. Notions of computability in analysis can
in turn be applied to questions of computability in various physical theo-
ries. Some of this territory is explored in Pour-El and Richards [1989] (see
also Pour-El [1999]). Besides providing a foundation for this work, it seems
conceivable that the study of higher type computability might suggest alter-
native definitions of computability for physical systems which may hold some
philosophical interest. For some intriguing speculations along these lines, see
Cooper [1999].

1.2. Overview of the series. This series of articles is intended as a fairly
comprehensive account of what is currently known about notions of higher
type computability over the natural numbers.
The present Part I is a historical survey of the work to date on higher type
computability, tracing the various strands of research which have contributed
to our present understanding. This is intended to serve several purposes:
firstly, to offer a gentle introduction to the main ideas of the subject; secondly,
to document the genesis of these ideas; thirdly, to facilitate comparison be-
tween different strands of work by placing them side by side in a uniform
setting; and fourthly, to provide a reasonably complete map of the rather
bewildering literature in the area. We have tried to include just enough techni-
cal detail to make the mathematical substance intelligible, without losing the
broad sweep of the story. The point of view we wish to advocate is that all
the strands of research that we describe can naturally be seen, with hindsight,
as contributions to a single coherent subject. In the remaining papers in the
series, we will attempt a more systematic and technically detailed exposition
of this subject.
In Part II we will try to organize the material concerning notions of com-
putable functional (that is, extensional operations of higher type), and the
relationships between them. Here we will work within a general framework
given by some simple definitions involving finite type structures. Although this



10 JOHN R. LONGLEY

framework is very simple and even somewhat crude, it suffices for clarifying
much of the existing material. After developing the necessary general con-
cepts, we will consider in turn the various good notions of total and partial
computable functional. In both the total and partial settings, we will present
arguments for the impossibility of a “Church’s thesis for higher types”. We
will also discuss ways in which total and partial functionals can be related and
combined.
In Part III wewill consider, more generally, notions of computable operation
(not necessarily extensional) — for example, the notions of computability
embodied by various non-functional programming languages. In order to
articulate these notions, we will use a more sophisticated general framework
based on ideas of realizability — this will extend and refine the theory of
Part II in a mathematically satisfying manner. Once again, we develop the
general theory, then survey within this framework some of the notions of
computability that appear to have some claim to naturalness.
Naturally, much of the material covered in Part I will be treated again from
a different perspective in Parts II and III. We feel that this kind of overlap
is justified in the interest of presenting a rounded view that takes account of
both the historical and the purely logical aspects of the subject. Indeed, the
historical and logical parts of the series are intended to be complementary, in
the sense that each tries to emphasize ideas that receive scant attention in the
other.

1.3. Outline of the present paper. As a glance at Figure 1 on page 19 will
confirm, the study of higher type computability has not developed in a coher-
ent, orderly fashion. Rather, it is mostly the result of the parallel activity of
several research communities, each with their own set of motivations, and it
is only in retrospect that the various strands can be seen as parts of a coherent
whole. It is therefore not surprising that the history of the subject appears as
somewhat chaotic.
The parallel nature of the subject’s development, in particular, makes the
history difficult to describe: some compromise between a strictly chronological
presentation and a thematic one is necessary, and no linear ordering of the
material seems completely satisfactory from an expository point of view. Here
we have adopted the following course. In Section 2 we describe, more or less
chronologically, the early work on computability at type 2, taking us up
to about 1958. Around this time, several notions of computability at all
finite types made their debut; at this point the subject effectively split into
several streams, and it is only over the last few years that these have begun to
converge again. For themain bodyof the paper (Sections 3 and 4)we therefore
treat each of the main notions of higher type computability in turn, taking
them (roughly) in order of their first appearance in the literature, and giving
separate chronological accounts of the developments relating to each of them.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 11

In Section 3 we discuss around four different notions of total computable
functional, and in Section 4 we consider a similar number of notions of partial
computable functional. (Fortunately for our scheme, all of the total notions
made their first appearance before any of the partial ones!) As we shall see,
the partial notions tend to be simpler and to have more pleasant properties
than the total ones. Turning to more recent developments, in Section 5 we
describe some ideas from realizability which cross-cut many of these streams.
Finally, in Section 6 we briefly discuss some ideas relating to non-functional
notions of “computable operation” at higher types.
For convenience, some diagrams summarizing the main structures of inter-
est and the relationships between them have been included in an appendix.
We have tried to make our account as accurate and complete as possible.
However, shortcomings are inevitable in a work of this kind, and the author
can only offer his apologies to anyone whose work he has inadvertently mis-
represented or overlooked. He would be glad to be informed of any significant
errors or omissions so that these may be rectified in a future publication.
Throughout the paper we presuppose a good knowledge of elementary
recursion theory, and some general background in logic. A few further pre-
requisites of a more specialized nature will be summarized in Section 1.5.

1.4. Notation. We first fix some general notational conventions. For any
set X , we write X⊥ for the set X t {⊥}, where ⊥ is some distinguished
element which intuitively will represent the non-termination of a process which
is attempting to compute a value in X . We write f : X ⇀ Y to mean “f is
a partial function from X to Y”. Any partial function f : X ⇀ Y may be
represented by a total functionX → Y⊥, though formally we shall distinguish
between the two entities.
We will use the following notational conventions in connection with poten-
tially non-denoting expressions e, e ′ arising from the use of partial functions.

• e↓ means “the value of e is defined” (that is, e denotes something).
• e↑ means “the value of e is not defined”.
• e = e′means “the values of e and e ′ are both defined and they are equal”
(strict equality).

• e ' e′ means “if either e or e ′ is defined then so is the other and their
values are equal” (Kleene equality).

Note that these conventions relate to the definedness of mathematical expres-
sions rather than the termination of computations. In particular, we have
⊥↓.
If e is an expression possibly involving the variable x, we write Λx.e tomean
the set-theoretic (total or partial) function that maps x to e; the intended do-
main of this function will be determined by the context. Thus, the expression
Λx.e names the function defined in more standard notation by x 7→ e. How-
ever, the Λ notation seems more convenient in complex expressions, and it



12 JOHN R. LONGLEY

also provides a semantic counterpart to the formal syntax of the ë-calculus
which we shall frequently use (see Section 1.5.2).
We write N for the set of natural numbers including 0. We also write:

• NN for the set of all (set-theoretic) total functions from N to N,
• NN

p for the set of all partial functions from N to N,

• NN
rec for the set of total recursive functions from N to N,

• NN
p rec for the set of partial recursive functions from N to N.

We write Seq(X ) for the set of finite sequences over a set X ; we will
use the notation [x1, . . . , xn] to display such sequences. We will suppose
〈−〉 : Seq(N) → N is some fixed effective coding for finite sequences, and
write 〈x1, . . . , xn〉 in place of 〈[x1, . . . , xn]〉. Given f : N ⇀ N, we define its

course-of-values function f̃ : N⇀ N by

f̃(n) ' 〈f(0), . . . , f(n − 1)〉.

We also suppose we have some effective indexing scheme for the partial
recursive functions, given for example by an effective enumeration of Turing
machines. We will write φm for the partial recursive function fromN toNwith
recursive index m.
If X is any set and R is a partial equivalence relation (that is, a symmetric,
transitive relation) on X , we write X/R for the set of R-equivalence classes
over X .
We will follow certain conventions regarding variables and also in our use
of certain typefaces. Ordinary mathematical fonts will be used for variables
of all kinds; generally speaking, we will use

• i, j, k, l, m, n, r to range over N;
• α, â to range over Seq(N);
• f, g, h to range over first order functions, or sometimes over functions
of arbitrary type;

• F,G to range over second order objects (functions or operations);
• Φ,Ψ,Θ to range over higher order objects (i.e., third order or above).

We will also use subscripted and superscripted variants of these symbols in
the same way. We will occasionally depart from the above conventions when it
is convenient to do so. Other variables (e.g., x, y, z) will be used more flexibly
as we have need of them.
We use boldface letters as abbreviations for vectors, or lists of variables.
More precisely, a symbol such asx, wherever it occurs, will textually abbreviate
either x1 . . . xlx or x1, . . . , xlx (as demanded by the context), where lx ≥ 0.
We use Roman boldface (e.g., Set) for the names of particular categories of
interest, and uppercase sans serif font (e.g., HEO) for the names of particular
type structures (see Section 1.5.1).
A few other typographical conventions associated with ë-calculi and types
will be introduced in the course of the next section.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 13

1.5. Prerequisites. Throughout this paper we will make incessant use of
the idea of a type structure; we will also make reference to the ë-calculus and
occasionally to cartesian closed categories. These notions will enormously
facilitate our task of giving a unified presentation of our material. Our use of
these concepts will sometimes mean recasting original definitions into a rather
more modern form, but we believe this will not do too much violence to the
historical point of view.
We now review the material that we shall need on these topics.

1.5.1. Types and type structures. The following basic concepts are central
to the entire paper and will be used ubiquitously.
Given any set Γ of basic type symbols ã , the (finite or simple) types over Γ
are the formal expressions ó built up according to the following grammar:

ó ::= ã | (ó1 → ó2)

Informally, each symbol ã ∈ Γ will represent some set of basic entities, and
(ó1 → ó2) will represent the type of functions from ó1 to ó2. We use ñ, ó, ô
as variables ranging over types. We will omit brackets wherever possible, and
regard→ as right-associative, so that ñ → ó → ô means (ñ → (ó → ô)). We
define the level of a type inductively by

level (ã) = 0, level (ó → ô) = max(1 + level (ó), level (ô)).

Except where otherwise stated, we will be considering finite types over
the single basic type symbol 0, which usually represents the type of natural
numbers. We then define the pure types n inductively by n + 1 = n → 0. If
(Xó) is a family of mathematical objects or relations indexed by types ó, we
will often write just Xn in place of Xn.
Our fundamental notion will be that of a type structure. For the purpose of
the present paper, the following definition will suffice:

Definition 1.1 (Type structures).

(i) A partial type structure A will consist of a family of sets Aó (one for each
type), together with “application” functions ·óô : Aó→ô ×Aó ⇀ Aô .

(ii) A total type structure, or more simply a type structure, is a partial type
structure in which all the application functions are total.

We usually omit the type subscripts from the application functions, and
treat · as a left-associative infix, so that f · x · y means (f · x) · y. In
accordance with the convention mentioned above, we often write An in place
of An . By a type n object of A we will mean an element of some Aó where
level (ó) = n. We sayA is a (partial or total) type structure overX ifA0 = X .
Most of the examples we consider will be type structures over N or N⊥. An
important example is the full set-theoretic type structure S over N, in which
S0 = N and Só→ô is the classical set of all functions from Só to Sô .



14 JOHN R. LONGLEY

A partial type structure A is extensional if for all types ó, ô and all f, g ∈
Aó→ô we have

(∀x ∈ Aó . f · x ' g · x) =⇒ f = g.

It is easy to see that any extensional [partial] type structureA is isomorphic to
a [partial] type structureB in which each setBó→ô is a set of [partial] functions
from Bó to Bô . We will therefore often refer to objects of type level 2 or more
in extensional partial type structures as functionals.
There is a standard way to obtain extensional type structures from an
arbitrary type structure:

Definition 1.2 (Extensional collapse). Let A be any partial type structure
over X .

(i) Given any partial equivalence relation≈ onX , define a partial equivalence
relation ≈ó on each Aó as follows:
• x ≈0 y iff x ≈ y;
• f ≈ó→ô g iff for all x, y ∈ Aó , x ≈ó y implies f · x ↓, g · y ↓ and
f · x ≈ô g · y.

Now let EC(A,≈), the extensional collapse of A with respect to ≈, be
the total extensional type structure defined by EC(A,≈)ó = Aó/≈ó , with
application inherited from A.

(ii) Define EC(A), the extensional collapse of A, to be EC(A,=).

We will often speak, somewhat informally, of an element of a type structure
A being hereditarily P for some property P. What we typically mean by this
may be explained reasonably precisely by induction on types as follows:

• An element x ∈ A0 is hereditarily P iff x has property P;
• An element f ∈ Aó→ô is hereditarily P if the restriction f ′ of f to the
hereditarily P elements x ∈ Aó has property P, and for all such x, f · x
is hereditarily P.

For example, ifA is a type structure overN⊥, a hereditarily total functional of
type 2 is a functional that acts totally on functions that act totally on elements
of N. Clearly, if all the elements of A have some property P, then they are all
hereditarily P.
A more comprehensive armoury of definitions relating to type structures
will be presented in Part II.

1.5.2. The ë-calculus. Next we review the basics of untyped and simply
typed ë-calculi. For more details, see for example Barendregt [1984].
The ë-calculus is a convenient formal language for talking about functions
and application. To define an untyped ë-calculus, one specifies a (possibly
empty) set C of constant symbols, and we also assume we have available an
unlimited supply of variable symbols. We will use teletype font for particu-
lar constant symbols that we shall introduce (e.g., 0,succ), and use c as a
metavariable ranging over constant symbols. We will use ordinary Roman



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 15

letters x, y, z, f, g, h, . . . as variable symbols. As usual in logic, we will not
bother to distinguish notationally between particular variables and metavari-
ables ranging over variable symbols.
The untyped ë-terms U over C are then built up according to the following
grammar:

U ::= c | x | (ëx.U1) | (U1U2)

We use U,V,W as metavariables ranging over ë-terms. We will omit brackets
wherever possible, taking application to be left-associative, so that UVW
means ((UV )W ). We will also write ëx1 . . . xn.U as an abbreviation for
ëx1. · · · .ëxn.U .
Informally we may read U1U2 as “U1 applied to U2”, and ëx.U1 as “the
function mapping any element x to U1”. We view ëx as a binder analogous
to the quantifiers ∀x and ∃x in logic; thus we have evident notions of free and
bound variable occurrences, closed terms, and substitution. We writeU [V/x]
for the result of substituting V for all free occurrences of x in U , renaming
bound variables if necessary to avoid capture.
The untyped ë-calculus is a very fluid system: any term can be applied to
any other term and even to itself. Often we wish to consider more restricted
systems in which natural type distinctions between functions and arguments
are enforced. For our purposes it will suffice to consider simply typed ë-calculi,
in which the types ó are given precisely as in Section 1.5.1 above. To define
a simply typed ë-calculus, one specifies a set C of constant symbols có , each
decorated with some type ó; we also assume we have an infinite supply of
variable symbols xó for each type ó. We first define the set of untyped ë-
terms U as above; we then define a relation U : ó (read as “U is of type ó”)
inductively by means of the following clauses:

• có : ó for any constant có ,
• xó : ó for any variable xó ,
• if U : ó → ô and V : ó then UV : ô,
• for any variable xó , if U : ô then ëxó .U : ó → ô.

We will frequently omit type superscripts where these can be inferred from the
context. We say U is well-typed, or is a simply typed ë-term, if U : ó for some
(necessarily unique) ó.
We can think of a ë-calculus (whether untyped or simply typed) not just as a
formal notation for functions, but also as a kind of programming language in
whichone canperformcomputations by symbolicmanipulation. For instance,
one may define a reduction relation U ; V on the terms of a ë-calculus,
intended to capture the idea of a single computation step. The definition of;
will depend on the ë-calculus in question, but (for the purposes of this paper)
it will always include at least the â-rule:

(ëx.U )V ; U [V/x]



16 JOHN R. LONGLEY

Frequently, the definition will also include the following congruence rules:

if U ; U ′, then UV ; U ′V, WU ;WU ′, and ëx.U ; ëx.U ′.

In addition, there may be other special reduction rules involving the constants
of the language in question. In general we will write ;

∗ for the reflexive
transitive closure of ;. A term U is a final value with respect to; if there
is no V such that U ; V . We write U ⇓ V if U ;

∗ V and V is a final
value.
Simply typed ë-calculi provide good languages for defining objects of finite
type. An interpretation of a simply typed ë-calculus L in a type structure A is
a function assigning to each closed term U : ó of L an element [[U ]] ∈ Aó ,
in such a way that U ; V implies [[U ]] = [[V ]]. A ë-calculus that admits
an interpretation inA is often a very convenient formal language for denoting
elements of A. We may say an element x of A is L-definable (for a particular
language L) if x = [[U ]] for some closed term U of L.
A theory on L will (for our purposes) be a type-respecting equivalence
relation ∼ on closed terms of L which includes the reduction relation and
which is a congruence with respect to application. Any interpretation [[− ]]
of L induces a theory on L, given by U ∼ V iff [[U ]] = [[V ]].
The set of closed terms of a simply typed ë-calculus L is itself a type
structure, with application given by juxtaposition of terms. Furthermore, the
quotient of this type structuremodulo any theory onL is again a type structure.
Type structures obtained from theories in this way are called (closed) term
models for L. Interesting term models can often be obtained by identifying
terms that have equivalent behaviour in some sense.

1.5.3. Cartesian closed categories. We now give a brief sketch of the notion
of a cartesian closed category. Only a general impression will be required in
this paper. Further details may be found in Lambek and Scott [1986].
Informally, a cartesian closed category is one in which for any objects X
and Y , we have an object Y X playing the role of the space of functions from
X to Y . A helpful motivating example is the classical category Set of sets
and functions, in which Y X is simply the set of all functions from X to Y .
Note that for any set Z, functions from Z × X to Y correspond precisely to
functions from Z to YX . Abstracting the essential features of this situation
leads to the following definition:

Definition 1.3 (Cartesian closed categories). A cartesian closed category
is a category C with finite products (including a terminal object 1), in which for
any objectsX andY we have an objectY X and a morphism εXY : YX ×X → Y
with the following property: for all morphismsf : Z ×X → Y there is a unique
morphism f : Z → Y X such that

f = εXY ◦ 〈f, idX 〉.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 17

It is a consequence of the definition that the object Y X is always uniquely
determined up to isomorphism. The reader unfamiliar with the above defini-
tion should satisfy himself that in the case of Set it does indeed characterize
the set of all functions from X to Y up to a canonical bijection.
Given any object X in a cartesian closed category C, we may obtain a type
structure as follows. First define an interpretation [[− ]] of the finite types as
objects of C:

[[ 0 ]] = X, [[ ó → ô ]] = [[ ô ]][[ ó ]]

Now define a type structure A = T(C, X ) by takingAó = Hom(1, [[ ó ]]), with
·óô the evident function induced by εXY . Many type structures of interest arise
in this way from mathematically natural categories. Clearly, if C = Set and
X = N, this construction yields the full set-theoretic type structure S.
A cartesian closed category is well-pointed when for all f, g : X → Y , if
f ◦ x = g ◦ x for every x : 1 → X then f = g. If C is well-pointed, then all
type structures T(C, X ) will be extensional.
There is a very close relationship between cartesian closed categories and
the simply typed ë-calculus. For instance, given a ë-calculus L and a suitable
interpretation of its basic types and constant symbols in a cartesian closed
category C, one can define an interpretation of L in C, in which a ë-termU : ô
with free variables xó11 , . . . , x

ón
n is interpreted by a morphism

[[U ]] : [[ ó1 ]]× · · · × [[ ón ]]→ [[ ô ]].

In the case of a single ground type 0, such an interpretation clearly gives rise
to an interpretation of L in T(C, [[ 0 ]]) in the sense of Section 1.5.2.
We may say C is amodel forL if we have an interpretation such thatU ; V
implies [[U ]] = [[V ]]. In fact, the â-rule and congruence rules mentioned
in Section 1.5.2 are automatically validated by any interpretation of L in a
cartesian closed category.
We will sometimes refer in passing to the notion of a topos. All that the
reader will need to know is that a topos is a cartesian closed category with
some strong additional properties, giving rise to a very rich categorical struc-
ture. In fact, any topos provides a model for higher order intuitionistic logic,
and can therefore be viewed as a kind of “universe” for much of intuition-
istic mathematics. The leading example of a topos is Set; in this case, the
corresponding interpretation of logic coincides with the familiar classical one.
Again, more information can be found in Lambek and Scott [1986].

1.5.4. Historical remarks. The concept of functions of arbitrary finite type
(and even of transfinite type) appeared in Hilbert [1925], in a discussion of
Cantorian set theory. The language of simple types, and the simply typed
ë-calculus, were introduced in Church [1940], though the question of inter-
pretations of the system was deliberately left open. Definitions that more or
less resemble our notion of type structure have appeared very many times



18 JOHN R. LONGLEY

in the literature: the first such was given in Henkin [1950], who considered
interpretations of Church’s system in the type structure S.
Particular instances of the extensional collapse construction (in the form in
which we have defined it) appear in Kreisel [1959] and Kleene [1959a]. The
general construction was probably folklore from an early stage, though its
debut in the literature seems to be in Zucker [1971].
The connections between ë-calculi and cartesian closed categories were
established in the 1970s by Lambek and others (see Lambek and Scott [1986]).

§2. Early work: Computability at type 2.

2.1. Prehistory. The main ideas concerning computability for type 1 func-
tions of course date back to the development of basic recursion theory in the
1930s (Gödel [1931], Church [1936], Turing [1937b], [1937a], Kleene [1936a],
[1936b], Post [1936]). These early papers furnished several characterizations
of the class of (partial) recursive functions. The first explicit formulation
of Church’s thesis appears in Church [1936]. In Turing [1939, §4] Turing
introduced the notion of a computing machine equipped with an oracle for
deciding non-computable properties, but considered this only as a means of
defining first order computability relative to a fixed oracle, so cannot truly be
said to have introduced the concept of a computable type 2 function.

2.2. Banach-Mazur functionals. A very early definition of a class of type 2
functionals involving a notion of computability is due to Banach and Mazur
(Banach and Mazur [1937]) (see also Mazur [1963]):

Definition 2.1. A total functionF : NN
rec → N is Banach-Mazur if, for every

total recursive function h : N×N → N, the functionΛx.F (Λy.h(x, y)) : N → N

is total recursive.

Notice that this condition says that, in some sense, F carries computable
functions to computable functions, but it does not tell us how given g one
might compute F (g) in any sense. For this reason, the notion is rather tan-
gential to the story we tell here — we do not regard it as a genuine candidate
for a notion of computable functional, but rather as a property which com-
putable functionals may possess. Early results showed that every computable
functional (in the senses discussed below) is Banach-Mazur, but not vice versa
(see Friedberg [1958a]), and some relationships to other properties of func-
tionals were considered in Pour-El [1960]. Most of this material is helpfully
summarized in Rogers [1967, §15.3].
The Banach-Mazur functionals later reappeared in theworkof Lawvere and
Mulry (Mulry [1982]), whose recursive topos provides a natural generalization
of the notion to higher types (see also Section 4.2.4).

2.3. Computations on pure functions. The first explicit definition of a gen-
uine notion of type 2 computability, as far as we are aware, was given by



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 19

Figure 1. History of higher type computability: a selective outline.

1950 –

1960 –

1970 –

1980 –

1990 –

2000 –

(Basic recursion theory)

�
�

�
�

�
�

�
��

Péter (type 2

primitive recursion)

�
�
�
�
�
��

Kleene (uniform

recursiveness),

Grzegorczyk

@
@

@
@

@@

Rice-Shapiro,

Myhill-Shepherdson,

Kreisel-Lacombe-Shoenfield

(effective operations)

Gödel

(System T)

���
�
�
�Kleene

(S1–S9)

�
�#

"
 
!

Kleene, Kreisel

(countable/continuous

functionals)

BB�
�
�
�Kreisel

(HEOs)

Tait et al.

(strong

normalization)

��
Modern

type

theory

?
Cook et al.

(higher type

complexity)

�
��

Gandy

Grilliot,

Hinman,

Moschovakis

Sacks,

Harrington,

Normann

(degrees,

sections)

Admissible

set theory

B
BB'
&
$
%

Platek

(monotone

partial

functionals)

Kleene,

Kierstead

(S1-S8,S11)

HHHH

Tait

Gandy,

Hyland,

Hinman

Normann

�
�
�
�
�
�
�
�

Berger

(totality)

Normann,

Plotkin

Ershov

(numerations)
HHHHH '
&
$
%

Scott

(continuous

partial fnls)#
"
 
!

Plotkin,

Sazonov

(PCF)

Q
Q

Q
Q

QQ

Troelstra

(higher type

realizability)

Hyland et al.

(realizability

models)

Synthetic

domain

theory

Berry-Curien

(sequential

algorithms)

�
�
�

Abramsky,

Hyland etc.

(Game

models)

Loader

(undecidability)

A
A
A'

&

$

%
Ehrhard

et al.

(Strongly

stable fnls)

PPPPq ?

�
�

�
��

�
�

��
Longley (general theory)



20 JOHN R. LONGLEY

Péter in Péter [1951a], [1951b] (although a somewhat similar definition had
been sketched in Hilbert [1925]). Péter considered a schema for “primitive
recursion of the second degree” as a means of defining total functions with
arguments of type NN as well as N. Sacrificing some generality for the sake
of clarity, the basic idea is as follows: given previously defined functionals
G,H of suitable types, one may construct a new function F : N×N → N such
that

F (0, m) = G(m),

F (n + 1, m) = H (Λy.F (n, y), n,m).

By allowing additional parameters g1, . . . , gr of type NN, we are able to con-
struct new type 2 functionals from old ones. We may then define a class of
type 2 primitive recursive functionals by starting from a suitable set of “basic”
functionals and closing under substitution and primitive recursions of the
above kind.
Péter showed that a certain class of “transfinite recursions” at type 1 could be
systematically replaced by primitive recursions at type 2. Thus, for instance,
the well-known Ackermann function, though not primitive recursive in the
usual sense, could be defined by a type 2 primitive recursion.
In his famous book (Kleene [1952]), Kleene gave schemata for defining
primitive, total and partial recursive functions uniformly in a finite list of
functions g1, . . . , gl ∈ NN (§47, §58, §63). Restricting for simplicity to the
case l = 1, the definitions are as follows.

Definition 2.2 (Uniform computability).

(i) A function f : Nk → N is primitive recursive uniformly in g if f can be
defined from g (together with the usual repertoire of basic functions) by
means of composition and (ordinary first order) primitive recursion.

(ii) f : Nk ⇀ N is partial recursive uniformly in g if f can be defined from
g plus the basic functions via composition, primitive recursion and mini-
mization. If in addition the definition of f results in a total function for all
values of g ∈ NN, we say f is total recursive uniformly in g.

Kleene made explicit the possibility of regarding g as a variable and thus
obtaining type 2 functionals F : NN × Nk ⇀ N. Note that Kleene’s no-
tion of primitive recursive functional is more restrictive than Péter’s, because
whereas in Kleene’s definition type 1 functions simply enter the computa-
tion as additional basic functions which remain fixed throughout, Péter’s
scheme in some sense allows infinitely many values of F to be collected into
a new type 1 function during the course of a recursive computation. Kleene’s
definition yields just the usual class of primitive recursive functions at type
1.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 21

Kleene also showed that his partial recursive functionals can be charac-
terized equivalently as those computable by Turing machines with oracles
(op. cit., Chapter XIII).2

In two papers from 1954, Grzegorczyk (Grzegorczyk [1955b], [1955a])
considered a class of computable total functionals with arguments in N and
NN, defined as the smallest class containing some basic functionals and closed
under substitution and minimization. It is fairly easy to see directly (and is
immediate from Kleene’s later results) that Grzegorczyk’s notion coincides
with Kleene’s notion of uniform total recursiveness, though this does not
seem to have been noted in the literature of the time. In Grzegorczyk [1955b],
Grzegorczyk showed that his definition was equivalent to anHerbrand-Gödel
style definition in terms of an equational calculus. In Grzegorczyk [1955a]
he investigated some properties of this notion, showing that all computable
functionals were continuous, and that certainmodulus of continuity functionals
were computable.
The relationship between computability and continuity was to become a
recurring theme in the subject. In the case of Grzegorczyk’s result (and others
in the same vein), the intuition is simple: if we apply a computable type
2 function F to a type 1 function g, the “computation” of F (g) can only
interrogate g at finitely many arguments before terminating, so for any other
function g ′ agreeingwith g on this finite portionwewould haveF (g) = F (g ′).
Thus F is continuous with respect to the familiar Baire topology.

2.4. Computations on Kleene indices. All the approaches to type 2 com-
putability mentioned above share the feature that the type 1 arguments are
presented simply as oracles or “black boxes”: the only way to interact with
them is to feed them with an argument and observe the outcome. In parallel
with this was another strand of research which considered notions of type
2 computability in which the type 1 arguments were presented as recursive
indices (say, as Gödel numbers for Turing machines). Given a recursive index
we can of course do everything that we can do with an oracle, since we can
always apply the index to a type 0 argument. However, it would seem a priori
that one might be able to do more with an index than with an oracle, since we
are given extra intensional information— intuitively, we can “look inside” the
box and examine how the machine or program is working.
The following definition will allow us to state the main results succinctly:

Definition 2.3 (Effective operation). Let R be either of the sets NN
rec or

NN
p rec. A partial function F : R ⇀ N is a partial effective operation on R

2Kleene introduced, somewhat peripherally, a notion of partial recursiveness uniformly in a
list of partial functions

�
⇀

�
(Kleene [1952, §63]), but did not study it in detail. As pointed out

in Platek [1966, pp. 128–130], Kleene’s particular definition has some rather undesirable features;
nevertheless, it turns out to give rise to the class of parallel-computable type 2 functions, see
Section 4.2.



22 JOHN R. LONGLEY

if there exists a partial recursive function f : N ⇀ N such that for any m ∈ N

with φm ∈ R we have F (φm) ' f(m). If additionally F is total, we say it is a
total effective operation on R.

Thus, an effective operation is given by a computable function f acting on
recursive indices, which f may manipulate in any way it likes, subject only
to the requirement of extensionality: f must give the same result on different
indices for the same type 1 function.
In fact, all four cross-combinations of total and partial function spaces were
investigated in the early literature. First, a theorem of Rice (Rice [1953]),
originally phrased in terms of decidable properties of r.e. sets, essentially says
the following:

Theorem 2.4 (Total acting on partial). Every total effective operation on
NN
p rec is constant.

This led, via a theorem of Rice and Shapiro (Rice [1956]), to the following
important result, often knownas theMyhill-Shepherdson theorem. Itwas first
obtained in Myhill and Shepherdson [1955], and independently in Uspenskii

[1955]. A related result also appeared in Nerode [1957]. Here we take è 7→ è̂
to be an effective coding of the graphs of finite partial functions è : N⇀ N as
natural numbers.

Theorem 2.5 (Partial acting on partial). A function F : NN
p rec ⇀ N is a par-

tial effective operation iff

• F is monotoneand continuous (i.e., F preserves existing least upper bounds
of chains in NN

p rec), and

• F acts effectively on finite elements (i.e., there is a partial recursive function

h such that for every finite è : N⇀ N we have F (è) = h(è̂)).

Moreover, every partial effective operation F on NN
p rec extends uniquely to a

monotone and continuous function F : NN
p ⇀ N.

The other main positive result, often called the Kreisel-Lacombe-Shoen-
field theorem, was obtained slightly later in Kreisel, Lacombe, and Shoenfield
[1957], [1959], and independently in Tseitin [1959]. Our formulation here is
somewhat less general than the original version.

Theorem 2.6 (Total acting on total). A function F : NN
rec → N is a total ef-

fective operation iff it is the restriction of a uniformly partial recursive function
F : NN ⇀ N (see Definition 2.2) whose domain contains NN

rec.

It follows that every total effective operation on NN
rec is continuous with

respect to the usual Baire topology. Proofs of Theorem 2.6 may be found
in many texts, e.g., Rogers [1967], Beeson [1985], Aberth [1980], Odifreddi
[1989]. A very short proof using Kleene’s second recursion theorem was given
by Gandy (Gandy [1962]), though it is perhaps too serendipitous for most



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 23

ordinary mortals. A unified result subsuming both Theorems 2.5 and 2.6 may
be found in Spreen and Young [1983].
Theorems 2.5 and 2.6 both provide very striking examples of the connection
between computability and continuity. These results obviously say something
deeper than the result of Grzegorczyk mentioned at the end of Section 2.3,
since there we could interact with a type 1 function only as a black box, while
here we have access to a recursive index for it. However, the final theorem of
our quartet, due to Friedberg (Friedberg [1958b]), shows that the connection
with continuity breaks down if totality and partiality are mixed:

Theorem 2.7 (Partial acting on total). There exists a partial effective opera-
tion onNN

rec which is not continuous (hence not the restriction of a Kleene partial
recursive functional on NN).

The above theorems and their proofs are covered in Rogers [1967, §15.3].
Most of the remaining natural questions about type 2 computability turn
out to have negative answers. For example, not every total effective operation
on NN

rec is the restriction of a uniformly total recursive function on NN. This
can be shown using the celebrated Kleene tree, one of the most important
counterexamples in the subject.

Theorem 2.8 (Kleene tree). There exists a binary treeB (i.e., a prefix-closed
set of finite sequences over {0, 1}) such that

• B is primitive recursive (that is, there is a primitive recursive function b
such that b〈α〉 = 0 iff α ∈ B).

• B contains finite paths of arbitrary length (so classically, by König’s
Lemma, B contains infinite paths).

• B contains no recursive infinite paths.

The Kleene tree is so named after its appearance as Theorem LII of
Kleene [1959b], although examples of the same phenomenon also appeared in
Lacombe [1955d] andZaslavskii [1955], Zaslavskii andTseitin [1962]. Wemay
now obtain a total effective operation Z that does not extend to a uniformly
total recursive function on NN, by defining

Z(f) = ìn. [f(0), . . . , f(n − 1)] 6∈ B,

where ì is the minimization operator of ordinary recursion theory. This
example also sheds light on the meaning of continuity in the foregoing results:
Z is continuous on NN

rec by Theorem 2.6, but it cannot be extended even to a
continuous function on the whole of NN.
Twomore negative results will help to complete the picture at type 2. Firstly,
a plausible analogue of Theorem 2.5 fails for total functionals acting on total
functions: not every continuous functional which acts effectively on a suitable
basis of “finite” type 1 functions (namely, the eventually constant functions) is
an effective operation. A simple counterexample was given in Pour-El [1960];
see also Rogers [1967, §15.3]. Secondly, the analogue of Theorem 2.6 for



24 JOHN R. LONGLEY

partial functionals acting on partial functions fails because the uniformly
partial recursive functions NN

p ⇀ N are all sequentially computable, whereas
the partial effective operations include parallel functions. This distinction was
first made explicit in Platek [1966], andwill be discussed at length in Section 4.
These early results show that the situation at type 2 is already quite com-
plicated, and they serve to illustrate many of the general characteristics of
the subject. Firstly, they exhibit a considerable diversity of approaches to
defining a notion of “computable functional”. Secondly, they show how quite
different approaches sometimes lead to the same class of functionals, provid-
ing evidence for the intrinsic importance of this class (Theorem 2.6 is a good
example of this). On the other hand, we have seen that not all definitions
of computability conveniently collapse to a single notion, and that an impor-
tant role is played by negative results and counterexamples. Finally, we have
already seen several instances of the connection between computability and
continuity.

§3. Total computable functionals. Once various notions of type 2 com-
putability had been considered, the possibility of trying to extend them to
higher types was obvious. (Péter speculated informally on this possibility in
Péter [1951b], but did not develop it.) The years 1957–59 saw the appearance
of no fewer than four important notions of higher type computability, rep-
resented by Gödel’s System T, Kleene’s schemata S1–S9, the Kleene-Kreisel
countable or continuous functionals (and their effective substructure), and
Kreisel’s hereditarily effective operations.
It is worth noting that all these notions were concerned primarily with
hereditarily total functionals— good notions of computability for hereditarily
partial functionals of all higher types were a later development (see Section 4).
A qualification is needed here in the case of S1–S9, since (as we shall see) this
notion naturally gives rise to partial computable functionals, albeit acting on
hereditarily total objects. However, the partial functionals that arise in this
way are somehow second-class citizens, since they cannot themselves serve as
arguments to functionals of higher types. It therefore seems natural to include
S1–S9 in our discussion of hereditarily total notions of computability.
Roughly speaking, each of the four notions mentioned above gave rise to its
own strand of research, so that the study of higher type computability appears
somewhat fragmented from 1960 onwards. We now consider these notions in
turn and the lines of research they gave rise to.

3.1. System T and related type systems. Gödel’s System T, introduced in
Gödel [1958], provides a higher type analogue of the notion of primitive
recursive computation. It is one of a number of syntactic formalisms that
define restricted classes of computable functionals, in the sense that the com-
putational complexity of definable functionals is somehow limited. These



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 25

formalisms fall somewhat outside our primary area of interest, since they
make no claim to defining a “complete” class of computable functionals in
any interesting sense, but they are close enough to our concerns to merit some
attention.

3.1.1. Gödel’s T. System T is essentially a simply typed ë-calculus over the
ground type 0, with constants for zero, successor and primitive recursors of
higher type:

0 : 0, succ : 0→ 0, recó : ó → (ó → 0→ ó)→ 0→ ó.

These are equipped with the following reduction rules in addition to the usual
â-rule and congruence rules given in Section 1.5.2:

recóUV0 ; U

recóUV (succ n); V (recóUVn)n

(where n is a variable of type 0). It is fairly easy to see that System T naturally
extends Péter’s notion of second order primitive recursion to higher types (see
Section 2.3).
One can consider this system either as a standalone syntactic formalism,
or as a language for denoting functionals in some given type structure, as in
Section 1.5.2. For instance, if S is the full type structure over N defined in
Section 1.5.1, then any closed term U : ó of System T denotes an element
[[U ]] ∈ Só in an obvious way.
In fact, Gödel’s original presentation of System T was as a logical system
for reasoning about higher type objects — in place of our reduction rules
U ; U ′ he gave equational axioms U = U ′. Gödel’s purpose was to give
an interpretation of first order Heyting arithmetic (the so-called Dialectica
interpretation) in which first order sentences involving complex nestings of
quantifiers were replaced by logically simple sentences involving objects of
higher type. Specifically, Gödel gave a translation from formulae φ(x) of
Heyting arithmetic to formulae φ′(x) of the form ∃y .∀z .φ∗(x, y , z), in which
the variables in y , z may be of arbitrary finite type, and φ∗ is just a proposi-
tional combination of equations between terms of System T. For the sake of
completeness we give the definition of the translation here, though the details
are not too important for our purposes:

Definition 3.1 (Dialectica translation). For atomic formulae α, define
α′ ≡ α. Given φ′(x) ≡ ∃y .∀z .φ∗(x, y , z) and ø′(u) ≡ ∃v.∀w.ø∗(u ,v,w),
define

(φ ∧ ø)′ ≡ ∃yv.∀zw.φ∗(x, y , z) ∧ ø∗(u ,v,w)

(φ ∨ ø)′ ≡ ∃yvt.∀zw.(t = 0 ∧ φ∗(x, y , z)) ∨ (t = 1 ∧ ø∗(u,v,w))



26 JOHN R. LONGLEY

(φ ⇒ ø)′ ≡ ∃VZ .∀yw.φ∗(x, y ,Z (y ,w))⇒ ø∗(u ,V (y),w)3

(∀s.φ)′ ≡ ∃Y .∀sz .φ∗(x,Y (s), z)

(∃s.φ)′ ≡ ∃sy .∀z .φ∗(x, y , z)

It can be shown that if φ is provable in HA then there are terms Y of Sys-
temT such thatφ∗(x,Y (x), z) is provable in SystemTusing just quantifier-free
intuitionistic logic. The terms Y here can be thought of as embodying the
constructive content of the proof of φ. We may now interpret the terms Y ,
and the proof of φ∗(x,Y (x), z), in any type structure satisfying the axioms
of System T. We thus obtain a “functional interpretation” of Heyting arith-
metic, which can be used to prove the consistency of Heyting arithmetic, and
hence (in view of Gödel’s double-negation translation) that of Peano arith-
metic.4

However, the interest of System T seems to go beyond this original applica-
tion. Gödel himself gave a proof-theoretic characterization of the expressive
power of System T: the T-definable type 1 functions (in S, say) are precisely
the functions provably total in first order Heyting or Peano arithmetic. Grze-
gorczyk (Grzegorczyk [1964]) gave some alternative characterizations of the
System T definable functionals in the style of combinatory logic. Tait and
several others (Tait [1967], Dragalin [1968], Hinata [1967], Hinatani [1966],
Sanchis [1967], Shoenfield [1967]) proved independently that System T is
strongly normalizing — that is, for any System T term, all reduction paths
terminate yielding the same final value, or normal form. (A remarkable alter-
native proof of this was later given in Gandy [1980].) This important result
implies that any term model for System T is itself a type structure with all
the properties needed for the Dialectica interpretation. Thus, a functional
interpretation of arithmetic can be given in terms of System T itself, without
the need for an interpretation of System T in another type structure. (This
idea was already implicit in a remark in Kreisel [1959, §3.4].)
The Dialectica interpretation also inspired work on interpretations of sys-
tems for analysis (or secondorder arithmetic) in a similar spirit (Kreisel [1959],
Spector [1962]); however, these go beyond System T itself. For instance, Spec-
tor’s system includes an additional operator for defining objects by means of

3Here, for instance, if Z abbreviates Z1 . . . Zr , we write Z (y ,w) to abbreviate Z1(y ,w),
. . . , Zr (y ,w). Gödel motivated the clause for implication as follows. We identify a proposition
(∃y . · · · ) ⇒ (∃v. · · · ) with the existence of computable functions V that to each sequence y
making the antecedent true assign a sequence v making the consequent true. Moreover, we
identify a proposition (∀z . · · · )⇒ (∀w. · · · ) with the existence of computable functions Z that
to each sequencew making the consequent false assign a sequence z making the antecedent false.
4All that is required for Gödel’s argument is that some type structure satisfying the axioms of

System T exists. In Gödel [1958], Gödel seemingly regarded the existence of a suitable notion of
computable operation of finite type as immediately apparent. A footnote in a revised version of
the paper (Gödel [1972]), however, suggests he had in mind the structureHRO (see Section 3.4).



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 27

bar recursion (an intuitionistic principle considered by Brouwer); this sys-
tem admits a natural interpretation in the type structure of total continuous
functionals (see Section 3.3).
Another set of questions concern theories for System T. For example, what
equivalence relations on System T terms are induced by their interpretation in
various type structures? The largest reasonable theory, which we shall call ≈,
is the one given by the notion of “observational equivalence”: M ≈ N at type
ó iff for all closed P : ó → 0, PM and PN reduce to the same normal form.
An argument due to Kreisel (appearing as one of the final set of exercises
in Barendregt [1984]) shows that the interpretation of System T in S induces
a strictly smaller theory — in computer science terms, this interpretation is
not fully abstract. By contrast, Loader has shown that the interpretation
of System T in the type structure HEO (see Section 3.4) induces exactly the
theory ≈ (Loader [1997]).
Other mathematical results pertaining specifically to System T include the
theorems of Howard (Howard [1973]; see also Girard [1987, annex 7.A]) that
all T-definable functionals are hereditarily majorizable, and hence that there is
no T-definable modulus of extensionality functional. A further mathematical
analysis of System T in terms of functors over the category of ordinals is given
in Päppinghaus [1985] (see also Girard [1988]).
Further discussions of System T can be found in Kreisel [1959], Troelstra
[1973, §3.5], Barendregt [1984, Appendix A.2], and Girard [1987, annex 7.A].
A good survey of later research related to System T can be found in Section 5
of Troelstra’s introductory note toGödel’s original paper in Gödel [1990]. For
more on the Dialectica interpretation, see Avigad and Feferman [1998].

3.1.2. Kleene’s S1–S8. We have already observed that System T can be in-
terpreted in various type structures, such as the full set-theoretic type structure
S. Indeed, one reason why System T is interesting from our point of view is
that it admits an interpretation of this kind in practically all the type structures
we shall have occasion to consider. It therefore provides a kind of common
“skeleton” for all these type structures, and gives us an effectively enumerable
class of “total” functions that can play a role analogous to that of the primitive
recursive functions in ordinary recursion theory.
However, in this regard there is nothing particularly unique about Sys-
tem T — many other systems would serve the same purpose. For instance,
a weaker form of primitive recursion is given by the typed ë-calculus with
constants 0, succ and

r̂ecó : ó → (ó → 0→ ó)→ 0→ ó

together with reduction rules

r̂ecóUV0W ; UW

r̂ecóUV (succ n)W ; V (r̂ecóUVn)nW



28 JOHN R. LONGLEY

where ó = ó1 → · · · → ón → 0 andW textually abbreviatesW1 . . .Wn .5 This

system, which we will call System T̂, corresponds exactly in expressive power
to Kleene’s schemata S1–S8 (see Section 3.2 below); Kleene referred to the
elements of S definable by these means as the primitive recursive functionals.
Whereas System T offers a natural higher type generalization of Péter’s notion

of type 2 primitive recursiveness, System T̂ offers a similar generalization of
Kleene’s notion (Definition 2.2(i)). Thus, System T can also define functions
such as the Ackermann function, whereas the type 1 functions definable in

System T̂ are just the primitive recursive functions in the usual sense (see
Kleene [1959b, §1]).
In some sense S1–S8 offers a better common core of “simple” function-
als than System T, insofar as it can be interpreted in a wider class of type
structures. It would seem, though, that overall Kleene’s S1–S8 holds less
mathematical interest than Gödel’s T.
System T also provided a point of departure for two other strands of later
work, namely modern type theory (which typically considers stronger systems
than System T), and higher type complexity theory (which typically considers
weaker systems). Both of these are significant areas of research in theoretical
computer science. For detailed information on modern type theory, a good
reference is Barendregt [1992]; for higher type complexity, we refer the reader
to the surveys in the recent articles of Irwin, Kapron, and Royer [2001a],
[2001b].

3.2. Kleene computability: S1–S9.

3.2.1. Kleene’s work. The first serious attempt at a full-blown generaliza-
tion of the notion of recursive function to all type levels wasKleene’s definition
of higher type computability via the schemata S1–S9 (Kleene [1959b], [1963]).
This can be seen as generalizing his notion of partial recursiveness at type 2
(Definition 2.2). In Kleene’s approach to higher type computation, we sup-
pose we are given a type structure A of hereditarily total functionals over N,
and we define a class of computable partial functionals over A by means of
certain computation schemata. However, as mentioned at the beginning of
Section 3, the computable partial functionals appear to play a less central role
than the total ones.
The spirit behind Kleene’s definition is easily grasped: we are allowed to
perform effective computations involving elements ofA, in which the elements
of function type are treated simply as oracles or black boxes. In particular,
we may feed an element of function type with numbers or functions that are
themselves computable (in the same sense), and observe the numerical results,
but we are not granted access to information about such elements in any
other way. Thus, Kleene’s definition embodies the ideal of computing with

5The notation �rec is adapted from Feferman [1977b], where the constants recó are called
�
-recursion operators and the �recó are called elementary recursion operators.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 29

functions as pure extensions, without reference to how they are represented
or implemented. Indeed, A will in general include non-computable objects,
so that we have to imagine the corresponding oracles as working “by magic”.
Kleene in fact concentrated his attention on computations over objects of
pure type (see Section 1.5.1), though this was not an especially significant
decision. Because of its historical importance, we reproduce Kleene’s original
definition here in all its glory, with slightly modified notation.6 Given a type
structure A, we write X (A) for the disjoint union of all sets Aó1 × · · · × Aór
(r ≥ 1) where the ói are pure types. We write #− for the coding of pure types
as natural numbers given by #n = n, and take 〈· · ·〉 to be an effective coding
of finite sequences of natural numbers. Throughout this section we will use
x : ó as an abbreviation for x ∈ Aó , rather than as a formal expression. We
also abbreviate x1, . . . , xr by x, x1 : ó1, . . . , xr : ór by x : ó , and 〈#ó1, . . . ,#ór〉
by #ó .
The definition proceeds by introducing a systemof indexingwhereby natural
numbers m encode definitions of computable partial functions {m}; this is
reminiscent of the indexing of partial recursive functions in ordinary recursion
theory.

Definition 3.2 (Kleene computability). LetA be an extensional type struc-
ture over N.

(i) We inductively define a partial function {−}(−) : N × X (A) ⇀ N, called
index application, by means of the following clauses (which we interpret
as applying whenever they are well-typed ).
S1: Successor function: {〈1,#ó〉}(x : ó) = x1 + 1.
S2: Constant functions: For any q ∈ N, {〈2,#ó , q〉}(x : ó) = q.
S3: Projection: {〈3,#ó〉}(x : ó) = x1.
S4: Composition: For any g, h ∈ N,

{〈4,#ó, g, h〉}(x : ó) ' {g}({h}(x),x).

S5: Primitive recursion: For any g, h ∈ N, if m = 〈5,#ó , g, h〉 then

{m}(0,x) ' {g}(x), {m}(n + 1,x) ' {h}(n, {m}(n,x),x).

S6: Permutation of arguments: For any g ∈ N and 1 ≤ k < r,

{〈6,#ó , k, g〉}(x : ó) ' {g}(xk+1, x1, . . . , xk , xk+2, . . . , xr).

S7: Type 1 application: If ó1 = 1 and ó2 = 0, then

{〈7,#ó〉}(x : ó) = x1(x2).

6Kleene’s definition was restricted to the case A = S. Moreover, Kleene adopted the peculiar
convention that only the order of arguments within each type was material, so his version of S6
was slightly different from the one given here.



30 JOHN R. LONGLEY

S8: Higher type application: For any h ∈ N and t ≥ 2, we have

{〈8,#ó, t, h〉}(y : t,x : ó) ' y(Λz : t − 2. {h}(y, z,x))

provided {h}(y, z,x) is defined for all z ∈ At−2.
S9: Index invocation: {〈9,#ó ,#ô〉}(n : 0, y : ó , z : ô) ' {n}(y).

(ii) We say F : Aó1 × · · · ×Aór ⇀ N is Kleene computable over A if there is
a number m (called an index for F ) such that F (x) ' {m}(x) for all x.

One may wonder why Kleene, one of the pioneers of the ë-calculus, did not
make greater use of the typed ë-calculus in formulating this notion of com-
putability. It seems that his early attempts to give talks based on his ë-calculus
work before the latter had achieved wide currency were less well-received than
the above definition via indices. A definition of Kleene computability in a
more modern spirit will be given in Part II.
As already noted, S1–S8 by themselves define a perfectly good class of total
functionals — the schema S9 is the only one that introduces partiality into
the definition. Notice that even if the indexing system were redesigned so
that every natural number indexed precisely one function of each type, partial
functions would still arise for reasons of circularity. Specifically, if m were
an index for the function F = Λn. {n}(n) then F (m) would be undefined
according to the inductive definition above, since the clause for S9 would tell
us merely that {m}(m) ' {m}(m). That is, a value for {m}(m) would appear
at some stage in the inductive generation of {−}(−) only if it had already
appeared at some previous stage.
Kleene generally conceived computations in this setting as infinitely branch-
ing trees of transfinite depth — when invoking S8 one computes the entire
graph of Λz.{h}(y, z,x) by means of auxiliary computations before present-
ing it to the oracle y. This is perhaps not the only possible conception: for
example, one might imagine that the magic of the oracles included the ability
to recognize functions from finitary descriptions of them, in which case these
auxiliary computations would not be needed. But whatever conception one
adopts, Kleene’s schemata exhibit a curious tension between effective, fini-
tary computational processes and calls to numinous or infinitistic oracles, so
that the computational significance of Kleene’s definition is rather difficult to
gauge.
Kleene’s motivation seems to have sprung from two distinct strands of his
earlier work. On the one hand, he was certainly seeking an appropriate higher
type generalization of the basic notions of ordinary recursion theory — in-
cluding, if possible, some analogue of Church’s thesis at higher types. On
the other hand, he was seeking to explain his theory of logical complexity for
classical predicate logic (embodied in the arithmetic and analytic hierarchies,
as in Kleene [1955a], [1955b]) in terms of computability relative to certain
higher type objects (hence the emphasis on quantifiers in his papers on higher



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 31

type computability). This lattermotivation goes someway towards explaining
two features of Kleene’s definition that sometimes appear puzzling to modern
readers: the restriction to computations on total functionals, and the special-
ization to the type structure S rather than any more constructively given class
of functionals.
Kleene developed some basic results for this notion of computability analo-
gous to those of ordinary recursion theory: for example, higher type versions
of the normal form theorem (Kleene [1959b, §5]), and a restricted version
of the first recursion theorem (Kleene [1963, §10]). He also showed that
the schema S9 is strictly more powerful than the ì-recursion (minimization)
schema familiar from ordinary recursion theory (Kleene [1959b, §8]), and
argued that the former gives rise to a more compelling notion of higher type
computability. In addition, Kleene introduced the natural notion of relative
computability in the setting of S1–S9:

Definition 3.3 (Relative Kleene computability).7

(i) A partial function g : Aó1 × · · · ×Aór ⇀ N isKleene computable relative
to y ∈ A if there is a Kleene computable partial function f such that
f(y, z) ' g(z) for all z : ó .

(ii) Given x, y ∈ A of type level > 0, we write x � y if x is Kleene computable
relative to y. We say x, y are of the same Kleene degree if x � y � x.

Other results made precise the connection with logical complexity. For
instance:

Theorem 3.4 (Kleene [1959b, §10]). A total function F : Nr → N is hyper-
arithmetical (that is, its graph is definable by a ∆11 formula) iff it is Kleene
computable relative to the type 2 object 2∃, given by

2∃(f) =

{
0 if ∃n. f(n) = 0,

1 otherwise.

Kleene also followed up his definition via S1–S9 with a clutch of papers
(Kleene [1962c], [1962d], [1962b], [1962a]) showing that several alternative
definitions of higher type computability — via Turing machines, ë-calculus,8

and Herbrand-Gödel style recursive definitions — give rise to the same class
of computable functionals. These results closely parallel the corresponding
results of ordinary recursion theory, but they are not especially deep exten-
sions of the familiar results, and all these definitions are based on essentially
the same idea of computation with oracles. Nevertheless, these results go
some way towards establishing the robustness of Kleene’s class of computable
functionals.

7Kleene’s original definition did not take exactly this form, but the equivalence is trivial.
8In fact, in Kleene [1962b] Kleene used a system based on what is now known as Church’s ëI

calculus.



32 JOHN R. LONGLEY

Despite these reassuring results, however, Kleene’s notion presents us with
some strange anomalies. Wemention two of these here, both arising somehow
from the curious infinitary side-condition in S8.
The first of these is the notorious fact that Kleene’s computable partial
functionals are not closed under some basic substitution operations. For
example, consider the functions h,Φ, G defined by

h(m : 0, n : 0) '

{
0 if ¬T (m,m, n),

undefined if T (m,m, n)

Φ(F : 2, m : 0) ' F (Λn.h(m, n))

G(f : 1) = 0

where T is the T -predicate of ordinary recursion theory. Then the partial
functions Φ, G are both Kleene computable, but Λe.Φ(G, e) is not. This is
because G(Λn.h(m, n)) = 0 iff Λn.h(m, n) is a total function, which is the
case iff φm(m) is not defined. Hence, if Λe.Φ(G, e) were computable, we could
solve the halting problem.
This is obviously rather worrying — indeed, it even seems questionable in
what sense we have defined a computable functional Φ if we are not even
allowed to plug in the total computable functional G as its first argument.
Essentially the same problem lies behind the failure of the natural general-
ization of the first recursion theorem. There is also other evidence that the
notion of partial computable functional here is pathological: for instance,
a set that is semi-recursive and co-semi-recursive need not be recursive (see
Platek [1966, p. 131]), and the union of two semi-recursive sets need not be
semi-recursive (see Grilliot [1969b, p. 233]).
One way of responding to this problem is to restrict one’s attention to
the total computable functionals. In most interesting cases, the total Kleene
computable functions overA constitute awell-behaved class, sowemay regard
Kleene’s definition as picking out an important substructure of A:

Definition 3.5. A type structure A is closed under Kleene computation
if all the total Kleene computable functionals over A are themselves elements
of A. We then write KC(A) for the type structure consisting of the total Kleene
computable elements of A.

In this situation, the elements of KC(A) behave well with respect to substi-
tution and indeed constitute a cartesian closed category.
A second curious feature of Kleene’s definition, less often noted, is its
apparent non-absoluteness. The set of indices that define total functionals, for
instance, may vary from one type structure A to another — intuitively, the
fewer elements of type ó there are in A, the easier it is for an index to define
a total functional of type ó → 0. Even for the case of computability over S,
it is unclear a priori whether the totality or otherwise of the function {m}(−)



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 33

is an absolute property of m, unless one is willing to accept the notion of
“the” full set-theoretic type structure as absolute. Could there be Kleene-style
computations whose termination is dependent on controversial principles of
set theory? We will return to this question in Part II.
Other presentations of the Kleene computable functionals were later given
in Gandy [1967a] and Platek [1966]. Both of these treatments sought to
avoid some of the arbitrary features of Kleene’s definitions and to empha-
size the naturalness of this notion of computability. Gandy gave a more
perspicuous definition involving register machines, and argued that one was
led ineluctably to Kleene’s notion of higher type computability if (a) one
restricted attention to (hereditarily) total arguments, and (b) one treated
functions as “pure extensions”. Platek gave a characterization of Kleene’s
functionals within a general framework for recursion theory that stressed
definability of functions by recursion rather than computability. In partic-
ular, he showed how a very natural theory of recursive definability could
be developed for type structures of hereditarily partial functionals — here
the troublesome side-condition in S8 is not needed, and one may easily re-
cover Kleene’s original notion via some simple relationships between partial
and total type structures. (We will say more about this approach in Sec-
tion 4.1.)
Platek’s approachvia inductivedefinabilitywas streamlinedbyMoschovakis
(Moschovakis [1976]), whose approach made use of ideas from his work on
abstract computability theories (Moschovakis [1969], [1974a]), which in turn
was inspired by Kleene’s original definition of S1–S9. A key insight here
was that higher type computability can in some sense be reduced to type 2
computability: if we think of each of the sets Aó as a separate ground sort,
then Kleene computability over A becomes simply a matter of what can in an
abstract sense be computed relative to the (first order) application functions
and the (second order) ë-abstraction operations. This treatment was followed
in the expository article of Kechris and Moschovakis [1977]. A comparison
of various approaches to Kleene computability was given in Fenstad [1978]
(see also Feferman [1977a]).
Beyond the results already mentioned, however, the pure notion of Kleene
computability over S appears to hold rather little mathematical interest. For
this reason, the later study of recursion theory on S concentrated almost
entirely on questions of relative computability or on certain kinds of non-
computable object. Thus, at this point the subject largely lost contact with
genuinely effective notions of computability. Nevertheless, the ideas involved
can still be seen as plausible generalizations of “computation” to infinite ob-
jects, so an account of these developments is in order.

3.2.2. Recursion in normal objects. Most of the later work concentrated on
the theory of normal functionals in S:



34 JOHN R. LONGLEY

Definition 3.6 (Normal functionals).

(i) We write k∃ (k ≥ 2) for the object of Sk embodying existential quantifi-
cation over Sk−2.

(ii) A functionalΘ of type level k is said to be normal if k∃ � Θ.

We will be interested in notions of Θ-computability (that is, Kleene com-
putability relative to Θ) where Θ is normal, and particularly in the notions of
k∃-computability.
The study of normal objects and the associated notions of computability
turns out to yield a very rich and beautiful theory. Roughly speaking, if k∃
is deemed computable, then the theory of computability is good up to and
including type levelk. Oneway to see intuitivelywhy this should be so is to note
that in a setting where we have the ability to quantify over Sk−2, it is consonant
to think of the infinitary side-condition in S8 as somehow “semidecidable”
(and hence harmless) for t ≤ k; thus, the anomalies mentioned earlier for
pure Kleene computability are washed out in this setting.
The significance of normal objects had already emerged from Kleene’s
early work, but their good properties were first seriously exploited by Gandy
(Gandy [1967b]),9 who introduced the key concepts of stage comparison and
number selection. Informally, a stage comparison function for two functionals
F and G is a partial function ÷F,G(x, y) that tells us which out of the Kleene
computation trees forF (x), G(y) has the smaller ordinal depth, assuming that
at least one of these trees is well-founded. In particular, it can tell us which of
the two computations will terminate, given that at least one of them will. The
following theorem was stated for type 2 in Gandy [1967b], and extended to
higher types (independently, and by different methods) in Platek [1966] and
Moschovakis [1967], [1976]:

Theorem 3.7 (Stage comparison). Let Θ be a normal functional of level k.
If F,G are Θ-computable and of level ≤ k, then ÷F,G is also Θ-computable.

One can often use stage comparison where in ordinary recursion theory
one might use interleaving arguments — for instance, in showing that (for
Θ normal of level k) the union of two Θ-semidecidable subsets of Sk is Θ-
semidecidable, or that a subset of Sk is Θ-decidable iff both it and its comple-
ment are Θ-semidecidable.
Given a predicateP(x, n : 0), a selection function forP is a partial functional
F (x) that “selects” a value of n satisfying P(x, n) whenever there is one.
Again, the basic result is proved for type 2 in Gandy [1967b], and generalized
in Moschovakis [1967], [1976], Platek [1966]:

Theorem 3.8 (Number selection). Let Θ be normal of level k ≥ 2. For any
Θ-semidecidable predicate P(x, n : 0) on Sk , there is a Θ-computable partial

9Gandy first presented these results around 1962.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 35

function F (x) such that

∀x. ((∃n. P(x, n)) =⇒ F (x)↓ ∧P(x, F (x))).

It follows, for example, that the class of Θ-semidecidable subsets of Sk
is closed under (uniform) N-indexed unions, and that a partial function of
level k is Θ-computable iff its graph is Θ-semidecidable. The basics of stage
comparison and number selection up to this point are covered in Kechris and
Moschovakis [1977].
A selection theorem of another kind is the following. It first appeared in
Grilliot [1969b] but with an incorrect proof. A correct proof was given in
Harrington and MacQueen [1976].

Theorem 3.9 (Grilliot selection). Let Θ be normal of level k + 2 (k ≥ 1).
For any inhabited Θ-semidecidable subset P of Sk−1, there is an inhabited Θ-
decidable subset Q such thatQ ⊆ P.

Much attention has also been devoted to the study of sections as defined in
Kleene [1963]. Given any x ∈ S, the section of x is the set {y ∈ S | y � x};
likewise the k-section of x is {y ∈ Sk | y � x}.10 One of the high points of
the theory is the following result due to Sacks (Sacks [1974], [1977]):

Theorem 3.10 (Plus-one theorem). Suppose 0 < k < n. Then for any nor-
mal object Θ ∈ Sn there is a normal object Ψ ∈ Sk+1 such that Θ and Ψ have
the same k-section.

The proof of this very substantial theorem exploits some beautiful connec-
tions with admissible set theory (Sacks [1971]). Let us consider the case k = 1
as an example. Observe that any hereditarily countable set X (that is, a set
whose transitive closure is countable) can be coded up as a type 1 function:
essentially, one just needs to code up the binary membership relation on the
transitive closure of X . Under this correspondence, those sets of type 1 func-
tions which arise as sections correspond precisely to those sets of hereditarily
countable sets which constitute models for a certain weak fragment of set
theory. Sacks was able to apply forcing techniques to such models in order to
construct a suitable type 2 object Ψ for the above theorem.
Sacks also considered higher type analogues of problems from classical
degree theory such as Post’s problem (Sacks [1980], MacQueen [1972]; see
also Section 3.2.4 below).
Sections are to total functionals what envelopes are to partial functionals.
If ó = ó1 → · · · → ór → 0, let us write Sp ó for the set of all partial functions
Só1 × · · · × Són ⇀ N. The k-envelope of x ∈ S is the set

{f ∈ Sp ó | level (ó) ≤ k ∧ f Kleene computable relative to x}

10The k-section is sometimes taken to include all objects of type level ≤ k computable in x,
but it makes little difference.



36 JOHN R. LONGLEY

Moschovakis (Moschovakis [1974c]) showed that the analogue of the plus-
one theorem for envelopes fails: indeed, if Θ is any normal type 3 object, the
1-envelope of Θ is not the 1-envelope of any normal type 2 object. However,
we have the following result due to Harrington (Harrington [1973]):

Theorem 3.11 (Plus-two theorem). Suppose 0 < k < n − 1. Then for any
normal objectΘ ∈ Sn there is a normal objectΨ ∈ Sk+2 such thatΘ andΨ have
the same k-envelope.

Regarding elements of the k-envelope of a normal Θ as representing Θ-
semidecidable predicates, it is natural to ask what closure properties these
enjoy. It is clear from earlier remarks that the 1-envelope of a normal type 2
object is closed under existential quantification over N (in an obvious sense).
However, the situation at higher types is more interesting:

Theorem 3.12. Let Θ be normal of level m ≥ 3. Then the (m − 1)-envelope
of Θ is closed under existential quantification over Sj for j < m − 2 (Harring-
ton and MacQueen [1976]), but not under existential quantification over Sm−2
(Moschovakis [1967], Grilliot [1967]).

Both Sacks and Harrington worked with definitions of recursion in normal
functionals that differed somewhat from Kleene’s, but the equivalences are
verified in Lowenthal [1976]. The proofs of many of the above results have
been clarified by adopting the perspective of abstract recursion theory, which
isolates the essential features of the domains (in this case, theSó) overwhichwe
are computing. This abstract approach is worked out in the booksMoldestad
[1977], Fenstad [1980].

3.2.3. Hierarchies. Another area of investigation has been the search for
hierarchies for the functionals computable from a given object. The starting
point for this endeavour is the fact that the 1-sectionof 2∃ consists of exactly the
hyperarithmetic or ∆11 functions (Theorem 3.4). As shown in Kleene [1955b],
these can be classified according to their logical complexity by means of an
ordinal hierarchy of height ùCK1 , known as the hyperarithmetic hierarchy.
Kleene in Kleene [1963] introduced the general problem of seeking similar
ordinal stratifications for the sections of other higher type objects.
Tugué (Tugué [1960]) considered in particular the normal type 2 object E1
embodying the Suslin quantifier:

E1(f : 1) =

{
0 if ∃g : 1. ∀n. f(g̃(n)) = 0,

1 otherwise,

where g̃ is as defined in Section 1.4. Tugué and later Richter (Richter [1967])
gave ordinal hierarchies for the 1-section of E1. Kleene had conjectured
that this class might coincide with the ∆12 functions, but this was refuted by
Shoenfield (Shoenfield [1962]).



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 37

Someof these hierarchieswere considered in greater detail inGandy [1967b],
Grilliot [1969a]. In particular, Gandy showed how such hierarchies could be
used to prove structural results such as the stage comparison and number
selection theorems mentioned in Section 3.2.2.
A pleasing generalization of these hierarchy results to the 1-section of an
arbitrary normal type 2 object was given independently by Shoenfield (Shoen-
field [1968]) and Hinman (Hinman [1966], [1969]). The two versions are
essentially the same; the key point in both cases is that the set of ordinal nota-
tions, rather than being fixed in advance, is generated simultaneously with the
hierarchy itself. Later, Wainer (Wainer [1974]) showed how a somewhat more
delicate construction yields a hierarchy for the 1-section even of an arbitrary
non-normal type 2 object (see also Wainer [1975], [1978]).
A natural challenge was to obtain similar hierarchy results for 2-sections
of 3∃ and other type 3 objects. In Kleene [1963], Kleene outlined the con-
struction of a hyperanalytic hierarchy for type 2 objects; this hierarchy was
studied in detail by his student Clarke (Clarke [1964]), who conjectured that
it does not exhaust the type 2 objects computable in 3∃. The conjecture was
confirmed by Moschovakis (Moschovakis [1967]), who however constructed
an alternative hierarchy which does exhaust them, by using a much more
powerful system for generating ordinal notations.
Other objects of interest are the superjump operators kS (k ≥ 2), defined
by

kS(e : 0, x : k − 1) =

{
0 if {e}(x)↓,

1 if {e}(x)↑.

The operator 2S is the ordinary jump operator of classical recursion theory,
which is equivalent in strength to 2∃. The superjump operator 3S, however,
is strictly weaker than 3∃ (and hence non-normal). Recursion in 3S has
been studied in Gandy [1967b], Platek [1971], Aczel and Hinman [1974].
Superjump operators of even higher types have been considered in Harrington
[1973], [1974]. Much more recently, both 3∃ and 3S have been used in the
construction of universes of domains closed under powerful type formation
principles (Normann [1997], [1999b]).
Many of the above hierarchy results are covered in detail in Hinman [1978].

3.2.4. Set recursion. It was discovered by Normann (Normann [1978b]),
and independently by Moschovakis, that the ideas of Kleene computability
relative to all the k∃ could naturally be generalized to a theory of computability
on arbitrary sets, in which the equality predicate on sets is deemed to be
computable. This theory is called E-recursion theory; it has close connections
with Gödel’s notion of constructibility. (The connection had essentially been
noted already in Sacks [1971].)



38 JOHN R. LONGLEY

This muchmore general setting allowed thewhole subject to break free from
the shackles of the type structure S, and E-recursion was found to provide a
natural framework for the later degree-theoretic investigations of Sacks and
others (Sacks [1985], [1986], Griffor [1980], Slaman [1981], [1985]). Thus, at
this point the study of higher type recursion became subsumed in admissible
set theory, and specific references to the finite types are rare in the later papers.
For a full treatment of E-recursion theory see Sacks [1990]; for a survey see
Sacks [1999].

3.3. The total continuous functionals.

3.3.1. Early work: Kleene and Kreisel. Whereas computations over the full
set-theoretic type structure S have connections with the metamathematics of
classical logic, the study of the total continuous functionals has largely been
driven by interest in more constructive interpretations. The type structure
C of total continuous functionals was obtained around the same time by
Kleene (Kleene [1959a]) (who called them the countable functionals) and
Kreisel (Kreisel [1959]) (who called them the continuous functionals). Both
definitions were rather complicated and neither were prima facie very natural,
but they both embodied the basic idea that any finite piece of information
about the output from a functional F was determined by a finite amount of
information about the input.
Kleene’s definition centres around the observation that any total continu-
ous type 2 function F : NN → N can be completely determined by a type 1
function — for instance, by the function fF : N → N defined (classically) by

fF 〈n0, . . . , nr−1〉 =





m + 1 if F (g) = m for all g such that

g(i) = ni for all i < r,

0 if no m exists with this property.

Reversing this idea, we can define a partial “application” operation − | −:
NN × NN ⇀ N by

f | g ' f(g̃(r))− 1,

where r is the least number such that f(g̃(r)) > 0.

Thus, type 1 objects can be used to encode type 2 objects. Once this is
in place, it easy to see how type 1 objects can be used to encode objects of
arbitrary pure types:

Definition 3.13 (Kleene’s countable functionals). For each n, we define a
set Cn and a notion of associate for the elements of Cn as follows:

• Take C0 = N, C1 = NN, and declare each f ∈ C1 to be an associate for
itself.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 39

• For n ≥ 1, say f ∈ C1 is an associate for the function F : Cn → N iff
whenever g is an associate for G ∈ Cn we have f | g = F (G); and take
Cn+1 to be the set of functions Cn → N that have an associate.

This is essentially an extensional collapse construction (Definition 1.2; see
also Section 5.1). Kleene extended the above definition from pure types to
arbitrary types by means of standard type-changing techniques, giving rise to
a type structure C.11 This structure is called ECF in Troelstra [1973, §2.6].
In Kreisel’s definition, continuity was built in via the concept of neighbour-
hoods. In any type structureA overN, one may define for each type ó a system
Nó of subsets of Aó as follows:

• N0 consists of all singletons {n}.
• Nó→ô consists of all sets of the form

[U1 7→ V1] ∩ . . . ∩ [Ur 7→ Vr ] (r ≥ 1),

where Ui ∈ Nó , Vi ∈ Nô , and [U 7→ V ] means the set

{f ∈ Aó→ô | ∀x ∈ U. f · x ∈ V }.

The elements ofNó are called neighbourhoods and correspond to finite pieces
of information about elements of Aó . Clearly, any basic neighbourhood
may be denoted by a formal expression involving 7→,∩, and singletons, and
obviously one can define such “formal neighbourhoods” quite independently
of any type structure.
Kreisel gave a syntactical construction of C in terms of these formal neigh-
bourhoods and functions over them: elements of Có→0 were first given by
functions on formal neighbourhoods of type ó, and only then turned into
functions on the elements of Có themselves. It was thus automatic that all the
functionals in C were continuous in the sense determined by the neighbour-
hood systems. However, the precise details are a little complicated and we will
omit them here.
The equivalence between theKleene andKreisel definitions, was recognized
at the time of their discovery and is mentioned in both of the original papers.
(However, the proof turned out to be less trivial than these authors initially
suspected; see also Hinata and Tugué [1969].) Tait (Tait [1962]) later gave a
somewhat cleaner, more axiomatic treatment of the continuous functionals in
the spirit of Kreisel’s definition.
Both Kleene and Kreisel identified a natural effective substructure RC of C,
consisting of the recursively countable or recursively continuous functionals. In
Kleene’s terms, these are the functionals with at least one recursive associate;

11Actually, Kleene first defined the countable functionals to be certain elements of S, whose
action on other countable functionals was as suggested by the above definition. However, the
possibility of considering the countable functionals “by themselves” was also clear to him from
the outset.



40 JOHN R. LONGLEY

in Kreisel’s terms, they are defined via recursive functions on bases of neigh-
bourhoods. An important result, the density theorem (see Kreisel [1959, Ap-
pendix]), ensures that each F ∈ Có→ô is completely determined by its effect
on the recursive (or even the “finite”) elements of Có ; it follows that RC is
extensional when regarded as a type structure in its own right.
Kreisel, in particular, was interested in using C to give constructive inter-
pretations for systems such as intuitionistic second order arithmetic. The
idea is as follows: given a formula φ, first apply the Gödel Dialectica trans-
lation (see Section 3.1.1) to obtain a formula φ′ ≡ ∃y.∀z .φ∗ in which φ∗ is
quantifier-free and the y , z may be of any finite type. We may now consider
the interpretations of φ′ arising by allowing the y and z to range over various
kinds of finite type object. Kreisel suggested that we get an interpretation that
fits well with the informal notion of constructive truth if we let y range over
all functionals in RC and z over functionals in C. The intuition is that the
constructive content of φ should be embodied by effectively given operations
(the y) which make φ∗ true even when presented with arbitrary continuous
data such as free choice sequences (the z).
Kreisel also considered rival interpretations of this kindwhich are of interest
for independence proofs: for instance, we may let z range over arbitrary
functionals in S and y over Kleene computable ones; or we may let both y and
z range over the hereditarily effective operations. In addition, he showed that
the above interpretation in C could be combined withGödel’s double-negation
translation to give a very satisfactory “no-counterexample interpretation” for
classical secondorder arithmetic. The present author considersKreisel’s paper
(Kreisel [1959]) to be a classic in the field, which remains well worth reading as
a discussion of the metamathematical applications of higher type functionals,
and which contains in seminal form an amazing number of ideas that were
later to become major themes in the subject.
One can also consider the class KC(C) of Kleene computable functionals
over C, as given byDefinition 3.2. It was clear toKleene andKreisel that every
total Kleene computable functional over C is a recursively continuous func-
tional — intuitively, anything that is computable in Kleene’s “extensional”
sense is computable at the more intensional level of associates. Moreover, at
type 2 the recursively continuous functionals clearly coincide with the Kleene
computable functionals (over C or S), since e.g., any F ∈ C2 is Kleene com-
putable relative to an associate for F .
It was raised as an open problem inKreisel [1959, §4.4] whether all elements
of RC at types 3 and above were Kleene computable. This was answered
negatively by Tait (Tait [1962]), who gave as a counterexample the type 3
modulus of uniform continuity functional Φ (also known as the fan functional
because it embodies the constructive content of Brouwer’s FanTheorem). The
existence of Φ depends on the fact that (classically) every continuous function



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 41

F : 2N → 2 is uniformly continuous. To define Φ, let binary(f : 1) be the
predicate ∀x.f(x) = 0 ∨ f(x) = 1, and take

Φ(F : 2) = ìn. ∀f, g. (binary(f) ∧ binary(g) ∧ (∀m < n.f(m) = g(m)))

=⇒ F (f) = F (g).

Tait showed that Φ is recursively continuous but not Kleene computable over
C — nor, indeed, is it the restriction to C2 of a function Kleene computable
over S. (Published proofs of Tait’s result may be found in Gandy and Hyland
[1977, §4] or Normann [1999a, §5].) We therefore have two distinct notions
of computability for the total continuous functionals, represented by RC and
KC(C) respectively.

3.3.2. Further characterizations. Apart from Tait’s work, there seems to
have been little work on the total continuous functionals during the 1960s.
The 1970s, however, saw a wealth of new developments which were mostly
of two kinds: results providing further characterizations of C and RC, illumi-
nating their basic character and confirming their natural status; and results
concerning various notions of relative definability and degree structures on C.
Many of the later characterizations of C were much simpler and more
immediately appealing than the original definitions. Ershov (Ershov [1974a],
[1977a]) showed that the continuous functionals could be obtained from the
type structure P of partial continuous functionals via an extensional collapse
construction (see Theorem 4.13 below). A very similar characterization of C
was obtained independently by Scott, using a type structure arising from the
category of algebraic lattices (see Hyland [1975]).
Another pleasing characterization ofC is that based on the idea of sequential
continuity.12 This definition may be presented very simply as follows. We use
the notation [xi ] for an infinite sequence x0, x1, . . . .

Definition 3.14 (Sequential continuity). For each type ó, we define a set Có
together with a relation [xi ] ↓ x (read as “ [xi ] converges to x”) between infinite
sequences and elements of Có :

• C0 = N, and [xi ] ↓ x if xi = x for all sufficiently large i ;
• Có→ô is the set of all f : Có → Cô such that [f(xi)] ↓ f(x) whenever
[xi ] ↓ x. And [fi ] ↓ f in Có→ô iff [fi (xi )] ↓ f(x) whenever [xi ] ↓ x.

This is tantamount to the definition of the type structure over N in the
cartesian closed category of L-spaces (see Kuratowski [1952]). Scarpellini
considered the type structure defined in this way as a model for bar recur-
sion at higher types (Scarpellini [1971]), apparently without realizing that it
coincided with the Kleene-Kreisel continuous functionals. The equivalence
was shown by Hyland (Hyland [1975], [1979]), who collected together the

12The terminology, which was used in the literature of the time, refers to continuity based on
sequences. It should not be confused with the more modern use of the term “sequential”, which
we discuss in Section 4.3.



42 JOHN R. LONGLEY

known characterizations and clarified the relationships between them. He
also discovered some new characterizations of C: for instance, as the type
structure over N in the cartesian closed category of filter spaces, or in the
cartesian closed category of compactly generated Hausdorff spaces. (A pub-
lished proof of the latter fact appeared first in Normann [1980].) Normann
later gave yet another construction via a hyperfinite type structure in the sense
of non-standard analysis (Normann [1983], [1999a]).
Bergstra (Bergstra [1976], [1978]) gave a interesting characterization of C as
amaximal type structure (subject to some basic closure requirements) inwhich
all type 2 functions are continuous. Intuitively, one can construct C by taking,
at each type level ≥ 3, all functions that can be added without inducing any
discontinuous type 2 functions. Grilliot (Grilliot [1971]) had already shown
that a type 2 functional F is continuous iff 2∃ is not Kleene computable
relative to F and some type 1 function; we therefore have a characterization
of C as a maximal type structure closed under Kleene computation and not
containing 2∃.
By this stage it was very clear that C was the canonical choice of a full
continuous type structure of total functionals over N. Moreover, Hyland’s
work also showed that all the constructions of C that admitted a natural
effectivization gave rise to the same effective substructure, namely RC.

3.3.3. Degrees and relative computability. Most of the work on degrees
and relative computability for C has focussed on the notions arising from
relative Kleene computability. Hinman (Hinman [1973]) gave an example
of an irreducible element of C2 — that is, one whose Kleene degree is not
the Kleene degree of any type 1 function. Hyland in Gandy and Hyland
[1977, §5] gave a simpler example of this phenomenon, making use of the
Kleene tree. The same paper also contained an example, due to Gandy, of
a type 3 object Γ ∈ RC3 which is not Kleene computable relative to the fan
functional.
In view of this last result, it was natural to ask whether any good “ba-
sis”of functionals in RC could be given, relative to which all functionals in
RC were Kleene computable. (A closely related question, discussed by Fefer-
man (Feferman [1977a]), was whether one could give a definition of RC as
a substructure of C via monotone inductive schemata, in the spirit of gener-
alized recursion theory.) It is fairly easy to specify an infinite basis for RC

consisting of partial recursively continuous functions, one for each type level
(see Bergstra [1978, §1]). Normann (Normann [1979b], [1981a]) gave a sim-
ilar infinite basis consisting of total recursively continuous functionals (i.e.,
elements of RC), but showed that none of the functionals in this were Kleene
computable relative to any functionals of lower type. It follows that no finite
basis of this kind for RC is possible. (See however Theorem 4.25 for a more
satisfactory ending to this story.)



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 43

Another groupof results from this period concerned properties of 1-sections
for continuous type 2 objects. Early results in this vein were obtained by
Grilliot (Grilliot [1971]), who pointed out that such a 1-section is never closed
under the ordinary jump operator. Bergstra (Bergstra [1976]) showed that
there are objects F ∈ C2 whose 1-section is not the 1-section of any f ∈ C1

(this improves on the result of Hinman mentioned above). Results relating
to ordinal hierarchies for 1-sections of continuous objects are obtained in
Bergstra andWainer [1977], Normann [1978a], Normann andWainer [1980].
A simple but beautiful result of Normann (Normann [1981b]) (who traces
the idea to Kreisel [1959]) reveals a connection between the continuous func-
tionals and some classical logical complexity classes for subsets of NN. A
proof of the theorem also appears in Normann [1999a].

Theorem 3.15 (Projective hierarchy). Let k > 0, A ⊆ NN. Then

(i) A is Π1k iff there is a primitive recursive predicate R (e.g., definable by
Kleene’s S1–S8 over C) such that

f ∈ A⇐⇒ ∀G ∈ Ck .∃n ∈ N. R(f,G, n).

(ii) A is Σ1k iff there is a primitive recursive R such that

f ∈ A⇐⇒ ∀G ∈ Ck+1.∃n ∈ N. R(f,G, n).

and moreover there is a uniform algorithm (e.g., a Kleene computable
partial functional over C) which given any f 6∈ A returns a G such that
∀n.¬R(f,G, n).

Normann showed that many facts about 1-sections and 2-envelopes flow
from this theorem.
Finally, wemention that an alternative degree structure onCcanbe obtained
by considering amore generous notion of relative computability: takeF �c G
iff there is a recursive type 2 functional which transforms any associate for G
into an associate for F . Most of the known results about degrees, sections
and envelopes with respect to �c are collected in Hyland [1978].
Normann’s book (Normann [1980]) contains most of what was known
about the total continuous functionals by 1980.

3.3.4. Recent work. Work on the continuous functionals abated again dur-
ing the 1980s, but was renewed in the 1990s, partly owing to interest within the
computer science community. Modern treatments have tended to favour ver-
sions of the Ershov-Scott construction of C (see Theorem 4.13) via domains
or information systems (Berger [1993], Stoltenberg-Hansen, Lindström, and
Griffor [1994], Schwichtenberg [1996], Normann [1999a]). A particular focus
of recent work has been the search for abstract formulations of the concept
of totality for elements of such domains. Berger (Berger [1993]) has demon-
strated the significance of the dual notions of density and codensity (= totality)
for subsets of domains, and given generalized versions of the density theorem



44 JOHN R. LONGLEY

and Kreisel-Lacombe-Shoenfield theorem in a domain-theoretic framework.
A related approach to totality is pursued in Normann [1989], [1997]. More
recent work has been concerned with extending the construction of C and the
associated results on domains, density and totality to transfinite types and
Martin-Löf style dependent types with universes (Berger [1997], Kristiansen
and Normann [1997]). Bauer and Birkedal (Bauer and Birkedal [2000]) have
shown how much of this material fits smoothly into the framework of Scott’s
equilogical spaces (see Section 5.2).
Some other recent results involving C (Normann [2000], Plotkin [1997])
will be mentioned in Section 4.3.4 below.

3.3.5. Type two effectivity. It is convenient at this point to mention briefly
theworkofWeihrauch andhis colleagues (see e.g.,Weihrauch [1985], [2000b]),
who have developed a framework for computable analysis known as type two
effectivity. This framework was proposed independently of the work on C

that we have described, but there are close connections. Weihrauch considers
a model of computation consisting of Turing machines with infinite input
and output tapes; these essentially compute uniformly partial recursive type
2 functionals on NN (Definition 2.2), subject to some minor caveats. For
the most part, Weihrauch’s theory is concerned with the use of this model
to represent computability on other sets, such as spaces arising in analysis.
A representation of a set S is a partial function from NN onto S — for in-
stance, we might represent the reals by (coded) Cauchy sequences of rational
approximations.
The key resultwhichmakes the theorywork (presented inWeihrauch [1985])
is that the set of continuous functions on NN may itself be represented in this
way by NN. One obtains an effective version of the theory by restricting here
to functions represented by NN

rec. In essence, the idea here is the same as the
idea behind Kleene’s definition of associates (Definition 3.13), which provides
representations of just this kind for the total continuous functionals. These
and other connections have recently been made precise in Bauer [2001] (see
also Section 5.2 below).

3.4. The hereditarily effective operations. As we have seen, one notion of
total computable functional of higher type is given by the effective submodel
RC of the total continuous functionals; here we have computable functionals
acting on (possibly arbitrary) continuous data. Onemight also ask if there are
interesting type structures based on the idea of computable functions acting
only on computable data. Several ways of constructing such a type structure
might suggest themselves. For instance:

• Wemight consider higher type generalizations of the definition of type 2
effective operations based on recursive indices (see Definition 2.3).

• We might consider effective analogues of various definitions of C: that
is, we might mimic some construction of C taking only the effective
functionals at each type level.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 45

Both kinds of construction were considered in Kreisel [1959, §4.2]. As an
instance of the first kind, Kreisel defined an extensional type structure HEO.
Note that the definition is a straightforward extensional collapse construction:

Definition 3.16 (Hereditarily effective operations). For each type ó, define
a partial equivalence relation ≡ó on N as follows:

• x ≡0 x′ iff x = x′;
• x ≡ó→ô x′ iff for all y ≡ó y′ we have φx(y) ≡ô φx′(y′).

Now let HEOó be the set of≡ó-equivalence classes. Since there are well-defined
total application operations HEOó→ô × HEOó → HEOô induced by recursive
index application, we have a total extensional type structure HEO over N.

Kreisel also introduced (in Kreisel [1958]) a closely related non-extensional
type structure:

Definition 3.17 (Hereditarily recursive operations). For each type ó, de-
fine a subset HROó ⊆ N as follows:

• HRO0 = N;
• x ∈ HROó→ô iff for all y ∈ HROó we have φx(y)↓ and φx(y) ∈ HROô .

This defines a total non-extensional type structureHRO overN, with application
given by recursive index application.

The above names, and the notations HEO,HRO, were introduced later by
Troelstra, who independently rediscovered these structures around 1970 (see
Troelstra [1973, §2.4.17]). Note that the structure HEO is independent (up to
isomorphism) of the choice of enumeration for the partial recursive functions,
whereas this is not true for HRO — hence it is misleading, strictly speaking,
to talk about “the” hereditarily recursive operations.
As an instance of the second kind of construction suggested above, Kreisel
proposed a recursive analogue of his construction of C via formal neighbour-
hoods. We give here an equivalent definition based on a recursive analogue of
Kleene’s construction of C via associates (Definition 3.13).

Definition 3.18 (Hereditarily recursively countable functionals). For each
n, define a set HRCn and a notion of associate for elements of HRCn as follows:

• Take HRC0 = N, HRC1 = NN
rec, and declare each f ∈ HRC1 to be an

associate for itself.
• For n ≥ 1, say f ∈ HRC1 is an associate for F : HRCn → N iff whenever
g is an associate for G ∈ HRCn we have f | g = F (G); and take HRCn+1
to be the set of functions HRCn → N that have an associate.

The definition may be extended from pure types to arbitrary types by stan-
dard methods, yielding a type structure HRC. This structure is called ECF(R)
in Troelstra [1973, §2.6].
Kreisel noted the remarkable fact that these two approaches to constructing
a class of hereditarily computable functionals coincide — that is:



46 JOHN R. LONGLEY

Theorem 3.19. HEO ∼= HRC.

At type 2 this is essentially the Kreisel-Lacombe-Shoenfield theorem (The-
orem 2.6). The generalization to higher types was noted inKreisel [1959, §4.2]
without detailed proof. Some further details appeared in Tait [1962], but a
complete published proof first appeared in Troelstra [1973, §2.6].
Some further remarksmay help to clarify the relationship betweenHRC (the
recursive analogue of C) and RC (the recursive substructure of C). To build
RC, one first builds the whole of C and then extracts the effective elements. To
build HRC, one considers at each type level only the effective total functionals
on the set of effective objects of the next type down. Thus, for instance, the
Kleene tree functional Z defined in Section 2.4 lives in HRC2, but it is not
(the restriction of) an element of RC2 since it has no computable extension
to the whole of NN. We therefore have a proper inclusion of RC2 in HRC2.
Conversely, there is no element in HRC3 corresponding to the fan functional
Φ ∈ RC3, essentially because any computable functional Φ′ ∈ HRC3 that
extended Φ (with respect to the above inclusion) would be undefined on Z.
There is therefore no canonical inclusion from RC3 to HRC3 or vice versa.
The idea here is that Z and Φ cannot live together in the same universe
of computable total functionals. Indeed, in Part II we will formulate and
prove an “anti-Church’s thesis for total functionals”, to the effect that there
is no type structure of computable functionals over N that subsumes both
HRC and RC. This suggests that, for hereditarily total functions at least, the
dichotomy between “computable acting on computable” and “computable
acting on continuous” is a fundamental one.
We have seen that the recursive analogues of both Kleene’s and Kreisel’s
definition of C yield the same type structure HRC. Later results confirmed
the impression that whenever any natural definition of C admits a recursive
analogue, this analogue turns out to be HRC. Several such equivalences are
verified in Hyland [1975]. In addition, Ershov (Ershov [1976b], [1977a])
showed that just as the hereditarily total elements of P give rise to C (see
Theorem 4.13), so the hereditarily total elements of P

eff give rise to HEO.
Ershov alsomade explicit a higher type generalizationof theKreisel-Lacombe-
Shoenfield theorem implicit in the fact that HEO ∼= HRC: namely, that all
operations inHEO are continuous in the sense of the neighbourhood structure
given in Section 3.3.1.
This contrasts with the surprising fact, discovered by Gandy around 1965,
that not all the functionals in HEO are sequentially continuous in the sense
of Definition 3.14. His ingenious construction of a counterexample at type 3
appears in Gandy and Hyland [1977, §8].
Later, Bezem (Bezem [1985a]) gave another characterization of HEO as the
extensional collapse of HRO (see Definition 1.2):

Theorem 3.20. HEO ∼= EC(HRO).



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 47

What is perhaps surprising is that this result is decidedly non-trivial. The
proof essentially goes via the isomorphism with HRC as defined via Kleene
associates (see Definition 3.18).
Another descendant of Kreisel’s definition of HEO was Girard’s category
PER of partial equivalence relations on the natural numbers (Girard [1972]).
We will give the definition of this category in Section 5; meanwhile, we simply
remark that HEO can be naturally seen as the finite type structure over N in
the cartesian closed category PER.

§4. Partial computable functionals. The picture outlined in Section 3 ex-
hibits various oddities which arise from the fact that we are restricting our-
selves to hereditarily total objects. Intuitively, any computational paradigm
powerful enough to generate all total computable functions will naturally gen-
erate partial ones as well, and so any restriction to total functionals will in
someways be artificial. Moreover, this artificiality is exacerbated as one passes
to higher types. The most striking instance of this is the brood of difficulties
associated with Kleene’s S8 (see Section 3.2.1). Another tension arising from
the insistence on totality can perhaps be discerned in the incompatibility of
the Kleene tree functional and the fan functional (see Section 3.4). These
observations might lead one to suspect that a theory of hereditarily partial
objects of higher type would work more smoothly than one for total objects.
The idea that “partial is easier than total” at higher types was first aired in
Kleene [1963, §9.3], and was frequently discussed in the later literature, e.g., in
Platek [1966], Gandy and Hyland [1977], Feferman [1977a], Ershov [1977a].
We will see in this section that the above suspicions are amply justified — that
notions of partial computable functional do indeed lead to simpler theories,
and enjoymore pleasant properties, than the total notions. (This accords with
our experience in ordinary recursion theory: for example, the partial recursive
functions are recursively enumerable but the total recursive functions are not.)
This is not to say the total notions are necessarily of lesser interest than the
partial ones — we have already seen that some total type structures have very
good mathematical credentials — but as we shall see, a study of the partial
notions greatly enriches our understanding of the total ones.
Nevertheless, there are some important conceptual questions to be ad-
dressed in formulating notions of hereditarily partial object of higher type.
For instance, should our type 1 objects be partial functions N ⇀ N (i.e.,
functions N → N⊥)? Or should our treatment be so thoroughly partial that
we even interpret 0 as N⊥, in which case our type 1 objects might be (for
instance) functions N⊥ → N⊥? Questions of this kind will proliferate as we
pass to higher types, and at first sight it is unclear how we should respond to
them. One can speculate that a lurking unease about these issues may partly
account for the relatively late development of good notions of partial higher
type object.



48 JOHN R. LONGLEY

With the benefit of hindsight, we can see that these choices are not as
significant as they might seem, since all reasonable choices turn out to be
“equivalent” in some sense. We will discuss these issues in detail in Part II,
where a precise statement to this effect will be given. For the purposes of
our historical survey, however, it will be useful to introduce here two rival
definitions of “partial type structure” that both figured in the development of
the subject:

Definition 4.1 (Call-by-name, call-by-value).

(i) A call-by-name (or CBN) structure is an extensional total type structure
over N⊥.

(ii) A call-by-value (or CBV) structure is an extensional partial type structure
over N (in the sense of Section 1.5.1).

This terminology is borrowed from computer science, and does not appear
in the earlier recursion theory literature. The significance of the terms can
be appreciated by considering the nature of type 1 objects under the two
definitions. In a CBN structure, a type 1 object is a function N⊥ → N⊥, and
the argument fed to such a function is not itself a natural number but a name
for one — that is, a computational process which may or may not evaluate
to yield a natural number. In a CBV structure, a type 1 object is a functions
N → N⊥, which demands a genuine natural number as its argument — that
is, the computation of the value of the argument must take place before the
function is called.
As we shall see in Part II, in all cases of interest CBN and CBV structures
are equivalent, in the sense that from any CBN structure we may recover a
corresponding CBV structure and vice versa. We can therefore regard corre-
sponding CBN and CBV structures simply as different concrete presentations
of the same underlying notion of computability. However, this perspective
was probably not available to the pioneers of the subject.
Throughout this section, ifX is a poset, we write X⊥ for the poset obtained
by adding a new least element ⊥.

4.1. Partial monotone functionals. As far as we are aware, the earliest for-
mulation of a class of hereditarily partial computable functionals at all finite
types is due to Davis (Davis [1959]). Davis (together with Putnam) realized
that some restriction on set-theoretic partial functionals was needed to obtain
a good theory, and proposed (essentially) a call-by-name structureA of consis-
tent partial functionals (f : An ⇀ N is consistent if whenever v, w ∈ dom(f),
t ∈ An and v ⊆ t, w ⊆ t, we havef(v) = f(w)), and a notion of computable
element ofA. Certain features of Davis’s definition closely foreshadow Scott’s
later work on domain theory (see Section 4.2); however, the consistency con-
dition appears to be too weak to be really fruitful, and Davis’s type structure
seems lacking in good properties at higher types.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 49

4.1.1. Platek’s thesis. A very satisfactory notion of partial functional was
introduced and studied by Platek in his monumental Ph.D. thesis (Platek
[1966]). His first fundamental insight was that a good theory could be ob-
tained by restricting attention tomonotone partial functionals. Essentially, he
considered recursion theory over the following call-by-value structure:

Definition 4.2 (Hereditarily monotone functionals). For each type ó de-
fine a poset Mó as follows: take M0 = N with the discrete order, and for
ó = ó1 → · · · → ór → 0 (r ≥ 1), let Mó be the set of all monotone partial
functionsMó1 × · · · × Mór ⇀ N endowed with the pointwise order. Application
inM is defined by

f · x ' Λz2 . . . zr . f(x, z2, . . . , zr).13

(where f ∈ Mó and x ∈ Mó1).

The type structure S can be embedded in M via injections Ψó : Só → Mó :
take Ψ0(x) = x, and for ó = ó1 → · · · → ór → 0 we let Ψó(F )(g) = y ∈ N

iff there exist Gi ∈ Sói with Ψói (Gi ) v gi and F (G) = y. We say f ∈ Mó
represents F : Só1 × · · · × Sór ⇀ N if f(Ψ(G)) ' F (G) for all G. If F ∈ Só ,
clearly Ψ(F ) represents (the uncurried form of) F .
One can give a computational motivation for the restriction to monotone
functionals: if f is any computable partial functional, we would expect an
increase in the available information about the input to f to allow (if any-
thing) an increase in the output information produced by f. Platek’s main
motivation, however, was to provide a setting in which definitions by recursion
make sense. Given any recursion equation

f(x) = F (f, x)

where x : ó, f : ó → ô are variables and F ∈ M(ó→ô)→ó→ô , Tarski’s fixed point
theorem ensures that there is a unique least element f ∈ Mó→ô satisfying the
equation for all x ∈ Mó . This element f may be obtained via a transfinite
iteration of F :

f0(x) = ⊥, fα+(x) = F (fα , x), fë =
⋃

α<ë

fα , f =
⋃
fα

(where ë ranges over limit ordinals). As mentioned earlier, Platek was more
concerned with questions of definability than of effective computability, so the
transfinite nature of the computation here was not seen as a problem.

13Platek used the term consistent rather than monotone. The structure M can be construed
as a call-by-value structure in our sense, though it does not quite coincide with the “natural”
full monotone call-by-value structure over

�
, for which one would take Mó→ô to be the set of

monotone partial functions Mó ⇀ Mô . However, for pure types the two definitions coincide
exactly, and the minor difference can be glossed over.
Platek actually defined such a structure relative to an arbitrary set of objects in place of

�
,

since one of his aims was to give a uniform treatment of recursion theory which applied also to
other domains, such as ordinals and transitive sets.



50 JOHN R. LONGLEY

Platek’s second fundamental insight was that definitions by recursion can
be conveniently expressed by means of fixed point operators. Specifically,
for each type ñ = ó → ô there is an element Yñ ∈ M(ñ→ñ)→ñ such that
for all F ∈ Mñ→ñ, Yñ(F ) is the unique least element f ∈ Mñ such that
f(x) = F (f, x) for all x.
Other (much simpler) ways of explicitly defining new elements of M from
old ones are encapsulated by the elements Ió , Kóô , Sñóô , D ∈ M defined by

Ió(x
ó) = x,

Kóô(x
ó , yô) = x,

Sñóô(f
ñ→ó→ô , gñ→ó , xñ) ' (fx)(gx),

D(x0, y0, f1, g1) =

{
f if x = y,

g otherwise.

(Here D stands for “definition by cases”.) These lead us to the following
definition of recursive definability overM:

Definition 4.3. Given any set B ⊆ M, define the set R(B) of elements
recursively definable from B to be the smallest subset of M containing B and
all the elements Y, I,K, S,D, and closed under application.

In the case of the monotone type structure over N, we will usually be inter-
ested in the case whereB contains “enough” basic computable elements (zero,
successor and predecessor suffice14). We say an element of M is recursively
definable if it is recursively definable from these basic elements alone.
Platek showed that the above definition can also be cast in terms of schemata
in the spirit ofKleene’s S1–S9, butwith an important difference: anydefinition
of a computation written using these schemata has a meaning inM. Thus the
theory does not suffer from the difficulties arising from the infinitary side-
condition in S8.
Moreover, one can recover Kleene’s notion of computability over S as
follows: any partial function F : Só1 × · · · × Sór ⇀ N is Kleene computable
iff it is represented by some recursively definable f ∈ M. Using this as
an alternative definition of Kleene computability, Platek was able to obtain
clearer proofs of many of Kleene’s results plus some new ones, such as the
fact that the first recursion theorem holds subject to a type level restriction
(see Platek [1966, p. 123]). However, the equivalence with Kleene’s definition
is non-trivial and depends on the difficult substitution theorems of Kleene
[1959b]; this seems to reflect the unmanageability of the schemata S1–S9 (see
discussions in Platek [1966, pp. 114–5, 168–9]).
Platek was also the first to draw attention to the famous parallel or function
(called strong or by Platek) and the issues it raises (pp. 127–131). Let us

14Gandy pointed out that in fact zero and successor suffice in Platek’s setting.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 51

suppose 0 ∈ N stands for “true” and any other natural number stands for
“false”. The parallel or function may then be defined as follows:

Definition 4.4. Let por ∈ M0→0→0 be the element given by

por(x, y) =





0 if x is true,

0 if y is true,

1 if x and y are both false,

⊥ otherwise.

Platek pointed out that por is not recursively definable, although it is de-
finable in an Herbrand-Gödel style equation calculus, and is arguably com-
putable if we allow a kind of non-determinism in computations with regard
to the order of evaluation of arguments. As we shall see below, the dichotomy
between these notions of computability was to become a major theme in later
work.
Platek also gave a characterization of recursive definability in terms of a
formal language based on the ë-calculus, closely foreshadowing PCF (see
Section 4.2.4). Rather curiously, the language he introduced was an untyped
ë-calculus — this allowed him to make use of the counterparts of Y andD as
well as I, K, S in pure ë-calculus. Platek’s calculus also featured some elaborate
machinery for allowing a mixture of syntax and semantics in computations—
e.g., a constant dfe for every element f ∈ M was admitted, and the definition
of the evaluation relation U ⇓ n included rules of the following kind (related
to Kleene’s S8):

if f ∈ M(ó→0)→0, g ∈ Mó→0

and for all h ∈ Mó such that g(h) ∈ N, Udhe ⇓ g(h)

then dfeU ⇓ f(g).

The infinitary character of such rules means that computations can be of
transfinite length, although for terms containing no constants of type level 2
or above, computations are always finite.
One of the major results of Platek [1966] is the following, proved under mild
conditions on B :

Theorem 4.5. An element f ∈ Mó1→···→ór→0
is recursively definable from

B ⊆ M iff f is ë-definable from B , in the sense that there is a ë-term U ,
containing no constants except those corresponding to elements of B , such that
for all gi ∈ Mói we have Udg1e . . . dgre ⇓ n iff f(g) = n.

The forward implication here is easily shown by supplying lambda terms
corresponding to I, K, S, Y,D. To show the converse, Platek proved the exis-
tence of recursively definable enumeratorsEó ∈ M0→ó such that ifU ë-defines
f ∈ Mó then Eó(#U ) = f (where #U is a Gödel-number forU ). Essentially
the same result and proof were rediscovered in Longley and Plotkin [1997].



52 JOHN R. LONGLEY

In summary, Platek’s thesis was a major achievement which both shed con-
siderable light on Kleene’s earlier work on S1–S9 computability, and intro-
duced many of the fundamental ideas explored in later work on PCF. Indeed,
his recursively definable elements of M are exactly the PCF-definable ones in
the sense of Scott and Plotkin; and his work shows the existence of a pro-
gramming language with a finitary notion of computation for expressing these
elements. With a little charity, one can read into the results of his Chapter 4 a
proof of adequacy forM as a model of combinatory PCF (cf. Definition 4.16
and Theorem 4.19 below).
Platek’s thesis is unfortunately not generally available, but a detailed pub-
lished account of much of the material appears (in a somewhat streamlined
form) in Moldestad [1977].

4.1.2. Kleene’s later work. In his later years, Kleene returned to the study
of higher type computability and published a series of papers under the title
“Recursive functionals and quantifiers of finite types revisited” (Kleene [1978],
[1980], [1982], [1985], [1991]). Of these papers, Kleene [1985] provides the
best introduction to the whole series.
Kleene’s motivation was spelt out in Kleene [1978, §1.2]:

I aim to generate a class of functions . . . which shall coincide with
all the partial functions which are “computable” or “effectively
decidable”, so that Church’s 1936 thesis (IM §62) will apply with
the higher types included (as well as to partial functions, IM p.
332).

(This has been called “Kleene’s problem” in Hyland and Ong [2000].) Like
Platek, Kleene sought to avoid the anomalies of the original S1–S9 theory
by developing a theory of hereditarily partial objects. However, whereas
Platek was interested primarily in questions of definability, Kleene was more
interested in the concrete nature of computations at higher types.
Kleene concentrated mostly on the type levels j = 0, 1, 2, 3. In Kleene
[1978] he introduced a collectionof schemata for defining a class of computable
functions: a group of schemata S0–S7 (similar in spirit to the earlier S1–S8
though different in a few details), together with a new schema S11 to take
over the role of S9. (The label S10 was used in Kleene [1959b] for the schema
of ì-recursion.) We adapt Kleene’s formulation slightly, for consistency with
the notation of Definition 3.2:

S11: General recursion:

{〈11,#ó, g〉}(x : ó) ' {g}(Λx. {〈11,#ó , g〉}(x),x).

(More briefly, {h}(x) ' {g}({h},x) where h = 〈11,#ó , g〉).

Whereas in the earlier theory the schema S9 had incorporated the second
recursion theorem as a defining principle, giving rise to restricted versions of
the first recursion theorem as consequences, the new schema S11 has the effect



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 53

of building in a natural formulation of the first recursion theorem, and closure
under S9 can be derived as a consequence.
In order to give an interpretation of these schemata which makes sense
of the apparent circularity in S11, Kleene gave in Kleene [1978] a syntac-
tical description of computations as computation trees labelled by formal
expressions. (Kleene uses the term j-expression for a formal expression of
type j.) The essential difference between these and the computation trees
of Kleene [1959b], [1963] is that in order to evaluate an expression such as
f(ëx.g1(x), y0) (where f, g are themselves defined via the schemata), we are
no longer required to launch a subcomputation to compute the whole graph
of Λx.g1(x), but instead may plough on with the main computation, carrying
around the ëx.g(x) as an unevaluated formal expression. Only if we later
require a particular value for g, such as g(5), do we engage in a computation
for g. Computation therefore takes on a much more syntactic character: we
are really computing with formal expressions rather than with the semantic
objects they denote, and so it need notmatter that not every formal expression
denotes a semantic object.
In general, the formal expressions in Kleene’s computations are allowed
to contain free variables of type levels 0, 1, 2, 3: computations then proceed
relative to an interpretation of these free variables as semantic objects. For
this reason, a successful computation tree for a 0-expression (that is, one
that results in a numerical value) may be infinitely branching and hence of
transfinite depth: for example, if we wish to compute F 2(b) where F 2 is a free
variable and b is a 1-expression, we really do need to compute b(n) for every
numeral n. However, a successful computation tree for a closed 0-expression
will always be a finite object. Indeed, Kleene’s definition of computations
closely foreshadows the operational definition of PCF — though as in his
earlier work on S1–S9, his seeming reluctance to make fuller use of the typed
ë-calculus is puzzling.
In Kleene [1980] and the following papers, Kleene proceeded to develop a
semantics for his formal expressions which allows us to give an interpretation
for the objects considered at all stages during a computation. In effect, Kleene
constructed (the first few levels of) a call-by-name type structure U consisting
of what he termed the unimonotone functionals (monotone with a unique and
intrinsically determined basis). Here one takes U0 to be N⊥ and Uj+1 to
be a certain set of monotone functions from Uj to U0, ordered pointwise.
As in Platek’s work, the monotonicity reflects the computational intuition
that if we are able to obtain some output value without seeing a certain
piece of input information, this value should not be affected if we later see
it. Furthermore, Kleene restricted attention to those monotone functionals
that could be computed by an oracle who followed a strategy or protocol
of a certain kind. Kleene gave detailed explicit descriptions of the possible
behaviours of such oracles at types 2 and 3, which foreshadow later work on



54 JOHN R. LONGLEY

game semantics for PCF. However, Kleene’s definitions, couched in terms of
the colourful imagery of oracles who open envelopes containing other oracles,
were somewhat lacking in clarity and mathematical crispness, and moreover
the generalization to higher types was left unclear. It seems that the expression
of Kleene’s ideas might have been facilitated by some of the basic concepts of
domain theory and even category theory which were then available.
Nevertheless, several interesting ideas emerged from Kleene’s work. For
instance, Kleene isolated an important feature of “sequential” strategies for
oracles: a type 2 oracle O, unless she computes a constant type 2 function,
must be able to produce of her own accord a type 0 object x (i.e., an element
of N⊥) to serve as the first object she feeds to her type 1 argument f (so
that if f(x) = ⊥ then the whole computation hangs up). Kleene originally
conjectured that a similar property would hold at type 3: that a non-constant
type 3 oracle would always be able to come up with a particular type 1 object
to serve as the first object fed to its type 2 argument. However, this was refuted
by Kleene’s student Kierstead, who gave as a simple counterexample the type
3 functional defined by

Ψ(F 2) = F (Λx0. F (Λy0.x)).

Intuitively, the first object fed to the argument F here is the type 1 function
Λx.F (Λy.x), but this function is itself dependent on information about F
which only emerges later in the dialogue. This example shows that the possible
interactions between oracles and their arguments are somewhat more subtle
than Kleene had at first envisaged.
In the subsequent papers, Kleene was able to draw his description of type 3
oracles to a satisfactory completion. An important feature of Kleene’s seman-
tics is its intensional character: his oracles work by acting on other oracles
(who here are “computing agents” with a certain behaviour) rather than on
pure function extensions. Indeed, the requirement that oracles behave exten-
sionally (that is, give the same result when presented with two different oracles
for the same function) has to be explicitly incorporated into the definition at
certain points. This intensional character is also an important aspect of much
of the work in computer science on the semantics of higher type computa-
tion: for instance, Berry and Curien’s sequential algorithms model (Berry and
Curien [1982]), or the game models of PCF (see Section 4.3.3).
Kleene’s unimonotone semantics can be considered as one in which com-
putable objects act only on computable objects, if “computable” here is un-
derstood to mean realized by some oracle. However, the behaviour of oracles
is not required to be effectively given, and so unimonotone functionals need
not be computable in a genuinely effective sense. Even more strikingly, they
need not be continuous: in fact, Kleene seems to have made a quite delib-
erate decision to allow infinite computation trees, and moreover to allow the
behaviour of oracles to depend on infinitely much information about their



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 55

arguments. In this regard, Kleene’s work contrasts sharply with most work in
the computer science tradition; indeed, from a modern perspective, Kleene’s
decision to impose such tight and computationally motivated constraints in
the direction of unimonotonicity but not in the direction of continuity stands
as something of a curiosity.
In the meantime, Kierstead (Kierstead [1980], [1983]) developed an alter-
native semantics for Kleene’s S0–S7 and S11, closer in spirit to Platek’s work
in that it makes use of the full monotone type structure over N⊥. Many of
Kierstead’s results are closely parallel to Platek’s: for instance, he embeds
the total set-theoretic type structure S in the monotone one in a way which
respects Kleene computability, and from this is able to deduce certain substi-
tution properties for the total Kleene computable functionals. One difference
is thatKierstead considers the call-by-name monotone type structure whereas
Platek considers the call-by-value one— this appears to be correlated to some
difference in the conceptual status of the models in the two approaches, but
from a purely technical point of view it does not seem to be a major difference.
(See also Draanen [1995] for some further information in this area.)
The present author feels that Kleene’s work in this area contributed some
important ideas, although many of these have been more clearly expressed
and more fully explored in the subsequent computer science literature. Some
useful work by Bucciarelli (Bucciarelli [1993a], [1993b]) makes explicit the re-
lationships between Kleene’s work and subsequent developments in computer
science, and in particular explores the connections between Kleene’s oracles
and Berry-Curien sequential algorithms (see Section 4.3). The influence of
Kleene’s ideas on the computer science tradition is also discussed in Hyland
and Ong [2000].

4.2. Partial continuous functionals. Undoubtedly one of the most com-
pelling notions of higher type computability was discovered independently by
Scott (Scott [1969], [1993]) and Ershov (Ershov [1972], [1973b]). Coming
from somewhat different directions, both these authors arrived at the same
type structure P of partial continuous functionals and an effective substructure
P
eff of partial computable functionals.
For expository convenience we will break slightly with chronological order,
describing first the work of Scott, Ershov and others on purely mathematical
characterizations of these type structures, and then returning in Section 4.2.4
to consider the connections with languages such as PCF, starting again with
the work of Scott in 1969. This will allow us to avoid breaking up our account
of the developments relating to PCF, which will be central to much of the rest
of the paper.

4.2.1. Scott’s approach. Scott’s work brings together Platek’s idea of using
partial functionals in recursion theory, and the Kleene-Kreisel idea of using
continuity to capture the finitary aspect of computations. This leads to a



56 JOHN R. LONGLEY

theory of computable functionals which is arguably simpler and more natural
than either Platek’s or Kleene and Kreisel’s. Scott was also motivated by the
idea of giving amathematical theory of themeanings of computer programs—
an abstract view of the mathematical functions they compute as distinct from
a purely machine-oriented account of how they behave— and his work lies at
the root of the modern computer science tradition in denotational semantics.
The simplest definition of the partial continuous functionals was formulated
in Scott [1993]15 in terms of complete partial orders:

Definition 4.6 (CPOs).

(i) A complete partial order (CPO) is a poset (X,v) with a least element, in
which every chain x0 v x1 v . . . has a least upper bound

⊔
xi .

(ii) A functionf : X → Y between CPOs is continuous if f is monotone and
for every chain x0 v x1 v . . . in X we have f(

⊔
xi ) =

⊔
f(xi).

Definition 4.7 (Partial continuous functionals).
Define a type structure P as follows: let P0 be N⊥ (considered as a CPO
with the usual partial ordering), and Pó→ô is the CPO of continuous functions
f : Pó → Pô , ordered pointwise.

Thus, P is simply the natural type structure over N⊥ in the cartesian closed
category of CPOs.
Scott showed in Scott [1969] that an intrinsic notion of computability in

P can be given, by exploiting the fact that the CPOs Pó are all domains.
Intuitively, a domain is a CPO in which there is a good notion of “finite piece
of information” about an element, and in which every element is determined
by the set of finite pieces of information about it. The following definitions
were introduced in Scott [1969] — for more details see any standard text
on domain theory, e.g., Stoltenberg-Hansen, Lindström, and Griffor [1994].
(A detailed understanding of these definitions will not be required for what
follows.)

Definition 4.8 (Scott domains).

(i) A subset D of a poset (X,v) is directed if it is non-empty and for all
x, y ∈ D there exists z ∈ D with x v z and y v z. A DCPO is a
poset (X,v) with a least element ⊥ in which every directed subset D has
a least upper bound

⊔
D. A function f : X → Y between DCPOs is a

continuous map if it is monotone and preserves lubs of directed sets.
(ii) In a DCPO X , we say x, y are consistent (and write x ↑ y) if they have
an upper bound in X . A DCPO X is consistently complete if whenever
x, y ∈ X have an upper bound, they have a least upper bound x t y.

15This paper was written in 1969 and circulated widely in manuscript form. It was eventually
published in the Böhm Festschrift in 1993, along with illuminating retrospective comments by
Scott himself.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 57

(iii) An element e of aDCPOX is finite if wheneverD is directed and e v
⊔
D,

we have e v d for some d ∈ D. We write Fx for the set of finite elements
e v x.

(iv) A DCPO is algebraic if for every element x, Fx is directed and has lub x.
A DCPO is ù-algebraic if it is algebraic and its set of finite elements is
countable.

(v) A domain is a consistently complete, ù-algebraic DCPO.

Scott showed that the CPOs Pó are all domains, and moreover that in each
Pó one can give an effective enumeration e0, e1, . . . of the finite elements, in
such a way that the relations ei ↑ ej and ei t ej = ek are semirecursive in
i, j, k. We may then call an element x ∈ Pó effective if the finite pieces of
information about x are recursively enumerable — that is, if {i | ei v x} is
r.e. The effective elements of P are closed under application and so constitute
a substructure P

eff.
In subsequent papers (Scott [1970], [1972], [1976]), Scott shifted his atten-
tion fromdomains to complete lattices, which give rise a very similar theory but
using a rather simpler andmore familiar definition. Although this approach is
very elegant, it can be argued that it takes us further away from computation-
ally meaningful structures: for instance, even the type of natural numbers now
needs to be represented by a poset with a top element, which does not typically
correspond to the behaviour of any program (see Section 4.2.4). In the 1980s
Scott returned to the original domain-theoretic ideas and gave amore concrete
presentation of them in terms of information systems (Scott [1982]), in which
the finite elements (finite pieces of information) were taken as primary.

4.2.2. Ershov’s approach. In themeantime, Ershovhad given a construction
of Peff of a quite different character, arising from his theory of enumerated sets.
This theory offers a framework for studying a wide range of mathematical
structures from an algorithmic or recursion-theoretic point of view (for a
recent survey and further references, see Ershov [1999]). The basic definitions
are as follows:

Definition 4.9 (Enumerated sets).

(i) An enumerated set is simply a set X equipped with a total function
í : N → X (called an enumeration). If í(n) = x, we may say that n
is a code or recursive index for x.

(ii) A morphism from (X, í) to (X ′, í ′) is a function φ : X → X ′ such that
there exists a recursive function f satisfying φ ◦ í = í ′ ◦ f.

In Ershov [1971b], [1971a] Ershov introduced the category EN of enumer-
ated sets, and considered the question of when the set of morphisms from
(X, í) to (X ′, í ′) can be endowed with an enumeration making it into the
category-theoretic exponential (X ′, í ′)(X,í). In particular, he defined certain
classes C2, C20 of enumerated sets (with C20 ⊆ C2), and proved:



58 JOHN R. LONGLEY

Theorem 4.10. If E ∈ C2 and E ′ ∈ C20, then the exponential E ′E exists in
EN and belongs to C20.

We omit here the somewhat technical definitions of C2 and C20, which are
reproduced e.g., in Ershov [1999]. Since N (with the identity enumeration)
is in C2 and N⊥ (with an obvious enumeration) is in C20, it follows that we
can construct both call-by-name and call-by-value type structures by repeated
exponentiation in EN . Significantly, these type structures are constructed
purely out of computable objects acting on computable objects — no notion
of continuity is involved in the definition.
In Ershov [1972] Ershov gave a topological description of these structures
using the concept of f0-spaces:

Definition 4.11 (f0-spaces).

(i) For any T0 topological space X , let vX be the partial order defined by

x vX y ⇐⇒ for every open set V , if x ∈ V then y ∈ V .

Call an open non-empty set V an f-set if it contains a least element with
respect to vX .

(ii) An f0-space is a T0 space X in which the family of f-sets, together with
the empty set, is closed under binary intersections and forms a basis for the
topology on X , and moreover the whole of X is an f-set.

(iii) Let us write X0 for the set of elements x ∈ X for which {y | x vX y} is
open. We say I ⊆ X0 is an ideal if it is downward closed under vX and
every pair of elements in I has a least upper bound in I . An f0-space X
is complete if (X,vX ) is canonically isomorphic to the set of ideals in X0
ordered by inclusion.

Ershov showed, in effect, that the category of complete f0-spaces and
continuous maps is cartesian closed, and moreover that a substructure of
“effective elements” in the type structure over the complete f0-space N⊥

coincides with the type structure over N⊥ in EN . It is natural to think
of this as a higher type generalization of the Myhill-Shepherdson theorem
(Theorem 2.5).
In Ershov [1972, Section 8] Ershov noted in passing that this class of com-
putable functionals hadmanypleasing recursion-theoretic properties, remark-
ing that

It is fully justified to consider [this class] as themost natural general-
ization (more precisely, extension) of the class of partially recursive
functions.

Thus far Ershov’s work had proceeded independently of Scott’s, but the
connections were made explicit in Ershov [1973b]. Indeed, it is not hard to
show that domains and complete f0-spaces are essentially equivalent, and



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 59

that Ershov’s type structures coincide exactly with P and P
eff. Ershov’s gen-

eralization of the Myhill-Shepherdson theorem may therefore be recast as
follows:

Theorem 4.12. T(EN ,N⊥) ∼= P
eff.

In general, Ershov’s definitions made greater use of topological concepts
whereas Scott’s had emphasized the order-theoretic ideas, although in fact
both authors made good use of the interplay between the two perspectives.
In Ershov [1974a], [1977a] Ershov obtained the following relationship be-
tween P and the Kleene-Kreisel type structure C:

Theorem 4.13 (Hereditarily total elements). Define a substructure A ⊆ P

as follows: A0 = N, and Aó→ô = {f ∈ Pó→ô | ∀x ∈ Aó .f · x ∈ Aô}.
Define total equivalence relations ∼ó on Aó as follows: x ∼0 y iff x = y; and
f ∼ó→ô g iff ∀x ∈ Aó .f · x ∼ô g · x. Then the sets Aó/∼ó constitute a type
structure that is canonically isomorphic to C.

Moreover, if Aeffó = Aó ∩ P
eff
ó , the sets A

eff
ó / ∼ó constitute a type structure

isomorphic to RC.

It follows easily that C is the extensional collapse of P with respect to the
equality relation onN. However, the above theorem says more than this, since
it tells us that all hereditarily total elements are automatically hereditarily
extensional. An analogous result for effective type structures, implying that
the extensional collapse ofPeff gives rise toHEO, was proved inErshov [1976b].
Ershov’s main results on P and P

eff are conveniently summarized in Ershov
[1977a]. Some further discussion of the relationship between the partial
and total type structures also appears in Sections 9 and 10 of Gandy and
Hyland [1977]. A streamlined presentation of the main results on f0-spaces
appears in Giannini and Longo [1984], together with some applications to the
semantics of untyped ë-calculi.

4.2.3. Later developments. An important structural property of bothP and
P
eff was obtained in Plotkin [1978]. This makes use of the notion of a coherent
Scott domain, that is, one in which every pairwise consistent subset has a least
upper bound.

Theorem 4.14. The Scott domain Tù of functions from N to 2⊥ ordered
pointwise is a universal coherent domain: that is, for any coherent Scott do-
main X there are continuous maps fX : X → Tù and gX : Tù → X such that
gX ◦ fX = idX (we say X is a retract of Tù). Moreover, if X is an effective
domain then these maps are computable.

Since all the domains Pó are coherent, it follows that any domain that is
rich enough to contain Tù as a computable retract (such as P1) contains
all the Pó as computable retracts. Indeed, using some standard categorical
techniques, the whole of P can be reconstructed from just P1 together with
its set of continuous endofunctions; likewise, Peff can be reconstructed from



60 JOHN R. LONGLEY

the monoid of computable endofunctions on P
eff
1 . (For an exposition of these

general techniques, see e.g., Longley [2002b].)
A few later results should also be mentioned. For instance, several peo-
ple noted that Ershov’s category EN has rather poor closure properties (in
particular, it is not cartesian closed), and so proposed larger categories to
remedy this. (Of course, the category EN is still of interest, since we know
more about an object by knowing it belongs to EN than by knowing it lives
in some larger category.) Mulry (Mulry [1982]) showed that EN could be
embedded into his recursive topos preserving existing exponentials, so that the
type structure over a suitable object N⊥ in this topos coincides with P

eff.16

This is close in spirit to another characterization of Peff given by Longo and
Moggi (Longo and Moggi [1984b]), which gives the remarkable appearance
of magically dispensing with any explicit computability requirement at higher
types. Notice the analogy with Definition 2.1.

Definition 4.15. Let fst, snd : N → N be the projections associated with
some recursive pairing function from N × N to N. For each type ó we define a
set Peffó together with a set P

ù,eff
ó of functions f : N → P

eff
ó as follows:

P
eff
0 = N⊥.

P
ù,eff
0

∼= NN

p rec.

P
eff
ó→ô = {f : Peffó → P

eff
ô | ∀g ∈ P

ù,eff
ó . f ◦ g ∈ P

ù,eff
ô }.

P
ù,eff
ó→ô = {f : N → P

eff
ó→ô | ∀g ∈ P

ù,eff
ó . Λn. f(fst n)(g(snd n)) ∈ P

ù,eff
ô }.

(This is a mild variation on the definition given in Longo and Moggi
[1984b] — the latter relies on a theorem ensuring the existence of suitable
pairing operations at higher types.) Inspired by this characterization, Longo
and Moggi introduced another cartesian closed category extending EN : the
category of generalized numbered sets (Longo and Moggi [1984a]). Moggi
later clarified the relationship between this category and the recursive topos
(Moggi [1988]).
Subsequent work has shown how P and P

eff arise naturally from various
realizability models. We will continue this part of the story in Section 5 below.

4.2.4. PCF and parallelism. We now return to discuss the important con-
nections between P, Peff and formal languages, beginning again with Scott’s
early work. In Scott [1993], Scott showed thatP provided amodel for a simple
formal language inspired directly by Platek’s work (Section 4.1.1). In the con-
text of Scott’s paper, this served as the term language of a logic intended for
reasoning about computable functions, which later became known as LCF.

16It is worth noting, in passing, that the type structure over N in this topos does not coincide
with any of our type structures of total computable functionals, but rather yields the generalized
Banach-Mazur functionals: see Mulry [1982] and cf. Section 2.2.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 61

Scott’s language for functions may be presented as follows. As usual, we
will work with the simple types over 0.17

Definition 4.16 (PCF).18 Let (combinatory) PCF be the language consist-
ing of the well-typed expressions built up via application from the constants

Kóô : ó → ô → ó

Sñóô : (ñ → ó → ô) → (ñ → ó)→ (ñ → ô)

Yó : (ó → ó)→ ó

if : 0→ ó → ó

0 : 0

succ : 0→ 0

pred : 0→ 0

The similarity to Platek’s definition of recursive definability (Definition 4.3)
is clear. The constant if takes over the role of Platek’s D; 0,succ,pred
correspond to a set of basic computable elements; and Platek’s I is redundant
anyway, since one can define I = SKK .
Of course, there are some arbitrary choices involved in this definition, and
many mild variants of it lead to essentially the same language. For instance,
one might drop the constants K and S, and instead consider the simply typed
ë-calculus over the remaining constants (this is in fact the version that is
most commonly considered today). Alternatively, one might define PCF as
“SystemTplus general recursion”: that is, we simply augment the definition of
Gödel’s SystemT (Section 3.1.1)with the constantsYó . The possibility of such
variants was already clear to Scott in Scott [1993]; they are all intertranslatable
and for our purposes have the same expressive power, so we may freely refer
to any of them as “PCF”.
Scott gave an interpretation of PCF in P in the spirit of Platek’s definition.
The constants K,S,0,succ,pred are interpreted in the obvious way. The
combinator if is interpreted by the element if of P is given by

if (0)(x)(y) = x, if (n + 1)(x)(y) = y, if (⊥)(x)(y) = ⊥.

The combinator Yó is interpreted by the function Yó which assigns to any
f ∈ Pó→ó the least fixed point of f in Pó . (Note that because all functionals
in P are continuous, we may constructYó simply by an iteration up toù—we
do not require transfinite iterations as in Section 4.1.1.) Finally, application

17Actually, Scott’s system also had a ground type of truth-values as well as one of integers,
and hence a slightly different selection of constants. Here, as elsewhere, we will content ourselves
with representing “true” by zero and “false” by any other natural number. Otherwise, we have
kept closely to Scott’s original definition.
18The name ‘PCF’ first appeared in Milner [1977].



62 JOHN R. LONGLEY

in PCF is interpreted by application in P. We thus have the notion of a
PCF-definable element of P.
Scott’s stated intention in introducing the above language was to provide
“a restricted system that is specially designed for algorithms”. However, he
presented the system purely as a mathematical language for defining elements
of P rather than as an executable “programming language”, and initially it
was not even immediately obvious whether all the PCF-definable elements
of P were effectively computable in any reasonable sense (see Scott [1993,
Section 4]).
In fact (as Scott quickly realized), it is easy to show that everyPCF-definable
element P is effective at least in the sense that it is an element of Peff. However,
the converse is not true: the function por considered by Platek (Definition 4.4)
is effective but not PCF-definable. It is clear that por is in some sense com-
putable — one can evaluate por (x)(y) by evaluating x and y “in parallel” —
but like Platek, Scott noted that this kind of algorithm has a significantly
different flavour from the means of computation that suffice to compute the
PCF-definable elements (Scott [1993, Section 4]):

Do we enjoy this new flavor enough to call it computable? Some
people would say yes, but I wonder.

It thus began to appear that there might be two reasonable notions of com-
putable element in P: the notion of effective element (given by P

eff), and the
more restrictive notion of PCF-definable element.
The next major results were obtained independently by Plotkin (Plotkin
[1977]) and Sazonov (Sazonov [1976a]). (Closely related results were also
obtained around the same time by Feferman (Feferman [1977a]).) These
authors showed that the gap between PCF computability and effectivity could
be bridgedby augmentingPCFwith just twooperations of a “parallel” flavour:

Theorem 4.17. Let PCF++ be the language PCF extended with the two con-
stants

por : 0→ 0→ 0, exists : (0→ 0)→ 0.

Extend the interpretation of PCF in P by interpreting por by the function por
(see Definition 4.4), and exists by the functional given by

exists(f) =





0 if f(n) = 0 for some n ∈ N,

1 if f(⊥) = k + 1 for some k ∈ N

(hence f(x) = k + 1 for all x),

⊥ otherwise.

Then the elements of Peff are exactly the PCF++-definable elements of P.19

19In fact Plotkin considered a parallel conditional operator rather than parallel or, but it is
easy to show that these are interdefinable over PCF (see Stoughton [1991a]).



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 63

Notice that the functional exists here is a genuinely effective “parallel search
operator”, quite different in flavour from the functionals k∃ considered in
Section 3.2.2.
As pointed out in Feferman [1977a], this was a significant result in that it
showed that this notion of computability on P could be captured by a finite
collection of inductive schemata, somewhat in the spirit of Kleene’s S1–S9.
Interestingly, it seems thatKleene himself never considered parallel operations
as a way of getting more expressive power, even though he was specifically
interested in the problem of identifying a class of “all” computable functions
at higher types.

4.2.5. Operational semantics. So far we have considered PCF and PCF++

simply as formal languages for defining elements of P. However, a crucial step
was made by Plotkin (Plotkin [1977]), who showed how to give an operational
semantics (that is, a set of symbolic evaluation rules) for these systems, turning
them into executable programming languages. This meant that the “meaning”
of programs (that is, their evaluation behaviour) could be defined without
reference to a model such as P.
We illustrate the idea by giving one possible operational semantics for our
version of PCF++. Our definition is in a rather different style from Plotkin’s,
being closer in spirit to Milner [1977]. Specifically, we will define a transitive
relation  on terms corresponding to a notion of many-step reduction. We

write k̂ as an abbreviation for (succk 0), and ⊥ó for the term YóI where
I = SKK.

Definition 4.18 (Operational semantics for PCF++). Let  be the small-
est transitive relation on terms of PCF++ satisfying the following clauses, in
which we assume all terms are well-typed.

• KUV  U , SUVW  (UW )(VW ), YU  U (YU ).

• pred 0 0, pred k̂ + 1 k̂.

• if 0 U V  U , if k̂ + 1U V  V .

• por 0 V  0, por V 0 0, por ĵ + 1 k̂ + 1 1̂.
• If U n̂  0 then existsU  0.

• If U ⊥ó  k̂ + 1 then existsU  1̂.
• If U  U ′ then UV  U ′V .
• If U  U ′ : 0 then c U  c U ′ for c = succ,pred,if,por,exists,
and por V U  por V U ′.

We say a termU : 0 evaluates to some (necessarily unique) natural number k if

U  k̂. A termU : 0 converges if it evaluates to some k; otherwiseU diverges.

Let us write [[U ]] for the element of P denoted by a PCF++ term U . The
following fundamental result (essentially Theorem 3.1 of Plotkin [1977]) says
that the operational and denotational semantics agree.



64 JOHN R. LONGLEY

Theorem 4.19 (Adequacy of P). For any closed term U : 0, U evaluates to
k iff [[U ]] = k.

The proof makes use of powerful ideas developed in Tait [1967] to prove
strong normalization for calculi such as System T (see Section 3.1.1).
Plotkin’s work on PCF marked something of a break between the older
recursion theory tradition and what was to become the modern computer sci-
ence tradition. Roughly speaking, whereas the former usually treated formal
languages or inductive schemata principally as ways of picking out a class of
computable elements from some predefined mathematical structure such as
S or P, the tendency in computer science has been to take the programming
languages as primary and then look for mathematical structures in which they
can be interpreted. (One can think of exceptions to this, of course, but some
cultural difference along these lines can be discerned in the literature and per-
sists to this day.) The ideas of operational semantics, which allow us to give
standalone syntactic definitions of programming languages, are what make
the latter approach viable.
We can perhaps illustrate this point of view by using the operational defi-
nition of PCF++ to give an independent and purely syntactic construction of
P
eff (up to isomorphism). For PCF++ termsU,V : 0, let us write U ≡ V ifU
andV either both diverge or both evaluate to the same number k. LetA be the
type structure of PCF++ terms, and let≡ó be the partial equivalence relations
induced by the extensional collapse construction with respect to ≡ (Defini-
tion 1.2). It is not too hard to show that U ≡ó V iff [[U ]] = [[V ]] ∈ Pó .
It follows by Theorem 4.17 that (Aó/≡ó) ∼= P

eff
ó ; thus, P

eff is isomorphic to
EC(A,≡).

4.3. PCF and sequential computability. By ignoring the references to por
and exists in Definition 4.18, we obtain a standalone operational definition
of PCF. Using such a definition, Plotkin was able to give rigorous proofs
that por and exists are not PCF-computable, by an analysis of possible re-
duction behaviours. (A remarkably similar result had been obtained quite
independently in Sasso [1971] — see Odifreddi [1989, p. 188].) Despite this
incompleteness, the feeling persisted that the notion of computability embod-
ied by PCF was a natural one and of interest in its own right.
Intuitively, computations in PCF proceed in a “sequential” manner in the
sense that there is a single thread of computation—we never find two disjoint
subterms of a term being evaluated at the same time. Since verymany practical
programming languages also have this sequential character, PCF appeared
attractive from a computer science perspective as a prototypical programming
language for suitable theoretical study.

4.3.1. PCF versus S1–S9. Before surveying the main body of research re-
lating to PCF, we digress briefly to comment on its relationship to Kleene’s
S1–S9. It is sometimes remarked that PCF is essentially equivalent to S1–S9,



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 65

but in our view this idea needs to be treated with caution, as there is a subtle
issue here which seems never to have been clearly explained in the published
literature.
Even if we restrict attention to the type structure P, taking a literal reading
of S1–S9 as given in Kleene [1959b] (or our Definition 3.2), it is true that
all the Kleene computable elements of P are PCF-definable, but not vice
versa. This is because there is a difference between saying that {m}(x) is
not defined (by the inductive definition of the ternary relation {m}(x) = y)
and saying that {m}(x) = ⊥. Indeed, the fact that in P the notion of non-
termination has been objectified by⊥means that if we wish to have {m}(x) =
⊥, then this triple must be explicitly generated by the inductive procedure.
Now suppose we attempt to construct an index m for, say, the fixed point
operator Y1 ∈ P(1→1)→1. By invoking S9 and appealing to Kleene’s second
recursion theorem, we can certainly obtain an index m with the property that
{m}(F ) ' F ({m}(F )) for all F ∈ P1→1. But now, even if we specialize F to
the constant function Λg.Λx.0, we cannot conclude that {m}(F ) = 0, since
strictly speaking we cannot assign a meaning to F ({m}(F )) before {m}(F )
has been given a meaning! This is because F is just an ordinary mathematical
function on the set N t {⊥}. All we can deduce is that if {m}(F ) means
anything (whether ⊥ or a number) then F ({m}(F )) = 0 and so {m}(F ) = 0.
In fact, it can be shown that the element Y1 is not Kleene computable under
this strict interpretation.
One can overcome this problem by reinterpreting S1–S9not as the inductive
definition of a set of triples (m,x, y), but as the recursive definition of a total
function {−}(−) : N×X (P)→ N⊥ obtained as a gigantic simultaneous least
fixed point. (Alternatively, one could perhaps recast it as the definition of a
relation {m}(x) w y). It appears that this is often what people have in mind
when referring to Kleene computability over P, and it is true that this more
generous notion coincides with PCF-definability.
Even so, it seems to us questionable whether this latter interpretation is true
to the spiritof S1–S9 asmanifested inKleene’s papers. As remarked earlier, the
schemata S1–S9 were introduced by Kleene to capture the ideal of computing
with functions as pure extensions, whose characteristic behaviour is that when
presented with a specified object of lower type they simply return an answer
(or perhaps diverge). It was a conscious shift in perspective on Kleene’s
part to regard computations as acting on more intensional representations of
functions, such as the formal expressions in Kleene [1978] or the oracles in
Kleene [1980]; and for this purpose Kleene introduced S11. Now the strategy
required to compute a functional such as Y1 makes essential use of the idea
that an object F of type 1→ 1 can not only provide answers when presented
with specified arguments, but also respond with questions of its own when
presented with unspecified (or incompletely specified) arguments. And if
F can do this, it is (in our view) behaving as something more than a pure



66 JOHN R. LONGLEY

extension. It therefore seems to us more accurate, both in letter and in spirit,
to say that PCF essentially corresponds to Kleene’s S1–S8 plus S11 (this is
indeed stated explicitly in Nickau [1994]). It is worth remarking that Kleene
himself never used S9 in connection with hereditarily partial functionals.
One can, however, define aweaker language thanPCF that does correspond
in expressive power to the strict interpretation of S1–S9, essentially by using
S1–S9 themselves as the basis of a language for partial functionals. The notion
of computability embodied by this language seems to be a very natural one
and deserves more attention than it has so far received. Such a language
captures an intuitively appealing idea of “computing with pure extensions”,
and moreover seems to offer the most natural route to the study of Kleene
computability even in total settings. We will say more about this notion
of computability in Part II, where we will introduce some associated type
structures K and K

eff.
Even weaker languages have also been considered. For instance, one can
consider Gödel’s System T extended with the minimization operator ì of or-
dinary recursion theory. Some preliminary expressivity results on this and re-
lated systems have recently been considered by Berger (Berger [2000]). Closely
related issues have also recently been considered in Niggl [1999] andNormann
and Rørdam [2002].

4.3.2. The full abstractionproblem. The operational semantics of PCFgives
rise to a notion of observational equivalence of PCF programs.

Definition 4.20. We say the PCF termsU,V : ó are observationally equiv-
alent (and write U ≈ó V ) if, for all term contexts C [−] such that C [U ], C [V ]
are terms of type 0, C [U ] evaluates to k iff C [V ] evaluates to k.

This is a natural notion from a programming point of view, since U ≈ V
means that it is always safe to replace U by V in any larger program without
affecting the overall result. It is therefore natural to ask whether one can give
a mathematical characterization of observational equivalence (in PCF or in
other languages).
An important result of Milner (Milner [1977]) shows that two PCF terms
are observationally equivalent iff, intuitively, they induce the same functions
on terms of lower type:

Theorem 4.21 (Context Lemma). For closed PCF terms

U,V : ó1 → · · · → ór → 0,

we have U ≈ V iff, for all closed W1 : ó1, . . . ,Wr : ór , UW1 . . .Wr evaluates
to k iff VW1 . . .Wr does.

The idea that the behaviour of PCF terms is completely determined by the
functions they induce is expressed by saying that PCF is a purely functional
programming language.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 67

Wemay now see how to define a standalone type structure of PCF-definable
functionals from the definition of PCF itself. This is analogous to the con-
struction of Peff from PCF++ mentioned at the end of Section 4.2.5.

Definition 4.22 (PCF type structure). Let B be the type structure consist-
ing of PCF terms, and let Q

eff be the extensional collapse of B with respect
to ≈0.

It follows easily from the context lemma that Qeff is actually the quotient of
B modulo observational equivalence. We may regard the type structure Q

eff

as embodying the notion of “sequentially computable functional” represented
by PCF.
It is natural to ask if one can give a more mathematically illuminating
description of Q

eff than the syntactic definition given above. In particular,
can we find a mathematically natural type structure Q within which Q

eff sits
as an “effective substructure”, in the way in which P

eff is a substructure of P?
More or less equivalently, can we give a denotational interpretation of PCF
such that [[U ]] = [[V ]] iff U ≈ V ? In computer science terminology, such an
interpretation would be called fully abstract.
Note that the interpretation of PCF in P does not fulfil this requirement. It
follows from the adequacy theorem that if [[U ]] = [[V ]] in P thenU ≈ V , but
the converse fails. This is because one can find terms U,V : ó → ô such that
[[U ]](x) = [[V ]](x) for all PCF-definable elements x ∈ Pó , but [[U ]](x) 6=
[[V ]](x) for some non-definable elements such as por (see Plotkin [1977]).
The problem of trying to give a good mathematical characterization of
the “sequential” functionals at higher types, and in particular of finding a
suitable type structure Q with the above properties, became known as the full
abstraction problem for PCF, and was to receive much attention in theoretical
computer science. The early investigators had in mind a denotational model
consisting ofCPOsof somekind, though chain completeness is not an essential
requirement. Plotkin and Milner (Milner [1977]) showed for a large class of
potential CPO models of PCF that full abstraction holds iff all the finite
elements are PCF-definable. As shown by Milner, it follows that there is
up to isomorphism just one (order-extensional) fully abstract CPO model.
However, Milner’s construction of this model was still syntactic in flavour and
was not felt to yield a good mathematical characterization of sequentiality.
Characterizations of sequentiality were obtained easily enough for first
order functions from Nr⊥ to N⊥. (By a mild abuse of notation we will write
N0⊥ → N⊥ to mean N⊥, and Nr+1⊥ → N⊥ to mean N⊥ → (Nr⊥ → N⊥).) The
following definition (by induction on r) was given by Milner:

Definition 4.23. A monotone function f : Nr⊥ → N⊥ is sequential if either
it is constant, or there is some i such that for all xi ∈ N⊥ the function

Λx1 . . . xi−1xi+1 . . . xr . f(x1) . . . (xi ) . . . (xr) : N
r−1
⊥ → N⊥



68 JOHN R. LONGLEY

is sequential.

Intuitively, f is sequential if at each stage in the computation of fx1 . . . xr ,
either f can return an answer, or else it cannot because it needs to know the
value of some argument xi . (If there is only one such i , this is the argument
that needs to be evaluated next in the computation; if there is more than one,
we have some choice in which argument to evaluate next.) Similar (though
not identical) ideas were present in Kleene’s definition of unimonotonicity for
type 2 oracles (Section 4.1.2). A different but equivalent characterization was
also obtained independently by Vuillemin (Vuillemin [1973]).
It is easily shown that a finite element of P0r→0 is sequential iff it is PCF-
definable, so that a model for PCF that included only sequential functions
at first order types would be fully abstract for types of level 2. However, a
counterexample due to Trakhtenbrot (Trakhtenbrot [1975]; see also Sazonov
[1976a]) shows that not every effective sequential element of P0r→0 is PCF-
definable— it can happen that at some stage some appropriate choice of index
i exists, but there is no effective way to compute it.
The problem of characterizing sequentiality at higher types turned out to
be much more difficult, and was the focus of a great deal of research effort
in theoretical computer science. Milner (Milner [1977]) and later Mulmuley
(Mulmuley [1987]) gave constructions of the fully abstract CPO model, but
both of these referred in some way to the operational semantics of PCF and
so did not qualify as an independent mathematical characterization. Several
other models for PCF were constructed: Berry’s stable and bistable mod-
els (Berry [1978]); the Berry-Curien sequential algorithms model (Berry and
Curien [1982], Curien [1993]) based on Kahn and Plotkin’s notion of con-
crete data structure (Kahn and Plotkin [1993]); and the Bucciarelli-Ehrhard
strongly stable model (Bucciarelli and Ehrhard [1991b], Ehrhard [1993]).
For a detailed survey of this material and further references, we recommend
Ong [1995]. This line of research gave much insight into the difficulty of the
full abstraction problem, and generatedmany counterexamples illustrating the
subtlety of the notion of observational equivalence. We will not describe the
above models in detail here, since as far as PCF is concerned the main point
about them is that they are not fully abstract. However, both the sequential
algorithms model and the strongly stable model turned out to be important
in connection with other notions of computability, and we will return to them
below.
Given that the only known constructions of a fully abstract model were felt
to be unsatisfactory, it was natural to ask what exactly were the criteria for a
“good” solution to the full abstraction problem. One possible criterion was
proposed in Jung and Stoughton [1993]: when restricted to finitary PCF (that
is, the fragment of PCF generated by the ground type of booleans), the model
construction should be effective. In other words, given a simple type ó over the



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 69

booleans it should be possible to effectively compute a complete description of
the (finite) semantic object representing ó. This criterion rules out syntactic
constructions such as Milner’s; it admits the other models mentioned above,
though they are not fully abstract.
If an extensional fully abstract model satisfying the Jung-Stoughton crite-
rion existed, it would follow that observational equivalence for finitary PCF
was decidable. However, around 1996 Loader showed:

Theorem 4.24. (Loader [2001]) Observational equivalence in finitary PCF is
undecidable.

The proof involves a tricky encoding of semi-Thue problems. Loader’s
result represents one of the most important advances in our understanding
of PCF: it closes the door on a large class of attempts at the full abstraction
problem, and indeed shows that it was not possible to give any good finitary
analysis of PCF-sequentiality considered purely as a property of functions.
(Remarkably, however, the fully abstract model for unary PCF — that is,
PCF over a ground type with a single terminating value > — is effectively
presentable; see Loader [1998].)

4.3.3. Intensional semantics for PCF. Another possible approach is to seek
a good mathematical description of the algorithms embodied by PCF terms
rather than of the functions they compute. This approach does in fact lead
to good models of sequential computation, albeit of an “intensional” nature.
One can regard such models as occupying a kind of middle ground between
operational and denotational semantics as traditionally conceived: elements
of the model are typically computation strategies with a dynamic operational
behaviour, but many of the inessential details present in an operational defi-
nition of a language are abstracted out.
An approach of this kind was first successfully carried through by Sazonov
(Sazonov [1975], [1976b], [1976c]), whose work was explicitly formulated in
terms of Scott’s LCF but was independent of the work of Milner and Plotkin,
and indeed remained little known in the West until a brief description of it
appeared in Hyland and Ong [2000]. In effect, Sazonov gave a model of
PCF-style sequential computation in terms of Turing machines with oracles,
much in the same spirit as Kleene’s characterization of S1–S9 computations
in Kleene [1962c], [1962d]. A Turing machine for a function of type n com-
municates with its argument (an oracle of type n − 1) by feeding it with a
description of a Turing machine for type n − 2. As in Kleene [1962c], com-
putations have the character that functionals of type n − k are represented
by (codes for) Turing machines when k is even, and by pure oracles when
k is odd. At the heart of Sazonov’s work is his notion of the strategy fol-
lowed by a Turing machine: sequentiality is enforced by a requirement that
when a machine invokes an oracle, it must receive an answer before it can
continue. Although Sazonov’s formalization is somewhat complicated and



70 JOHN R. LONGLEY

rather dependent on the use of explicit codings for Turing machines, this ap-
proach succeeds in capturing the notion of PCF computability at all finite
types and very closely anticipates many features of later models. (In fact,
it could be argued that Sazonov had already accomplished what Kleene was
trying to achieve in the papers from Kleene [1978] onwards!) An account of
Sazonov’s work framed in more modern computer science terms is given in
Sazonov [1998].
A somewhat similar approach was pursued for many years by Gandy and
his student Pani, who however concentrated more on the problem of char-
acterizing the PCF-definable elements of P. This approach was apparently
influenced by Kleene [1978], and emphasized the idea of computations as
dialogues between two participants. The information available to the partici-
pants at each stage is represented by finite elements of P (or similar entities).
Gandy’s insights had a significant influence on the computer science commu-
nity, though unfortunately Gandy never completed a written account of his
ideas and their exact form remains unclear.
Within computer science itself, an abstract formulation of the essence of
PCF sequentiality in terms of dialogue games was achieved around 1993,
when three closely related models of PCF were obtained (simultaneously
and more or less independently) in Abramsky, Jagadeesan and Malacaria
(Abramsky, Jagadeesan, and Malacaria [2000]), Hyland and Ong (Hyland
and Ong [2000]), and Nickau (Nickau [1994]). Again, the formal details can
appear rather complicated, but the essential ideas can be easily grasped via an
example. Using ë-calculus notation and some obvious abbreviations here for
convenience, suppose we are given the PCF terms

F ≡ ëgh. (g 3) + (g(Yh)) : 1→ 1→ 0

g ≡ ëx. x + 2 : 1

h ≡ ëx. 4 : 1

and we wish to evaluate Fgh. The computation can be modelled as a dialogue
between a PlayerP, who follows a strategy determined byF , and anOpponent
O, whose strategy is determined by g and h. Moves in the game are either
questions (written ‘?’), or answers (natural numbers) which are matched to
previous questions. Furthermore, the moves are associated with occurrences
of 0 in the type in question, according to their “meaning” in the context of
the game. The game always starts with a question by Opponent, who asks
for the final result of the computation. We show in Figure 2 the dialogue
corresponding to the computation of Fgh, along with an informal paraphrase
of the meaning of each move. (In fact, the order of moves here precisely
matches the order of interactions between Turing machines and oracles in
Sazonov’s approach.)



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 71

Figure 2. A game play corresponding to a PCF computation

(0→ 0)→ (0→ 0)→ 0
O : ? What is F (g)(h)?
P : ? What is g(x)?
O : ? What is x here?
P : 3 x = 3.
O : 5 In that case, g(x) = 5.
P : ? All right. Now what is g(x ′)?
O : ? What is x′ here?
P : ? What is h(y)?
O : 4 h(y) = 4 (whatever y is).
P : 4 Then x′ = 4.
O : 6 In that case, g(x ′) = 6.
P : 11 Well then, F (g)(h) = 11.

In the game model of Hyland and Ong [2000], for instance, two main con-
straints on strategies are imposed: well-bracketing (every answer must match
the most recent pending question) and innocence (roughly, the participants
must decide on their moves purely on the basis of the answers received to pre-
vious questions, not on how these answers were obtained). Another feature
of this model is that every move apart from the first one is explicitly justified
by some previous move: answers are justified by the questions they answer,
and questions are justified by earlier questions which open up the appropriate
part of the game.
All of the game models mentioned yield definability results for PCF: every
recursive strategy is the denotationof some PCF term. In fact, they all give rise
to the same extensional type structureQ, which satisfies the criteria mentioned
following Definition 4.22, and which seems to be the natural candidate for
such a type structure. (It is, however, an open problem whether theQó are all
CPOs.) Note that the elements of Q are in general infinite equivalence classes
of strategies, so these constructions do not have quite the finitary character
that onemight have liked (this is inevitable in viewofTheorem4.24). However,
this does not mean that no useful analysis has been achieved. In our view,
the main insight offered by the perspective of game semantics is the idea that
a parity (O or P) may be consistently assigned to the implicit interactions
between the subterms of a PCF term. This parity is extra structure present
in the game models — it is not present in the raw operational definition of
PCF. The game-theoretic analysis seems to us to be deep enough to resolve
some interesting and purely syntactic questions about PCF, though significant
results of this nature have yet to be worked out in detail.



72 JOHN R. LONGLEY

The ideas of game semantics have also been successfully applied to yield
characterizations of non-extensional notions of computability — see Sec-
tion 6.2.

4.3.4. Other work. We nowmention a fewmiscellaneous topics to conclude
our survey of what is known about PCF computability.
A remarkable result of Sieber (Sieber [1992]) gives a complete characteri-
zation of the PCF-definable finite elements at types of level 2 as those that are
invariant under a class of logical relations known as sequentiality relations.
The idea of using invariance under logical relations to construct a model was
carried much further by O’Hearn and Riecke (O’Hearn and Riecke [1995])
who obtained a fully abstract model in this way; however, their result depends
only on general facts about ë-definability, and so it is unclear how much it
reveals about sequentiality as such.
Some attention has also been given to other variants of PCF. The version
considered above is the original call-by-name one, but one can equally well
define a version of PCF with a call-by-value evaluation strategy, which can
be naturally interpreted in CBV type structures (the idea essentially appears
in Plotkin [1983, Chapter 3]). There is also a third possibility: the lazy PCF
of Bloom and Riecke [1989]. The relationships between these languages were
investigated in Sieber [1990], Riecke [1993], Longley [1995, Chapter 6]. The
picture that has emerged is that these languages are sufficiently interencodable
that, from a denotational perspective at least, they can all be regarded as
embodying the same abstract “notion of computability”. We will explain this
point of view in more detail in Part II.
Another area of recent interest has been the relationship between PCF
computability and the notions of total functional considered in Sections 3.3
and 3.4. The general idea here is to askwhat total functionals canbe computed
in PCF, though this question can be made precise in several different ways.
For example, we have already seen thatC arises as an extensional collapse of P
(Theorem 4.13); one can therefore ask which elements of C are represented by
PCF-definable elements of P. It is not hard to see that all Kleene computable
elements of C are PCF-definable in this way. More surprising is the fact that
the fan functional Φ (see Section 3.3.1) is PCF-definable by means of a clever
higher type recursion. This fact appeared in Berger’s thesis (Berger [1990]),
and was also independently known to Gandy. The following more general
result was conjectured in Cook [1990] and Berger [1993], and proved by
Normann in Normann [2000].

Theorem 4.25. The PCF-definable elements of C are exactly those in RC.

Equivalently (in the light of Theorems 4.13 and 4.17), the PCF-definable
elements of C coincide exactly with the PCF++-definable ones. Normann’s
proof is both ingenious and beautiful and is one of the highlights of the
subject. Around the same time, Plotkin (Plotkin [1997]) considered other



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 73

possible notions of totality in PCF (such as that given by an extensional
collapse of the term model for PCF itself) and investigated the differences
between the various notions.
Finally, a few papers have been devoted to the degree theory induced by
the notion of relative PCF-definability. An element x ∈ P

eff (for example)
is PCF-definable relative to y ∈ P

eff if there is a PCF-definable element f
such that f(y) = x; the corresponding equivalence classes are known as
degrees of parallelism. The lattice of degrees of parallelism was introduced by
Sazonov (Sazonov [1976a]); like other lattices of degrees, its structure would
appear to be extremely complicated. Sazonov mentioned several examples
of distinct degrees and some relationships between them: for instance, the
functions por and exists represent incomparable degrees. A fewother results in
a similar spirit appear in Trakhtenbrot [1975]. Bucciarelli (Bucciarelli [1995])
undertook a somewhatmore systematic studyof degrees of parallelism for first
order functions; this line of investigationwas pursued further by Lichtenthäler
(Lichtenthäler [1996]). Degrees of parallelism can be seen as representing
notions of computability intermediate between PCF and PCF++; however, to
date none of these intermediate notions have established themselves as being
of independent mathematical interest.

4.4. The sequentially realizable functionals. Until the mid 1990s, it seemed
reasonable to suppose that the only two respectable notions of hereditarily
partial computable functional were those embodied by PCF and PCF++ —
these were typically referred to as “sequential” and “parallel” computability.
However, it emerged more recently that there is another good class of com-
putable functionals which can reasonably be seen as embodying an alternative
notion of “sequential” computability, more generous than the PCF one.
The basic idea can be given by a simple example. Let Mrec be the set of
monotone computable functions from N⊥ to N⊥ (that is, Mrec = P1), and
consider the function F : Mrec → N⊥ defined by

F (g) =





0 if g(⊥) ∈ N (i.e., if g = Λx.k for some k ∈ N),

1 if g(⊥) = ⊥ but g(0) ∈ N,

⊥ otherwise (i.e., if g(0) = ⊥).

Intuitively, the function F can be computed via the following strategy: given
a function g, feed it the object 0 ∈ N⊥ (that is, a program which when run
will terminate giving the value 0), and then watch g closely to see whether it
ever “looks at” its argument (that is, whether the above program is in fact ever
run). If g returns a result without looking at its argument, we return 0; if g
returns a result having looked at the argument, we return 1.
This is a perfectly effective and intuitively “sequential” way of computing
F , as long as g is presented to us in some form of which it is sensible to ask
whether it ever looks at its argument. The computation of F thus has to



74 JOHN R. LONGLEY

operate on some kind of algorithm or intensional representation for g rather
than on its pure extension, although the result F (g) is completely determined
by the extension g. (As argued in Section 4.3.1, the same is true for PCF
computations — the only difference is that here we allow some additional
ways ofmanipulating the intensional representations.) It is easy to see that the
function F cannot be defined in PCF: if g1 = Λx.if (x)(0)(0) and g2 = Λx.0,
then g1 v g2 in the pointwise order but F (g1) 6v F (g2); thus F does not exist
even in P since it is not (pointwise) monotone.
It may appear puzzling that a non-monotone function can be considered
computable in some sense. The explanation hinges on the fact that compu-
tations here operate on intensional objects (as is the case with many of the
definitions we have seen), and at this level, computable operations are indeed
monotone. Thus, although g1 v g2 extensionally, the algorithm that computes
g2 is not obtained by extending the algorithm that computes g1. It is alsoworth
noting that even at the extensional level, functions like F are monotone with
respect to a different ordering known as the stable order. (Curiously, Kleene
came across the possibility of algorithms such as the one described above for
F — see Kleene [1985, §13.3] — but decided to rule them out by an extrinsic
monotonicity requirement.)
It turns out that there is a mathematically natural type structure containing
F and “all things like it”, which we shall denote by R. This first appeared in
the literature as the type structure arising from the strongly stable model of
Bucciarelli and Ehrhard [1991b], a domain-theoretic model of PCF intended
to capture certain aspects of sequential functionals, and conceived partly
as a line of attack on the PCF full abstraction problem. The objects in
this model are dI-domains with coherence, which are certain CPOs equipped
with a class of finite subsets designated as coherent sets. The morphisms
(equivalently the elements of function spaces) are the strongly stable functions,
the continuous functions between such CPOwhich preserve coherent sets and
least upper bounds of coherent sets. Though rather complicated to formulate,
the construction of this model is as finitary and effective as could be desired,
so that (for instance) equality of finite elements is decidable. Ehrhard later
gave a simplified presentation in terms of hypercoherences (Ehrhard [1993]),
and a slightly more abstract analysis of the relevant structure was given in
Bucciarelli and Ehrhard [1993].
Another interesting characterization, given by Colson and Ehrhard in Col-
son and Ehrhard [1994], showed thatR in some sense arises naturally from the
class of (infinitary) first order sequential functions NN

p → N⊥. (For functions
of this type, there is evidently only one reasonable notion of sequentiality. It
can be characterized by a simple infinitary generalization of Definition 4.23,
or equivalently in the style of Definition 4.27 below.) Note the analogy with
Definition 4.15.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 75

Definition 4.26. For each type ó we define a setRó , and a setR
ù
ó of functions

from NN
p to Ró , as follows:

• R0 = N⊥.
• R

ù
0 is the set of sequential continuous functions N

N
p → N⊥.

• Ró→ô is the set of all functions f : Ró → Rô such that for all g ∈ R
ù
ó we

have f ◦ g ∈ R
ù
ô .

• R
ù
ó→ô is the set of all functions f : NN

p → Ró→ô such that for all g ∈ R
ù
ó

the functionΛr : NN
p . f(fst r)(g(snd r)) is in R

ù
ô .

The above characterizations say nothing about whether the elements of R
that are not definable in PCF are sequentially computable in any reasonable
sense. However, Ehrhard showed in Ehrhard [1996] that there is indeed a
computational aspect: every element of R can be in some sense computed by
a Berry-Curien sequential algorithm. This line of investigation was continued
in Ehrhard [1999], where it was shown thatR is in fact the extensional collapse
of the sequential algorithms model.
A somewhat simpler characterization in the same vein was discovered in-
dependently by van Oosten (Oosten [1999]) and Longley (Longley [2002a]),
who constructed R from a certain combinatory algebra B. The definition
of B hinges on the observation that a sequential algorithm for computing a
function F : NN

p → N⊥ (at a given element g ∈ NN
p ) can be represented by an

infinitely branching decision tree, in which each internal node is labelled with
a “question” ?n , (meaning “what is the value of g(n)?”), and each leaf either
has an undefined label or is labelled with an “answer” !n (meaning “the value
of F (g) is n”). Furthermore, such a decision tree can itself be easily coded by
an element f of NN

p . Likewise, a sequential algorithm of type NN
p → NN

p can
be represented by an infinite forest of such trees, which can again be coded by
an element ofNN

p . All this is very similar to the idea behindKleene’s associates

(Section 3.3.1).
In the following definition we take !n = 2n and ?n = 2n + 1.

Definition 4.27 (Van Oosten algebra).

(i) Let play : NN
p × NN

p × Seq(N)→ N⊥ be the smallest partial function such

that, for all f, g ∈ NN
p , α ∈ Seq(N) and n,m ∈ N,

• if f〈α〉 = !n then play(f, g, α) = n,
• if f〈α〉 =?n and g(n) = m then play(f, g, α) = play(f, g, (α;m)).

(ii) For f ∈ NN
p and n ∈ N, write fn for the least function such that fn〈α〉 =

f〈n;α〉 for all α. Let |, • be the operations defined by

f | g = play(f, g, [ ]), f • g = Λn.(fn | g)

and let B be the applicative structure (NN
p , •).



76 JOHN R. LONGLEY

The construction of R from B is now a standard extensional collapse (see
also Section 5 below). Define partial equivalence relations ∼ó on B by

f ∼0 g iff f(0) ' g(0) (for example),

f ∼ó→ô g iff ∀x, y ∈ B. x ∼ó y ⇒ f • x ∼ô g • y

We may then define R by taking Ró = B/∼ó , with application operations
induced by •.
This construction shows that all the elements of R can be computed or
“realized” by sequential algorithms in some sense. In fact, the relationship
betweenB and theBerry-Curien sequential algorithmsmodel is very close: the
relevant objects in the Berry-Curien category can all be obtained as retracts
of B by standard categorical techniques. This and other results connecting
up the known characterizations of R appeared in Longley [2002a], where the
elements of R were called the sequentially realizable functionals. Some further
characterizations of R have recently been given in Hyland and Schalk [2002]
and Laird [2002].
Longley also explicitly considered the effective analogue Reff (which may be
constructed either as a standalone type structure or as a substructure of R),
and argued that this embodied a natural and compelling notion of sequential
computability at higher types. One of the main results of Longley [2002a]
was that in both R and R

eff the type 2 is universal in the same sense in which
Tù is universal in P and P

eff (see Theorem 4.14). A closely related fact is
the existence of a type 3 functional H ∈ R

eff such that every element of
R
eff is PCF-definable relative to H ; indeed, one can define a programming
language PCF+H with an effective operational semantics whose term model
provides an alternative characterization of R

eff. (The operation H can in
fact be implemented in existing higher order programming languages such as
Standard ML; cf. Longley [1999c].)
As we have seen, the functional F ∈ R

eff mentioned above is not present
in P

eff. On the other hand, the function por ∈ P
eff is not present in R

eff. We
therefore have two incomparable notions of partial computable functional —
this is somewhat analogous to the situation for the total type structures RC

and HRC as described in Section 3.4. (See also the diagrams in Appendix A).
Indeed, one can also make precise an “anti-Church’s thesis” in the partial
setting, to the effect that there is no possible type structure of computable
functionals over N⊥ that subsumes both P

eff and R
eff. One version of such a

result was given in Longley [2002a, Section 11]; a slightly stronger version will
be presented in Part II.
The type structures P

eff and R
eff both “contain” the type structure Q

eff

of Definition 4.22 in some sense (see also Definition A.1). As a curiosity,
however, it is worth noting that there are functionals present in both P

eff and
R
eff that are not present in Q

eff (see Longley [2002a, Section 11.2], or else



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 77

Bucciarelli and Ehrhard [1994], [1991a] where a kind of “intersection” of P
and R is constructed).
In conclusion we remark on a few points of comparison between the PCF-
sequential and sequentially realizable functionals (see Longley [2002a, Sec-
tion 12] for a more detailed discussion). The evidence thatR andR

eff are natu-
ral mathematical objects seems to us very compelling — indeed, at present we
possess a much wider range of prima facie independent characterizations for
R than for Q. Related to this is the fact that R appears to enjoy better struc-
tural properties than Q: for instance, the finitary analogue of R is effectively
presentable (in contrast to Theorem 4.24 for Q); and R (unlike Q) possesses
a universal type. However, one difficulty with R

eff from a practical point of
view is that the universal functional H has a high inherent computational
complexity (see Royer [2000]); this makes it unlikely thatReff will ever become
the staple notion of sequentially computable functional employed by higher
order programming languages.

§5. Realizability models. We end our discussion of computable functionals
by surveying some ideas from the study of realizability models that cross-cut
several of the topics we have mentioned so far.
The concept of realizability was introduced by Kleene in Kleene [1945],
who showed that the notion of recursive function could be used to give a
constructive interpretation of arithmetic. Thereafter, many other kinds of
realizability were introduced to give constructive interpretations of various
logical systems, and hence establish metamathematical results (see Troelstra
[1973]). Later, a more model-theoretic perspective emerged (Hyland [1982]),
whichmade it clear that realizability could provide a common semantic setting
for both logics andprogramming languages (such as typed ë-calculi). A survey
of the history of realizability has recently been given in Oosten [2002].
The number and variety of notions of realizability that have been studied
is very large (see e.g., Oosten [1991] or Hyland [2002] for an overview). Here
we shall give the definitions only for a class of models based on standard
realizability, a simple generalization of Kleene’s original notion — these are
the models which have received the greatest attention so far. However, we will
also allude briefly to realizability models of other kinds.
We start with the following definition, which was (essentially) introduced
in Feferman [1975]:

Definition 5.1 (PCAs). A partial combinatory algebra (PCA) is a set A
equipped with a partial “application” operation · : A × A ⇀ A, in which there
exist elements k, s ∈ A such that for all x, y, z ∈ A we have

k · x · y = x, s · x · y↓, s · x · y · z ' (x · z) · (y · z).



78 JOHN R. LONGLEY

The definition of PCA leads to a rich computational structure: for instance,
in any PCAA one can represent the natural numbers by means of an encoding
due to Curry, and all recursive functions are then representable by elements of
A. We may therefore think of a PCA as an untyped universe of computation
in some abstract sense; this seems a reasonable point of view since many
naturally arising PCAs are indeed “effective” in nature. Perhaps the leading
example of a PCA isKleene’s first model K1, consisting of the natural numbers
with Kleene application: m · n ' φm(n). Other interesting examples will be
mentioned below.
The models we shall consider here are defined as follows:

Definition 5.2 (PERs).

(i) Given a PCA (A, ·), a partial equivalence relation (or PER) on A is a
symmetric, transitive binary relation R on A, i.e., an equivalence relation
on a subset of A. We write A/R for the set of equivalence classes for R.

(ii) If R,S are PERs on A, the PER SR is defined by

SR(a, a′) iff ∀b, b′ ∈ A. R(b, b′)⇒ S(a · b, a′ · b′).

A morphism f : R → S is an element of A/(SR); we say a realizes f if
a ∈ f. We write PER(A) for the category of PERs on A and morphisms
between them.

It is easy to show that PER(A) is a cartesian closed category, with expo-
nentials as suggested by the above definition. In fact, the categories PER(A)
turn out to have an extremely rich structure and to offer a common semantic
framework for type theories, constructive logics and programming languages.
Girard originally introduced the category PER(K1) in order to give a se-
mantics for his second order polymorphic ë-calculus, or “System F” (Gi-
rard [1972]). Later, PER(K1) was identified as an important subcategory of
Hyland’s effective topos (Hyland [1982]), a categorical model for higher or-
der logic based on Kleene’s realizability interpretation of arithmetic (Kleene
[1945]). More generally, PER(A) arises as a subcategory of the standard re-
alizability topos RT(A) (Hyland, Johnstone, and Pitts [1980]); we will refer
loosely to the categoriesPER(A), RT(A) and their close relatives as realizabil-
ity models. Here we shall concentrate on their connections with programming
languages and computability.
One way of thinking about the above definitions (advocated by Mitchell
and frequently stressed by the present author) is to regard a PCA A as a kind
of abstractmodel of “machine level” computation, and to regardPER(A) as a
category of “datatypes”, for a high level programming language implemented
on this machine. In the case ofK1, for instance, this accords closely with what
happens inside a computer: a high-level datatype consists of valueswhichmust
ultimately be represented on the machine somehow by bit sequences (or let us
say by natural numbers). Since two machine representations of some value



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 79

might be indistinguishable from the point of view of the high-level language,
we can think of the datatype as corresponding to a partial equivalence relation
onN. Abstracting from this situation, we can imagine anyPCAA as providing
a kind of primitive model of computation, and on this view all morphisms of
PER(A) are “computable” in the sense that they are realized by an element
of A.

5.1. Type structures in realizability models. In any category of the cate-
gories PER(A), there is (up to isomorphism) a canonical “datatype of natural
numbers” N , arising for instance from Curry’s encoding of the natural num-
bers in the language of combinatory logic. (We will write N for the object of
PER(A) representing the natural numbers, to distinguish it from the ordinary
set N of natural numbers.) In addition, for most of the particular PCAs of in-
terest, there is an object inPER(A) that stands out as being the obvious choice
for N⊥. We can therefore obtain type structures over N and N⊥ by repeated
exponentiation in PER(A). From our point of view, these can be seen as type
structures of “computable functionals” naturally arising from the notion of
computability embodied by A. In the cases where A is a genuinely “effective”
PCA, this will yield type structures of effectively computable functionals in
some sense. We therefore have a rich supply of interesting constructions of
type structures to consider.
In fact, many of the characterizations of type structures thatwe have already
considered are easily seen to be of precisely this kind. As regards total type
structures over N, for instance, Kreisel’s definition of HEO (Definition 3.16)
is nothing other than the definition of the type structure over N in PER(K1).
Kleene’s definition of C via associates (Definition 3.13) essentially arises in
the same way from a PCA known as Kleene’s second model K2. This PCA
was introduced in Kleene and Vesley [1965] — here the underlying set is NN,
and application is given by a minor modification of the operation (− | −)
mentioned in Section 3.3.1. (In fact, an associate for an element x ∈ C is
essentially nothing other than a realizer for x in K2.) The definition of HRC

(Definition 3.18) arises similarly from the recursive submodel K2rec. Scott’s
characterization of C via algebraic lattices is very close to the definition of the
type structure over N in the Scott graph model Pù.
Other constructions cannaturally be viewed as type structures in other kinds
of realizability models. For instance, Bezem’s construction of HEO as the ex-
tensional collapse of HRO (Theorem 3.20) corresponds to the type structure
over N in the categoryMPER(A) of modified PERs on A, a natural subcate-
gory of the modified realizability topos on A (see Oosten [1997]). In addition,
several possible definitions ofRC correspond to type structures in relative real-
izabilitymodels of the kind considered in Awodey, Birkedal, and Scott [2000].
The general programme of trying to identify the type structures overN aris-
ing fromvarious PCAswas explicitly articulated in Beeson [1985, ChapterVI],



80 JOHN R. LONGLEY

where the cases of Pù and Pùre (giving rise to C and HRC respectively) were
considered. Similar results for other graph models were obtained by Bethke
(Bethke [1988]). As one might expect, it would seem that all natural PCAs
based solely on a notion of continuous function application give rise to the
type structure C, and their recursive analogues give rise to HRC.
One can also view many definitions of type structures over N⊥ as arising
from realizability models, but for this we need some additional ideas. A
suitablewayof talking about “computable partial functions” in categories such
asPER(A) was provided byRosolini’s theory of dominances (Rosolini [1986]),
inspired by ideas of Mulry. A dominance is a small piece of extra structure on
a category which determines an abstract notion of “semidecidable predicate”.
Under certain conditions, a dominance gives rise to a lifting operation X 7→
X⊥ on objects; one may then identify computable partial functions X → Y
with morphisms X → Y⊥. For instance, the natural choice of dominance on
PER(K1) gives rise to an object N⊥ which may be defined (as a PER) by

N⊥(m, n)⇐⇒ φm(0) ' φn(0).

The morphisms N → N⊥ then correspond precisely to the partial recursive
functions N⇀ N, as we might have hoped.
In Longley [1995], Longley developed explicitly the idea thatdifferent PCAs
embody different notions of computability, and considered the problem of
identifying the type structures over N⊥ in particular models. The following
result appeared in Longley [1995, Chapter 7]:

Theorem 5.3. T(PER(K1), N⊥) ∼= P
eff.

This is very close in content as Ershov’s generalized Myhill-Shepherdson
theorem (Theorem 4.12); however, the formulation in terms of PER(K1) is
simpler insofar as here it is immediate that the required exponentials exist.
Longley drewparticular attention to the coincidence between the type struc-
ture in PER(K1) and the extensional term model for PCF

++ (Section 4.2.5).
Both of these constructions can be seen as very “pure” attempts at defining
a class of hereditarily computable partial functionals (they do not require
auxiliary concepts such as continuity), but they are totally different in spirit.
In PER(K1) we think of computations as taking place at the level of recursive
indices, and an index realizes a functional whenever its action on indices for
objects of lower type just “happens” to be extensional. In PCF++, by contrast,
computation takes place at a higher “symbolic” level, where extensionality is
enforced by the design of the programming language, and the ways in which
a function may interact with its argument seem prima facie to be much more
restricted. That these two definitions yield the same structure at all finite types
still appears to the present author to be a wonderful and surprising fact.
It was also shown in Longley [1995] that the type structure over (an obvious
object) N⊥ in PER(Pù) [resp. in PER(Pùre)] coincided with P [resp. Peff].



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 81

This is not too surprising in view of the close connections between Scott
domains and algebraic lattices.
Another interesting family of PCAs are the term models for untyped ë-
calculi. For instance, let Λ0/T be the set of pure closed untyped ë-termsmod-
ulo some reasonable theoryT , regarded as a combinatory algebra. The follow-
ing was conjectured implicitly (for a particular T ) by Phoa (Phoa [1991]), and
more explicitly (for a large class of theoriesT ) byLongley (Longley [1995, Sec-
tion 7.4]), who obtained some partial results and outlined a possible proof
strategy:

Conjecture 5.4 (Longley-Phoa). In the type structure over (an obvious
choice of ) N⊥ in PER(Λ

0/T ), every element is PCF-definable. In other words,

T(PER(Λ0/T ), N⊥) ∼= Q
eff.

There is fairly good evidence for this conjecture, but it has resisted extensive
attempts at proof by the author and others. Moreover, even if proved, it
is doubtful whether this result would give any useful information about the
type structure Q

eff, since the relevant objects in PER(Λ0/T ) appear to be
quite intractable. The main interest in the conjecture is perhaps conceptual:
it would provide an example of a highly non-trivial equivalence between two
characterizations of Qeff, which in turn would provide evidence for the math-
ematical naturalness of this type structure. An interesting (and perhaps more
useful) variant of the Longley-Phoa conjecture, involving a ë-calculus with
certain constants, has been established by Streicher et al (Marz, Rohr, and
Streicher [1999], Rohr [2002]), though this is a much easier result.
A more semantic example of a PCA which does give rise to Q

eff was con-
structed by Abramsky, based on the ideas of games and well-bracketed strate-
gies. The proof that it does so is non-trivial and to some extent furnishes the
same kind of evidence for the status ofQ andQ

eff as would be provided by the
Longley-Phoa conjecture; see Abramsky and Longley [2000].
Meanwhile, van Oosten and Longley constructed the PCA B described in
Section 4.4; the type structure defined there is exactly the type structure over
the obvious object N⊥ in PER(B). It was this characterization that led to the
systematic study of the sequentially realizable functionals in Longley [2002a].
Various attempts have been made to generalize the construction of real-
izability models from untyped to typed structures. One way to do this was
proposed by the present author in Longley [1999b]; we will make considerable
use of this perspective in Parts II and III as a means of unifying much of the
material described in this survey. This generalization also leads to many new
ways of constructing type structures, though in most cases they turn out to be
isomorphic to one of the type structures already known.
In conclusion, it appears that in almost all known “natural” examples of
realizability models, the type structure over N is isomorphic to one of C, RC



82 JOHN R. LONGLEY

andHRC; while the type structure over (a natural choice of)N⊥ is isomorphic
to one ofP,Q,Ror their recursive analogues. This is consistentwith the overall
impression gained from the material in Sections 3 and 4—namely, that a wide
range of approaches to defining plausible notions of higher type computable
functional actually leads to a relatively small and manageable handful of type
structures. It would be interesting to know whether the Kleene computable
functionals (e.g., KC(A) for some A, or the type structure K mentioned in
Section 4.3.1) can be obtained via a realizability construction in a natural
way.

5.2. Domains in realizability models. Much of the work mentioned in the
preceding section tookplacewithin the context of a general programmeknown
as synthetic domain theory, which sought to identify good categories of “com-
putational domains” (e.g., for denotational semantics) within realizability
models and similar categories. We include a short account of this programme
here in order to give an impression of the background to the above results.
Synthetic domain theory was initiated by Scott in the early 1980s. The idea
of this enterprise was to look for models of constructive set theory containing
objects which, by themselves and without any additional structure, could serve
as domains for denotational semantics. Domains would then simply be “sets”
in some constructive universe, and the hope was that this might lead to a
simpler, cleaner version of domain theory than the classical one.
Later work by Rosolini (Rosolini [1986]), Hyland (Hyland [1990]) and
many other researchers sought to give axiomatic versions of synthetic domain
theory: that is, a set of conditions on a model of constructive set theory
(usually a topos) which suffice to ensure that it contains a good category of
computational domains. Here realizability models provided the main source
of motivating examples. Longley and Simpson (Longley and Simpson [1997])
developed a version of synthetic domain theory that applied uniformly to a
wide range of realizability models, showing that very many PCAs gave rise to
models of PCF at least. We refer to Rosolini’s contribution in Fiore, Jung,
Moggi, O’Hearn, Riecke, Rosolini, and Stark [1996] for a brief survey of
synthetic domain theory and further references.
Related to this enterprise was the observation that many known categories
of computational domains could be seen as full subcategories of particular
realizability models. For instance, there is an obvious embedding of EN in
PER(K1) which preserves the exponentials that exist inEN . Another example
was provided by the work of McCarty (McCarty [1984]), who showed that
the category of effectively given information systems (essentially equivalent
to effective Scott domains) embeds fully in a model of intuitionistic ZF set
theory based on Kleene realizability; this was recast in terms of PER(K1) in
Longley [1995].
Rather more easily, the category of Scott domains and its effective analogue
can respectively be embedded in PER(Pù),PER(Pùre). These categories



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 83

play a central role in the work of Scott and his colleagues (Bauer, Birkedal,
and Scott [2001]), who exploit the observation that PERs on Pù are equiva-
lent to countably based T0 spaces equipped with an equivalence relation (such
objects are termed equilogical spaces). The work of van Oosten and Longley
on sequential realizability (Section 4.4) has shown that certain categories of
sequential algorithms and hypercoherences arise as subcategories of PER(B).
Finally, Bauer has recently shown (Bauer [2001]) that much of the work of
Weihrauch et al on representations of spaces via type two effectivity (Sec-
tion 3.3.5) can be naturally understood in terms of the categories PER(K2),
PER(K2rec). All these results suggest that realizability models can provide an
attractive setting for describing and relating many other kinds of models.

§6. Non-functional notions of computability. Thus far we have concentrated
almost entirely on extensional notions of computability — that is, on notions
of computable functional. One can also ask whether there are reasonable non-
extensional notions of “computable operation” at higher types. Such notions
have received relatively little attention by comparison with the extensional
notions — perhaps because the very idea of an “intensional operation” seems
rather hazy, and it is unclear a priori whether it is amenable to a precise
mathematical formulation. We here briefly survey some known ideas that
relate to this problem.
We have seen how notions of computable functional may be naturally em-
bodied by extensional type structures (or substructures thereof). As a first
attempt, therefore, wemight propose thatmore general notions of computable
operation could be identified simply with type structures without the exten-
sionality requirement. A typical example would be the structure HRO of Def-
inition 3.17. Many other examples arise from (non-well-pointed) cartesian
closed categories: given any object X corresponding to N or N⊥, interpret
the simple types by repeated exponentiation and then apply the global ele-
ments functor Hom(1,−). This view seems somewhat unsatisfactory in that
it is too concrete: for instance, different Gödel-numbering schemes can give
rise to non-isomorphic variants of HRO, whereas we would presumably wish
to consider all these variants as embodying essentially the same “notion of
computability”. This problemmay be addressed by adopting the more refined
point of view outlined in Section 6.3 below; in the meantime, however, we
may at least collect examples of non-extensional type structures which might
embody plausible notions of computable operation.

6.1. Structures over N. Non-extensional type structures over N were sys-
tematically studied by Troelstra (Troelstra [1973]), who exploited them for
metamathematical purposes: any such type structure containing suitable ba-
sic operations (essentially those of System T) can serve as a model for higher
order arithmetic without the extensionality axiom. Two of the type structures



84 JOHN R. LONGLEY

considered by Troelstra are of particular interest from our point of view: the
structure HRO of hereditarily recursive operations, and a type structure ICF

of intensional continuous functionals. Both structures were first introduced by
Kreisel (Kreisel [1958], [1962]).
Many of the relevant facts about HRO have already been described in
Section 3.4. Let us call an element F ∈ HRO2 an extensional operation if
F · f = F · f′ whenever f · n = f′ · n for all n. A trivial example of a
non-extensional operation is the element G ∈ HRO2 which given an element
x ∈ HRO1 simply returns x ∈ HRO0. As a less trivial example of a non-
extensional phenomenon at higher types, there is a local modulus of continuity
operation Ψ ∈ HRO2→1→0 with the following property: if F ∈ HRO2 is an
extensional operation and g ·n = g ′ ·n for all n < Ψ ·F ·g, then F ·g = F ·g ′.
(The existence of such a recursive operation is implicit in the original proof of
the Kreisel-Lacombe-Shoenfield theorem; see Kreisel, Lacombe, and Shoen-
field [1959].) By contrast, it is easily shown that no extensional local modulus
of continuity operation is computable: that is, there is no element Ψ ∈ HEO

with the above property. Observations such as these can be used to obtain a
variety of consistency and independence results for theories of higher order
arithmetic, and also to give us a feel for what operations are and are not
computable in various settings.
The type structure ICF is the intensional counterpart of C (defined as in
Definition 3.13) in the way that HRO is the intensional counterpart of HEO.
That is, it is essentially obtained from Kleene’s second model K2 (see Sec-
tion 5.1) in the same way in which HRO is obtained from K1. For pure types,
ICF may be defined as follows:

• ICF0 = N, ICF1 = NN;
• ICFn+1 = {f ∈ NN | ∀g ∈ ICFn. (f | g)↓}

where (f | g) is as defined in Section 3.3.1. As with the extensional type
structures, onemay also consider the recursive analogue of ICF, or its recursive
substructure. It can be shown that ICF contains a local modulus of continuity
operation as above, while C does not, and similarly for the recursive variants
(see Troelstra [1973, §2.6]).
Troelstra also considered other non-extensional type structures, such as cer-
tain termmodels for System T, though these seem less appealing as candidates
for notions of computability.

6.2. Structures over N⊥. Other non-extensional notions of computability
have more recently been considered in computer science, where they arise
naturally in connection with typed programming languages containing non-
functional features such as exceptions or state. The term models for such
programming languages frequently give rise to non-well-pointed cartesian
closed categories, and hence to non-extensional type structures. One can
regard such term models as defining notions of computability by themselves,



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 85

though as in the extensional case, much of the interest lies in trying to provide
other, more semantic characterizations of these type structures. Since the
number of programming languages that have been considered in the computer
science literature is very large, and for most of them little of interest is known
from the point of view of computability, we will confine our attention here to
languages for which some alternative characterization of the implicit notion
of computability has been obtained.
One intensional notion of computability that has emerged as having good
credentials is embodied by the language PCF+catch studied in Cartwright
and Felleisen [1992], Cartwright, Curien, and Felleisen [1994], as well as by
PCFwith (first order) callcc (Kanneganti, Cartwright, and Felleisen [1993])
and by ìPCF (Ong and Stewart [1997]). All these languages are equivalent
in the sense that their fully abstract term models (consisting of closed terms
modulo observational equivalence) are isomorphic at the finite types. Here we
will give a definition of PCF+catch as a representative of these languages:

Definition 6.1 (PCF+catch).

(i) Define the syntax of PCF+catch by augmenting the definition of PCF

(Definition 4.16) with a constant catchr : (0
r
→ 0)→ 0 for each r > 0.

(ii) Define a contextE[−] to be a PCF+catch term with a single occurrence
of a hole ‘−’ (in an obvious sense). The evaluation contexts are generated
inductively as follows: (−) is an evaluation context; and if E[−] is an
evaluation context then so are

succE[−], predE[−], ifE[−], E[−]V, catchr(ëx1 · · ·xr .E[−]).

(Intuitively, if E[−] is an evaluation context, then in order to evaluate a
term E[U ] the subtermU needs to be evaluated “next”.)

(iii) Let be the smallest transitive relation on terms of PCF+catch satis-
fying the clauses for PCF (see Definition 4.18) together with the following
two clauses:
• IfUx0 . . . xr−1  E[xi ] where the xj : 0 are fresh variables andE[−]
is an evaluation context (intuitively, if we cannot proceed further with
the reduction without knowing xi ), then catchr U  î .

• If Ux0 . . . xr−1  k̂, where the xj : 0 are fresh variables (intuitively,
if we can complete the computation without knowing any of the xi ),

then catchr U  r̂ + k.

Informally, catchr U evaluates U x0 . . . xr−1 and watches to see if U ever
has to look at one of the xi ; if so, the computation is aborted and the index
for the argument looked at is returned. It is easy to see how the functional F
of Section 4.4 can be encoded in PCF+catch. Unlike F , however, the catch
operators give rise to non-functional behaviour: for instance, we have

catch2(ëxy. x + y) 0, catch2(ëxy. y + x) 1.



86 JOHN R. LONGLEY

The fact that several proposed languages turn out to have the same ex-
pressivity as PCF+catch is already encouraging, but more significant is the
following semantic characterization due to Cartwright, Curien and Felleisen
(Cartwright, Curien, and Felleisen [1994]):

Theorem 6.2. The fully abstract term model for PCF+catch is isomorphic
to the type structure over N⊥ arising from the category of effective sequential
algorithms (that is, the effective analogue of the Berry-Curien model; see Berry
and Curien [1982]).

The original definition of the sequential algorithms model is rather heavy
and we will not give it here. However, Longley showed that the relevant
part of this model can be easily reconstructed from the van Oosten algebra B
(Longley [2002a, §4]); this gives a simpler alternative description of the type
structure of Theorem 6.2.
Since then, the ideas of game semantics as developed by Abramsky et al
have been successful in providing a semantic account of the expressivity of a
number of programming languages. In Abramsky and McCusker [1999], for
instance, it is shown that by imposing or not imposing the well-bracketing
and innocence conditions on strategies (see Section 4.3.3) one can obtain
a square of four categories of games corresponding to different computa-
tional paradigms, of which only one corresponds to a functional notion of
computation (namely the model with both well-bracketing and innocence
constraints, which corresponds to PCF). The model with innocence but not
well-bracketing (studied in detail in Laird [1998], [1997]) turns out to cor-
respond to PCF+catch: more precisely, the fully abstract term model for
PCF+catch is a quotient of the type structure arising from this model. The
models without innocence correspond to notions of computation involving
memory or state; a full abstraction result for Idealized Algol (with respect
to the non-innocent, well-bracketed game model) is obtained in Abramsky,
Honda, and McCusker [1998].
In general, it would appear that categories of games and their correlations
with programming languages provide a fruitful source of candidates for math-
ematically natural notions of non-extensional computability, and we expect
more progress in this vein in the near future.

6.3. A realizability perspective. We have concentrated here on non-
extensional type structures as a way to capture notions of computable op-
eration. A somewhat more subtle perspective, making use of ideas from
realizability, was outlined in Longley [1999a], [1999b]. The idea here is that
given a realizability interpretation for a logic (say predicate logic for the simple
types over N or N⊥) in which the realizers are drawn from some computa-
tional universe A (such as a PCA or a type structure of some kind), the set
of realizable sentences gives information about what kinds of operation are



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 87

computable in A. For example, whether the sentence

∀F : 2. ∀g : 1. ∃n : 0. ∀g ′ : 1. (∀m < n. g(m) = g ′(m))⇒ F (g) = F (g ′)

is realizable in A corresponds to whether local moduli of continuity are com-
putable inA (see Section 6.1). Wemight propose, therefore, to identify notions
of higher type computability with notions of realizability for such a logic. In
some sense, this allows us to say what intensional operations are computable
without having to commit ourselves to any concrete definition of “computable
operation”. This perspective will be further advocated and developed in detail
in Part III.
This point of view is very general and leads to a large class of potential
notions of computability: for instance, any untyped PCA implicitly embodies
a notion of computable operation at higher types. Fortunately, however, the
theory also allows us to say when two structures are equivalent from the
point of view of computability, and this significantly cuts down the number
of distinct notions to be considered. Even so, there are many notions of
computability here competing for our attention, and much territory remains
to be explored. It seems unclear as yet whether it is reasonable to hope
ultimately for a small collection of genuinely natural notions, such as we have
in the extensional setting, or whether there is in practice an unlimited range
of plausible notions.

§7. Conclusion and prospectus. In this paper we have tried to trace the
various lines of research to date that are relevant to the study of computability
at higher types. Although these strands of research have been rather widely
scattered across different areas of mathematical logic and computer science, it
is our contention that when viewed together, the outline of a coherent subject
area may be discerned.
The central conceptual question we are concerned with is “What are the
good notions of computability at higher types, if there are any?” Our approach
in this paper has been rather empirical: to collect a variety of different attempts
at defining such a notion, and see what natural notions emerge. Our main
concern has been to chart the history of the ideas that bear on the problem.
The development of these ideas has (naturally enough) been rather haphazard,
and we have made little attempt here to organize the material beyond what
has been necessary to tell a coherent story.
Having collected and reviewed all this material, we are in a position to
undertake a more systematic treatment. We will attempt this in the remaining
two papers of the series, where we will try to show that the situation is less
chaotic than it may at times have seemed during the course of this survey.
In Part II we will survey the material on notions of computable functional
(that is, extensional notions of computability) within a uniform framework,



88 JOHN R. LONGLEY

presenting the important notions of computability, their various characteri-
zations, their intrinsic properties, the relationships between different notions,
and some discussion of their conceptual status. We will also include some
results relating to the impossibility of a “Church’s thesis” for higher type
functionals.
We will argue that almost everything of interest that is known in the sub-
ject can be understood in terms of six basic notions of computability, which
are represented in the world of “effective” type structures by RC, HRC, Peff,
Q
eff, R

eff and K
eff (the last of these being the type structure mentioned in

Section 4.3.1, which will suffice to account for Kleene computability over all
structures of interest). It seems to us probable that the picture here is by now
reasonably complete: the territory has been fairly thoroughly explored, and all
reasonable definitions of a natural class of effectively computable functionals
seem to lead to one of the above notions.
Regarding more general notions of computable operation, the overall pic-
ture seems much less complete at present, but we are at least able to bring
together a range of possible notions within a unified framework. In Part III
we will develop in more detail the realizability perspective mentioned in Sec-
tion 6.3, and will collect and organize much of what is known within this
framework. We will see that a wide variety of results from recursion theory
and computer science can be conveniently encapsulated in this setting. The
framework used in Part III will in one sense subsume that of Part II, but the
flavour of the two treatments will be rather different and we believe both to be
valuable.

7.1. Acknowledgements. I am very grateful to the organizers of the Logic
Colloquium for giving me the opportunity to lecture on this material, for
providing me with the stimulus to write this article, for willingly tolerating its
inordinate length, and for waiting so long for me to finish it. Many people
have helped me to fill gaps in my knowledge of the subject, including Samson
Abramsky, Ulrich Berger, Yuri Ershov, Solomon Feferman, Martin Hyland,
Dag Normann, Gordon Plotkin, Helmut Schwichtenberg, Dana Scott, Alex
Simpson and StanWainer. Thomas Streicher provided detailed comments on
an earlier version of the paper, as did the anonymous referee who made many
helpful suggestions for improving its clarity. Helpful feedbackon later versions
was provided by Samson Abramsky, Yiannis Moschovakis, Dag Normann,
Jim Royer and Alex Simpson. I am also grateful to Florrie Kemp for her
friendship.
During the writing of this paper I was supported by EPSRC Research
Grants GR/L89532 “Notions of computability for general datatypes” and
GR/N64571 “A proof system for correct program development”.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 89

Figure 3. Extensional type structures over N.

T̂ ' S1–S8

6

T

6

KC(C)

PPPPPPPPi
-KC(S)

6

RC

6

S

6

C�

��������1
KC(HRC)

6

HRC ∼= HEO

Appendix A. Summary of type structures. For reference, we include here
two diagrams summarizing themain type structures we have considered in this
article, and the principal relationships between them. For the sake of clarity
we show only the extensional type structures. We give separate diagrams
for the type structures over N (Figure 3) and the type structures over N⊥

(Figure 4). For the purpose of the diagrams, we identify a language such as
System T or PCFwith its extensional termmodel (all the languages concerned
have a unique non-trivial such model). Definitions of all these structures and
languages in the main text may be located using the index of symbols.
The arrows in the diagrams correspond tomorphisms of the following kind:

Definition A.1. Suppose A,B are type structures over X . A morphism
R : A → B is a family of total relations Ró from Aó to Bó such that R0 = idX
and

Ró→ô(f,f
′) ∧ Ró(x, x

′) =⇒ Rô(f · x,f′ · x′)

These morphisms will be studied at length in Part II. For extensional type
structures they may be thought of loosely as “embeddings”, though not all of
them are straightforward substructure inclusions.
The broken arrows represent morphisms that exist but do not seem to be
particularly significant. A few other morphisms which we consider unimpor-
tant have been omitted.



90 JOHN R. LONGLEY

Figure 4. Extensional type structures over N⊥.

K
eff

6

Q
eff ' PCF

6

Q

PPPPPPPPi
PCF++ ' P

eff

6

PPPPPPPPi
P

6

M

��������1
R
eff ' PCF+H

6

��������1
R

Appendix B. Remarks on bibliography. In the following list of references,
we have attempted to provide reasonably comprehensive bibliography for the
field of higher type computability as delineated by this article. One of our
aims in this survey has been to provide an accessible guide to the literature of
the subject, and since almost all the works listed below are cited somewhere
in the text, it is possible to view the entire article as an extended commentary
on the bibliography.
We have tried to include asmany relevant publishedworks as possible, along
with any Ph.D. theses and other unpublished works that made important con-
tributions to the subject. (The author would appreciate being informed of any
significant omissions.) Unpublished technical reports whose contributions
appeared soon afterwards in the published literature are usually not listed.
We have not attempted complete coverage of related areas in which ideas
from higher type computability are applied (see Section 1.1), including only
a selection of the more important works on these topics. For instance, there
is a large literature on real number computability and computable analysis,
of which only a few works have been included. We have given priority here
to very early papers, and to works concerned explicitly with higher types over
the reals.
We rather regret that we have not had the time for a fuller coverage of the
literature on complexity at higher types. Fortunately, a thorough survey of
this area has recently appeared in Irwin, Kapron, and Royer [2001a], [2001b].



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 91

Manyhelpful survey articles on closely related topics, and further references,
can be found in Griffor [1999]. For an extensive bibliography on realizability,
see Birkedal [1999].

REFERENCES

O. Aberth [1980], Computable analysis, McGraw-Hill, New York.
S. Abramsky, K. Honda, and G. McCusker [1998], A fully abstract game semantics for gen-

eral references, Proceedings of 13th Annual Symposium on Logic in Computer Science, IEEE,
pp. 334–344.
S. Abramsky, R. Jagadeesan, and P. Malacaria [2000], Full abstraction for PCF, Informa-

tion and Computation, vol. 163, pp. 409–470.
S. Abramsky and J. R. Longley [2000], Some combinatory algebras for sequential computa-

tion, in preparation.
S. Abramsky and G. McCusker [1999], Game semantics, Computational Logic: Proceedings

of the 1997 Marktoberdorf summer school (H. Schwichtenberg and U. Berger, editors), Springer-
Verlag, pp. 1–56.
P. Aczel [1977], An introduction to inductive definitions, Handbook of mathematical logic

(J. Barwise, editor), North-Holland, pp. 739–782.
P. Aczel and P. G. Hinman [1974], Recursion in the superjump,Generalized Recursion Theory

(J. E. Fenstad and P. G. Hinman, editors), North-Holland, pp. 3–41.
J. Avigad and S. Feferman [1998], Gödel’s functional (”Dialectica”) interpretation, Hand-

book of proof theory (S. R. Buss, editor), North-Holland, pp. 337–405.
S. Awodey, L. Birkedal, and D. S. Scott [2000], Local realizability toposes and a modal

logic for computability, to appear inMathematical Structures in Computer Science.
S. Banach and S. Mazur [1937], Sur les fonctions calculables,Annales de la Société Polonaise

de Mathématique, vol. 16, p. 223.
H. P. Barendregt [1984], The lambda calculus: Its syntax and semantics, revised ed., Studies

in Logic and the Foundations of Mathematics, vol. 103, North-Holland.
H. P. Barendregt [1992], Lambda calculi with types, Handbook of logic in computer science

(S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors), vol. 2, Oxford University Press,
pp. 117–309.
A. Bauer [2000], The realizability approach to computable analysis and topology, Ph.D. thesis,

School of Computer Science, Carnegie Mellon University.
A. Bauer [2001], Arelationship between equilogical spaces and Type Two Effectivity,Electronic

Notes in Theoretical Computer Science (S. Brooks and M. Mislove, editors), vol. 45, Elsevier
Science Publishers.
A. Bauer and L. Birkedal [2000], Continuous functionals of dependent types and equilogical

spaces,Proceedings of Computer Science Logic 2000 (P.G. Clote andH. Schwichtenberg, editors),
Lecture Notes in Computer Science, vol. 1862, Springer-Verlag, pp. 202–216.
A. Bauer, L. Birkedal, and D. S. Scott [2001], Equilogical spaces, to appear in Theoretical

Computer Science.
A. Bauer, M. H. Escardó, and A. Simpson [2002], Comparing functional paradigms for ex-

act real-number computation, to appear in Proceedings of International Conference on Automata,
Languages and Programming.
M. Beeson [1985], Foundations of constructive mathematics, Springer-Verlag.
S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg [2000], Higher-type recursion, rami-

fication and polynomial time, Annals of Pure and Applied Logic, vol. 104, pp. 17–30.
U. Berger [1990], Totale Objekte und Mengen in der Bereichstheorie, Ph.D. thesis, Munich.



92 JOHN R. LONGLEY

U. Berger [1993], Total sets and objects in domain theory, Annals of Pure and Applied Logic,
vol. 60, pp. 91–117.
U. Berger [1997], Continuous functionals of dependent and transfinite types, Technical report,

Habilitationsschrift, Ludwig-Maximilians-Universität München.
U. Berger [2000],Minimisation vs. recursion on the partial continuous functionals, draft paper.
U. Berger and H. Schwichtenberg [1991], An inverse of the evaluation functional for typed

ë-calculus, Proceedings of 6th Annual Symposium on Logic in Computer Science, IEEE, pp. 203–
211.
J. A. Bergstra [1976], Computability and continuity in finite types, Ph.D. thesis, University of

Utrecht.
J. A. Bergstra [1978], The continuous functionals and 2E, Generalized Recursion Theory II

(J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors), North-Holland, pp. 39–53.
J. A. Bergstra and S. S. Wainer [1977], The “real” ordinal of the 1-section of a continuous

functional (abstract), The Journal of Symbolic Logic, vol. 42, p. 440.
G. Berry [1978], Stable models of typed lambda-calculi, Proceedings of 5th International Col-

loquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 62,
Springer-Verlag, pp. 72–89.
G. Berry and P.-L. Curien [1982], Sequential algorithms on concrete data structures, Theo-

retical Computer Science, vol. 20, no. 3, pp. 265–321.
I. Bethke [1988], Notes on partial combinatory algebras, Ph.D. thesis, University of Amster-

dam.
M. Bezem [1985a], Isomorphisms between HEO and HROE, ECF and ICFE, The Journal of

Symbolic Logic, vol. 50, pp. 359–371.
M. Bezem [1985b], Strongly majorizable functionals of finite type: a model for bar recursion

containing discontinuous functionals, The Journal of Symbolic Logic, vol. 50, pp. 652–660.
M. Bezem [1988], Equivalence of bar recursors in the theory of functionals of finite type, Archive

of Mathematical Logic, vol. 27, pp. 149–160.
M. Bezem [1989], Compact and majorizable functionals of finite type, The Journal of Symbolic

Logic, vol. 54, pp. 271–280.
L. Birkedal [1999], Bibliography on realizability, Proceedings of Workshop on Realizability,

Trento (L. Birkedal, J. van Oosten, G. Rosolini, and D. S. Scott, editors), published as Electronic
Notes in Theoretical Computer Science 23 No. 1, Elsevier. Available via http://www.elsevier.
nl/locate/entcs/volume23.html.
B. Bloom and J. G. Riecke [1989], LCF should be lifted, Proceedings of Conference on Alge-

braic Methodology and Software Technology, Department of Computer Science, University of
Iowa.
A. Bucciarelli [1993a], Another approach to sequentiality: Kleene’s unimonotone functions,

Proceedings of 9th Symposium on Mathematical Foundations of Programming Semantics, New
Orleans, Lecture Notes in Computer Science, vol. 802, Springer-Verlag, pp. 333–358.
A. Bucciarelli [1993b], Sequential models of PCF: some contributions to the domain-theoretic

approach to full abstraction, Ph.D. thesis, Dipartimento di Informatica, Università di Pisa.
A. Bucciarelli [1995], Degrees of parallelism in the continuous type hierarchy, Proceedings of

9th International Conference on Mathematical Foundations of Programming Semantics.
A. Bucciarelli and T. Ehrhard [1991a], Extensional embedding of a strongly stable model

of PCF, Proceedings of 18th International Conference on Automata, Languages and Programming,
Madrid, Lecture Notes in Computer Science, vol. 510, Springer-Verlag, pp. 35–46.
A. Bucciarelli and T. Ehrhard [1991b], Sequentiality and strong stability, Proceedings of

6th Annual Symposium on Logic in Computer Science, IEEE, pp. 138–145.
A. Bucciarelli and T. Ehrhard [1993], A theory of sequentiality, Theoretical Computer Sci-

ence, vol. 113, pp. 273–291.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 93

A. Bucciarelli and T. Ehrhard [1994], Sequentiality in an extensional framework, Informa-
tion and Computation, vol. 110, pp. 265–296.
R. Cartwright, P.-L. Curien, and M. Felleisen [1994], Fully abstract semantics for observ-

ably sequential languages, Information and Computation, vol. 111, no. 2, pp. 297–401.
R. Cartwright and M. Felleisen [1992], Observable sequentiality and full abstraction, Pro-

ceedings of 19th Symposium on Principles of Programming Languages, ACM Press, pp. 328–342.
A. Church [1936], An unsolvable problem of elementary number theory, American Journal of

Mathematics, vol. 58, pp. 345–363.
A. Church [1940], A formulation of the simple theory of types, The Journal of Symbolic Logic,

vol. 5, pp. 56–68.
D. A. Clarke [1964], Hierarchies of predicates of finite types, Memoirs of theAmericanMath-

ematical Society, vol. 51, American Mathematical Society.
L. Colson and T. Ehrhard [1994], On strong stability and higher-order sequentiality, Pro-

ceedings of 9th Annual Symposium on Logic in Computer Science, IEEE, pp. 103–108.
S. Cook [1990], Computability and complexity of higher type functions, Proceedings of MSRI

workshop on Logic from Computer Science (Y.Moschovakis, editor), Springer-Verlag, pp. 51–72.
S. B. Cooper [1999], Clockwork or Turing U/universe? — Remarks on causal determinism and

computability, Models and Computability (S. B. Cooper and J. K. Truss, editors), Cambridge
University Press.
P.-L. Curien [1993], Categorical combinators, sequential algorithms and functional program-

ming, second ed., Birkhäuser.
N. J. Cutland [1980], Computability, Cambridge University Press.
M. Davis [1958], Computability and unsolvability, McGraw-Hill.
M. Davis [1959], Computable functionals of arbitrary finite type, Constructivity in Mathemat-

ics: Proceedings of the colloquium held at Amsterdam, 1957 (A. Heyting, editor), North-Holland,
pp. 281–284.
J.-P. van Draanen [1995],Models for simply typed lambda-calculi with fixed point combinators

and enumerators, Ph.D. thesis, Catholic University of Nijmegen.
A. G. Dragalin [1968], The computation of primitive recursive terms of finite type, and prim-

itive recursive realization, Zapiski Nauchnykh Seminarov Leningradskogo otdeleniia Matematich-
eskogo Instituta imeni V. A. Steklova, vol. 8, pp. 32–45, translation in Seminars in Mathematics,
V. A. Steklov Mathematical Institute, Leningrad, vol. 8 (1970), pp. 13–18.
T. Ehrhard [1993], Hypercoherences: a strongly stable model of linear logic, Mathematical

Structures in Computer Science, vol. 3, pp. 365–385.
T. Ehrhard [1996], Projecting sequential algorithms on strongly stable functions, Annals of

Pure and Applied Logic, vol. 77, pp. 201–244.
T. Ehrhard [1999], A relative PCF-definability result for strongly stable functions and some

corollaries, Information and Computation, vol. 152, no. 1, pp. 111–137.
Yu.L. Ershov [1971a], Computable numerations of morphisms,Algebra i Logika, vol. 10, no. 3,

pp. 247–308.
Yu.L. Ershov [1971b], La théorie des énumérations, Actes du Congrès International des

Mathématiciens, Nice 1970, Tome 1, Gauthier-Villars, Paris, pp. 223–227.
Yu.L. Ershov [1972], Computable functionals of finite type, Algebra i Logika, vol. 11, no. 4,

pp. 203–277, English translation in Algebra and Logic, vol. 11 (1972), 203–242, AMS.
Yu.L. Ershov [1973a], Theorie der Numerierungen I, Zeitschrift für mathematische Logik,

vol. 19, no. 4, pp. 289–388.
Yu.L. Ershov [1973b], The theory of A-spaces, Algebra i Logika, vol. 12, no. 4, pp. 369–416,

English translation in Algebra and Logic, vol. 12 (1973), 209–232, AMS.
Yu.L. Ershov [1974a],Maximal and everywhere defined functionals, Algebra i Logika, vol. 13,

no. 4, pp. 210–255, English translation in Algebra and Logic, vol. 13 (1974), 210–225, AMS.



94 JOHN R. LONGLEY

Yu.L. Ershov [1974b], On themodel G of the theoryBR,SovietMathematics, Doklady, vol. 15,
no. 4, pp. 1158–1160.
Yu.L. Ershov [1975], Theorie der Numerierungen II, Zeitschrift für mathematische Logik,

vol. 21, no. 6, pp. 473–584.
Yu.L. Ershov [1976a], Constructions ‘by finite’, Proceedings of 5th International Congress on

Logic, Methodology and Philosophy of Science, London, Ontario, pp. 3–9.
Yu.L. Ershov [1976b], Hereditarily effective operations, Algebra i Logika, vol. 15, no. 6, pp.

642–654, English translation in Algebra and Logic, AMS.
Yu.L. Ershov [1977a],Model C of the partial continuous functionals, Logic Colloquium 1976,

North-Holland, pp. 455–467.
Yu.L. Ershov [1977b], Theorie der Numerierungen III, Zeitschrift für mathematische Logik,

vol. 23, no. 4, pp. 289–371.
Yu.L. Ershov [1977c], The theory of enumerations, Monographs in Mathematical Logic and

Foundations of Mathematics, Nauka, Moscow.
Yu.L. Ershov [1996], Definability and computability, Siberian School of Algebra and Logic,

Plenum Publishing Corporation.
Yu.L. Ershov [1999], Theory of numberings,Handbook of computability theory (E.R.Griffor,

editor), North-Holland, pp. 473–503.
M. H. Escardó [1996], PCF extended with real numbers, Theoretical Computer Science, vol.

162, pp. 79–115.
S. Feferman [1975], A language and axioms for explicit mathematics, Algebra and logic (J. N.

Crossley, editor), Springer-Verlag, pp. 87–139.
S. Feferman [1977a], Inductive schemata and recursively continuous functionals, Logic Collo-

quium 1976, North-Holland, pp. 373–392.
S. Feferman [1977b], Theories of finite type related to mathematical practice, Handbook of

mathematical logic (J. Barwise, editor), North-Holland, pp. 913–971.
S. Feferman [1996], Computation on abstract datatypes. The extensional approach, with an

application to streams, Annals of Pure and Applied Logic, vol. 81, pp. 75–113.
J. E. Fenstad [1978], On the foundation of general recursion theory: Computations versus in-

ductive definability, Generalized Recursion Theory II (J. E. Fenstad, R. O. Gandy, andG. E. Sacks,
editors), North-Holland, pp. 99–110.
J. E. Fenstad [1980], General recursion theory, Perspectives inMathematical Logic, Springer.
M. P. Fiore, A. Jung, Moggi, O’Hearn, Riecke, Rosolini, and Stark [1996], Domains

and denotational semantics: History, accomplishments and open problems, Bulletin of the European
Association for Theoretical Computer Science, vol. 59, pp. 227–256.
M. C. Fitting [1981], Fundamentals of generalized recursion theory, Studies in Logic and the

Foundations of Mathematics, vol. 105, North-Holland.
R. V. Freivalds [1978], Effective operations and functionals computable in the limit,Zeitschrift

für mathematische Logik und Grundlagen der Mathematik, vol. 24, pp. 193–206.
R. M. Friedberg [1958a], Four quantifier completeness: a Banach-Mazur functional not uni-

formly partial recursive, Bulletin de l’Académie Polonaise des Sciences, Série des sciences mathé-
matiques, astronomiques et physiques, vol. 6, pp. 1–5.
R. M. Friedberg [1958b], Un contre-exemple relatif aux fonctionnelles récursives, Comptes

rendus hebdomadaires des séances de l’Académie des Sciences (Paris), vol. 247, pp. 852–854.
H. M. Friedman [1971], Algorithmic procedures, generalized Turing algorithms, and elemen-

tary recursion theory, Logic Colloquium 1969 (R. O. Gandy and C. E. M. Yates, editors), North-
Holland, pp. 113–137.
R. O. Gandy [1962], Effective operations and recursive functionals (abstract), The Journal of

Symbolic Logic, vol. 27, pp. 378–379.
R. O. Gandy [1967a], Computable functionals of finite type I, Sets, Models and Recursion

Theory (J. N. Crossley, editor), North-Holland, part II never appeared, pp. 202–242.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 95

R. O. Gandy [1967b], General recursive functionals of finite type and hierarchies of functionals,
Annales de la Faculté des Sciences, Université de Clermont-Ferrand, vol. 35, pp. 5–24.
R. O. Gandy [1980], Proofs of strong normalization, To H. B. Curry: Essays on combinatory

Logic, lambda calculus and formalism (J. R. Hindley and J. P. Seldin, editors), Academic Press.
R. O. Gandy and J. M. E. Hyland [1977], Computable and recursively countable functions of

higher type, Logic Colloquium 1976, North-Holland, pp. 407–438.
P. Giannini and G. Longo [1984], Effectively given domains and lambda-calculus models, In-

formation and Control, vol. 62, pp. 36–63.
J.-Y. Girard [1972], Interprétation functionelle et élimination des coupures de l’arithmétique

d’ordre supérieur, Ph.D. thesis, Paris.
J.-Y. Girard [1987], Proof theory and logical complexity, vol. I, Bibliopolis, volume II has not

appeared.
J.-Y. Girard [1988], Normal functors, power series and ë-calculus, Annals of Pure and Applied

Logic, vol. 37, no. 2, pp. 129–177.
K. Gödel [1931], Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme I, Monatshefte für Mathematik und Physik, vol. 38, pp. 173–198, English
translation in J. van Heijenoort, ed., From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, Harvard University Press, 1967, pp. 596–616.
K. Gödel [1958], Über eine bisher noch nicht Erweiterung des finiten Standpunktes, Dialectica,

vol. 12, pp. 280–287, English translation in Gödel [1990].
K. Gödel [1972], On an extension of finitary mathematics which has not yet been used, First

published in Gödel [1990].
K. Gödel [1990], Collected works, vol. II, Oxford University Press, edited by S. Feferman et

al.
E. R. Griffor [1980], E-recursively enumerable degrees, Ph.D. thesis, MIT, Cambridge, Mas-

sachusetts.
E. R. Griffor (editor) [1999], Handbook of computability theory, Studies in Logic and the

Foundations of Mathematics, vol. 140, North-Holland.
T. J. Grilliot [1967], Recursive functions of finite higher types, Ph.D. thesis, DukeUniversity.
T. J. Grilliot [1969a], Hierarchies based on objects of finite type, The Journal of Symbolic

Logic, vol. 34, pp. 177–182.
T. J. Grilliot [1969b], Selection functions for recursive functionals, Notre Dame Journal of

Formal Logic, vol. X, pp. 225–234.
T. J. Grilliot [1971], On effectively discontinuous type-2 objects, The Journal of Symbolic

Logic, vol. 36, pp. 245–248.
A. Grzegorczyk [1955a], Computable functionals, Fundamenta Mathematicae, vol. 42, pp.

168–202.
A. Grzegorczyk [1955b], On the definition of computable functionals, Fundamenta Mathe-

maticae, vol. 42, pp. 232–239.
A. Grzegorczyk [1957], On the definitions of computable real continuous functions, Funda-

menta Mathematicae, vol. 44, pp. 61–71.
A. Grzegorczyk [1964], Recursive objects in all finite types, Fundamenta Mathematicae, vol.

54, pp. 73–93.
L. A. Harrington [1973], Contributions to recursion theory in higher types,Ph.D. thesis,MIT,

Cambridge, Massachusetts.
L. A. Harrington [1974], The superjump and the first recursively Mahlo ordinal, Generalized

Recursion Theory (J. E. Fenstad and P. G. Hinman, editors), North-Holland, pp. 43–52.
L. A. Harrington and A. S. Kechris [1975], On characterizing Spector classes, The Journal

of Symbolic Logic, vol. 40, pp. 19–24.
L. A. Harrington and D. MacQueen [1976], Selection in abstract recursion theory, The

Journal of Symbolic Logic, vol. 41, pp. 153–158.



96 JOHN R. LONGLEY

J. P. Helm [1971], On effectively computable operators, Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, vol. 17, pp. 231–244.
L. Henkin [1950], Completeness in the theory of types, The Journal of Symbolic Logic, vol. 15,

no. 2, pp. 81–91.
D. Hilbert [1925], Über das Unendliche,Mathematische Annalen, vol. 95, pp. 161–190, Eng-

lish translation in J. van Heijenoort, ed., From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, Harvard University Press, 1967, pp. 367–392.
S. Hinata [1967], Calculability of primitive recursive functionals of finite type, Science Reports

of the Tokyo Kyoiku Daigaku, A, vol. 9, pp. 218–235.
S. Hinata and S. Tugué [1969], A note on continuous functionals, Annals of the Japan Associ-

ation for Philosophy of Science, vol. 3, pp. 138–145.
Y. Hinatani [1966], Calculabilité des fonctionnels recursives primitives de type fini sur les nom-

bres naturels, Annals of the Japan Association for Philosophy of Science, vol. 3, pp. 19–30.
P. G. Hinman [1966], Ad astra per aspera: hierarchy schemata in recursive function theory,

Ph.D. thesis, University of California, Berkeley.
P. G. Hinman [1969], Hierarchies of effective descriptive set theory, Transactions of the Ameri-

can Mathematical Society, vol. 142, pp. 111–140.
P. G. Hinman [1973], Degrees of continuous functionals, The Journal of SymbolicLogic, vol. 38,

pp. 393–395.
P. G. Hinman [1978], Recursion-theoretic hierarchies, Perspectives in Mathematical Logic,

Springer-Verlag.
P. G. Hinman [1999], Recursion on abstract structures, Handbook of computability theory

(E. R. Griffor, editor), North-Holland, pp. 315–359.
W. A. Howard [1973], Hereditarily majorizable functionals of finite type, Metamathematical

investigation of intuitionistic arithmetic and analysis (A. S. Troelstra, editor), Lecture Notes in
Mathematics, vol. 344, Springer-Verlag, pp. 454–461.
J. M. E. Hyland [1975], Recursion theory on the countable functionals,Ph.D. thesis, University

of Oxford.
J. M. E. Hyland [1978], The intrinsic recursion theory on the countable or continuous function-

als, Generalized Recursion Theory II (J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors),
North-Holland, pp. 135–145.
J. M. E. Hyland [1979], Filter spaces and continuous functionals, Ann. Math. Logic, vol. 16,

pp. 101–143.
J. M. E. Hyland [1982], The effective topos,The L. E. J. Brouwer Centenary Symposium (A. S.

Troelstra and D. van Dalen, editors), North-Holland, pp. 165–216.
J. M. E. Hyland [1990], First steps in synthetic domain theory, Category Theory, Proceedings,

Como (A. Carboni, M. C. Pedicchio, and G. Rosolini, editors), Lecture Notes in Mathematics,
vol. 1488, Springer-Verlag, pp. 131–156.
J. M. E. Hyland [2002], Variations on realizability: realizing the propositional axiom of choice,

Mathematical Structures in Computer Science, vol. 12, no. 3, pp. 295–318.
J. M. E. Hyland, P. T. Johnstone, and A.M. Pitts [1980], Tripos theory,Mathematical Pro-

ceedings of the Cambridge Philosophical Society, vol. 88, pp. 205–232.
J. M. E. Hyland and C.-H. L. Ong [2000], On full abstraction for PCF: I, II and III, Infor-

mation and Computation, vol. 163, pp. 285–408.
J. M. E. Hyland and A. Schalk [2002], Games on graphs and sequentially realizable function-

als, Proceedings of 17th Annual Symposium on Logic in Computer Science, IEEE, pp. 257–264.
R. Irwin, B. Kapron, and J. Royer [2001a], On characterizations of the basic feasible func-

tionals, Part I, Journal of Functional Programming, vol. 11, pp. 117–153.
R. Irwin, B. Kapron, and J. Royer [2001b], On characterizations of the basic feasible func-

tionals, Part II, to appear.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 97

A. Jung and A. Stoughton [1993], Studying the fully abstract model of PCF within its con-
tinuous function model, Proceedings of International Conference on Typed Lambda Calculi and
Applications, Utrecht, Lecture Notes in Computer Science, no. 664, Springer-Verlag, pp. 230–
245.
G. Kahn and G. D. Plotkin [1993], Concrete domains, Theoretical Computer Science, vol.

121, pp. 187–277, first appeared in French as INRIA-LABORIA Technical report, 1978.
R. Kanneganti, R. Cartwright, and M. Felleisen [1993], SPCF: its model, calculus, and

computational power, Proceedings of REX Workshop on Semantics and Concurrency, Lecture
Notes in Computer Science, vol. 666, Springer-Verlag, pp. 318–347.
A. S. Kechris [1973], The structure of envelopes: A survey of recursion theory in higher types,

MIT Logic Seminar notes.
A. S. Kechris and Y. N. Moschovakis [1977], Recursion in higher types, Handbook of math-

ematical logic (J. Barwise, editor), North-Holland, pp. 681–737.
D. P. Kierstead [1980], Asemantics forKleene’s j-expressions,TheKleene Symposium (J. Bar-

wise, H. J. Keisler, and K. Kunen, editors), North-Holland, pp. 353–366.
D. P. Kierstead [1983], Syntax and semantics in higher-type recursion theory, Transactions of

the American Mathematical Society, vol. 276, pp. 67–105.
S. C. Kleene [1936a], General recursive functions of natural numbers,Mathematische Annalen,

vol. 112, pp. 727–742.
S. C. Kleene [1936b], ë-definability and recursiveness,Duke Mathematical Journal, vol. 2, pp.

340–353.
S. C. Kleene [1945], On the interpretation of intuitionistic number theory, The Journal of Sym-

bolic Logic, vol. 10, pp. 109–124.
S. C. Kleene [1952], Introduction to metamathematics, Wolter-Noordhoff and North-Hol-

land.
S. C. Kleene [1955a], Arithmetical predicates and function quantifiers, Transactions of the

American Mathematical Society, vol. 79, pp. 312–340.
S. C. Kleene [1955b], Hierarchies of number-theoretic predicates, Bulletin of the American

Mathematical Society, vol. 61, pp. 193–213.
S. C. Kleene [1959a], Countable functionals, Constructivity in Mathematics: Proceedings of

the colloquium held at Amsterdam, 1957 (A. Heyting, editor), North-Holland, pp. 81–100.
S. C. Kleene [1959b], Recursive functionals and quantifiers of finite types I, Transactions of the

American Mathematical Society, vol. 91, pp. 1–52.
S. C. Kleene [1962a], Herbrand-Gödel-style recursive functionals of finite types,Recursive func-

tion theory: Proceedings of Symposia on Pure Mathematics, vol. 5, AMS, pp. 49–75.
S. C. Kleene [1962b], Lambda-definable functionals of finite types, Fundamenta Mathemati-

cae, vol. 50, pp. 281–303.
S. C. Kleene [1962c], Turing-machine computable functionals of finite types I, Logic, method-

ology and philosophy of science, Stanford, pp. 38–45.
S. C. Kleene [1962d], Turing-machine computable functionals of finite types II, Proceedings of

the London Mathematical Society, vol. 12, pp. 245–258.
S. C. Kleene [1963], Recursive functionals and quantifiers of finite types II, Transactions of the

American Mathematical Society, vol. 108, pp. 106–142.
S. C. Kleene [1969], Formalized recursive functionals and formalized realizability, Memoirs of

the American Mathematical Society, vol. 89, American Mathematical Society.
S. C. Kleene [1978], Recursive functionals and quantifiers of finite types revisited I,Generalized

Recursion Theory II (J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors), North-Holland,
pp. 185–222.
S. C. Kleene [1980], Recursive functionals and quantifiers of finite types revisited II,The Kleene

Symposium (J. Barwise, H. J. Keisler, and K. Kunen, editors), North-Holland, pp. 1–29.



98 JOHN R. LONGLEY

S. C. Kleene [1982], Recursive functionals and quantifiers of finite types revisited III, Patras
Logic Symposion (G. Metakides, editor), North-Holland, pp. 1–40.
S. C. Kleene [1985], Unimonotone functions of finite types (Recursive functionals and quan-

tifiers of finite types revisited IV), Recursion Theory (A. Nerode and R. A. Shore, editors),
Proceedings of Symposia in Pure Mathematics, vol. 42, pp. 119–138.
S. C. Kleene [1991], Recursive functionals and quantifiers of finite types revisited V, Transac-

tions of the American Mathematical Society, vol. 325, pp. 593–630.
S. C. Kleene and R. E. Vesley [1965], The foundations of intuitionistic mathematics, North-

Holland.
U. Kohlenbach [2002], Foundational and mathematical uses of higher types, Reflections on

the foundations of mathematics (W. Sieg, R. Sommer, and C. Talcott, editors), Lecture Notes in
Logic, vol. 15, A K Peters, pp. 92–116.
P. G. Kolaitis [1978], Onrecursion inEand semi-Spector classes, Cabal seminar 1976–77 (A. S.

Kechris and Y. N. Moschovakis, editors), Lecture Notes in Mathematics, vol. 689, Springer-
Verlag, pp. 209–243.
P. G. Kolaitis [1979], Recursion in a quantifier vs. elementary induction, The Journal of Sym-

bolic Logic, vol. 44, pp. 235–259.
P. G. Kolaitis [1980], Recursion and nonmonotone induction in a quantifier, The Kleene Sym-

posium (J. Barwise, H. J. Keisler, and K. Kunen, editors), North-Holland, pp. 367–389.
P. G. Kolaitis [1985], Canonical forms and hierarchies in generalized recursion theory, Pro-

ceedings of Symposia on Pure Mathematics, vol. 42, AMS, pp. 139–170.
M. V. Korovina and O. V. Kudinov [2001], Semantic characterisations of second-order com-

putability over the real numbers, Computer Science Logic, Lecture Notes in Computer Science,
vol. 2142, Springer-Verlag, pp. 160–173.
G. Kreisel [1958], Constructive mathematics, notes of a course given at Stanford University.
G. Kreisel [1959], Interpretation of analysis by means of functionals of finite type,Constructiv-

ity in Mathematics: Proceedings of the colloquium held at Amsterdam, 1957 (A. Heyting, editor),
North-Holland, pp. 101–128.
G. Kreisel [1962], On weak completeness of intuitionistic predicate logic, The Journal of Sym-

bolic Logic, vol. 27, pp. 139–158.
G. Kreisel, D. Lacombe, and J. R. Shoenfield [1957], Fonctionnelles récursivement définis-

sable et fonctionnelles récursives, Comptes Rendus de l’Académie des Sciences, Paris, vol. 245,
pp. 399–402.
G. Kreisel, D. Lacombe, and J. R. Shoenfield [1959], Partial recursive functionals and effec-

tive operations, Constructivity in Mathematics: Proceedings of the colloquium held at Amsterdam,
1957 (A. Heyting, editor), North-Holland, pp. 101–128.
L. Kristiansen and D. Normann [1997], Total objects in inductively defined types, Archive of

Mathematical Logic, vol. 36, pp. 405–436.
C. Kuratowski [1952], Topologie, vol. I, Warsaw.
A. H. Lachlan [1964], Effective operations in a general setting,The Journal of Symbolic Logic,

vol. 29, pp. 163–178.
D. Lacombe [1955a], Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles I,Comptes Rendus de l’Académie des Sciences, Paris, vol. 240, pp. 2478–
2480.
D. Lacombe [1955b], Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles II,ComptesRendus de l’Académie des Sciences,Paris, vol. 241, pp. 13–14.
D. Lacombe [1955c], Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles III,Comptes Rendus de l’Académie des Sciences, Paris, vol. 241, pp. 151–
153.
D. Lacombe [1955d], Remarques sur les opérateurs récursifs et sur les fonctions récursives d’une

variable réelle, Comptes Rendus de l’Académie des Sciences, Paris, vol. 241, pp. 1250–1252.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 99

J. Laird [1997], Full abstraction for functional languages with control, Proceedings of 12th
Annual Symposium on Logic in Computer Science, IEEE, pp. 58–67.
J. Laird [1998], A semantic analysis of control, Ph.D. thesis, University of Edinburgh, exam-

ined March 1999.
J. Laird [2002], Games and sequential algorithms, submitted.
J. Lambek and P. J. Scott [1986], Introduction to higher-order categorical logic, Cambridge

Studies in Advanced Mathematics, vol. 7, Cambridge University Press.
B. Lichtenthäler [1996], Degrees of parallelism, Technical Report 96-01, Fachgruppe Infor-

matik, Siegen.
R. Loader [1997], Equational theories for inductive types, Annals of Pure and Applied Logic,

vol. 84, pp. 175–217.
R. Loader [1998], Unary PCF is decidable, Theoretical Computer Science, vol. 206, pp. 317–

329.
R. Loader [2001], Finitary PCF is not decidable, Theoretical Computer Science, vol. 266,

pp. 341–364.
M. H. Löb [1970], A model-theoretic characterization of effective operations, The Journal of

Symbolic Logic, vol. 35, pp. 217–222, a correction, ibid., vol. 39, p. 225, 1974.
J. R. Longley [1995], Realizability toposes and language semantics, Ph.D. thesis, University

of Edinburgh, available as ECS-LFCS-95-332.
J. R. Longley [1999a],Matching typed and untyped realizability, Proceedings of Workshop

on Realizability, Trento (L. Birkedal, J. van Oosten, G. Rosolini, and D. S. Scott, editors),
published as Electronic Notes in Theoretical Computer Science 23 No. 1, Elsevier. Available via
http://www.elsevier.nl/locate/entcs/volume23.html.
J. R. Longley [1999b], Unifying typed and untyped realizability, unpublished note, available

at http://www.dcs.ed.ac.uk/home/jrl/unifying.txt.
J. R. Longley [1999c],When is a functional program not a functional program?, Proceedings

of 4th International Conference on Functional Programming, Paris, ACM Press, pp. 1–7.
J. R. Longley [2002a], The sequentially realizable functionals, Annals of Pure and Applied

Logic, vol. 117, no. 1, pp. 1–93.
J. R. Longley [2002b], Universal types and what they are good for, to appear in Proceedings

of 2nd International Symposium on Domain Theory, Chengdu.
J. R. Longley and G. D. Plotkin [1997], Logical full abstraction and PCF, Tbilisi Sympo-

sium on Language, Logic and Computation (J. Ginzburg et al., editor), SiLLI/CSLI, pp. 333–352.
J. R. Longley and A. K. Simpson [1997], Auniform approach to domain theory in realizability

models,Mathematical Structures in Computer Science, vol. 7, pp. 469–505.
G. Longo and E. Moggi [1984a], Cartesian closed categories of enumerations for effective

type structures, Parts I and II, Semantics of Data Types (G. Kahn, D. MacQueen, and G. Plotkin,
editors), Springer-Verlag, pp. 235–255.
G. Longo and E. Moggi [1984b], The hereditary partial functionals and recursion theory in

higher types, The Journal of Symbolic Logic, vol. 49, pp. 1319–1332.
F. Lowenthal [1976], Equivalence of some definitions of recursion in a higher type object, The

Journal of Symbolic Logic, vol. 41, pp. 427–435.
D. MacQueen [1972], Post’s problem for recursion in higher types, Ph.D. thesis, MIT, Cam-

bridge, Massachusetts.
M.Marz, A. Rohr, and T. Streicher [1999], Full abstraction and universality via realisabil-

ity, Proceedings of 14th Annual Symposium on Logic in Computer Science, IEEE, pp. 174–182.
S. Mazur [1963], Computable analysis, RozprawyMatematyczne, vol. 33, Warsaw.
D. C. McCarty [1984], Information systems, continuity and realizability, Logics of Programs

(E. Clarke andD. Cozen, editors), Lecture Notes in Computer Science, no. 164, Springer-Verlag,
pp. 341–359.



100 JOHN R. LONGLEY

R. Milner [1977], Fully abstract models of typed ë-calculi, Theoretical Computer Science,
vol. 4, pp. 1–22.
R. Milner, M. Tofte, R. Harper, and D. MacQueen [1997], The definition of StandardML

(revised), MIT Press.
E. Moggi [1988], Partial morphisms in categories of effective objects, Information and Compu-

tation, vol. 73, pp. 250–277.
J. Moldestad [1977], Computations in higher types, Lecture Notes in Mathematics, vol. 574,

Springer-Verlag.
Y. N. Moschovakis [1967], Hyperanalytic predicates, Transactions of the American Mathe-

matical Society, vol. 129, pp. 249–282.
Y. N. Moschovakis [1969], Abstract first order computability I, II, Transactions of the Ameri-

can Mathematical Society, vol. 138, pp. 427–464, 465–504.
Y. N. Moschovakis [1974a], Elementary induction on abstract structures, North-Holland.
Y. N. Moschovakis [1974b], On non-monotone inductive definability, Fundamenta Mathemat-

icae, vol. 82, pp. 39–83.
Y. N. Moschovakis [1974c], Structural characterizations of classes of relations, Generalized

Recursion Theory (J. E. Fenstad and P. G. Hinman, editors), North-Holland, pp. 53–79.
Y. N. Moschovakis [1976], On the basic notions in the theory of induction, Proceedings of

5th International Congress in Logic, Methodology and Philosophy of Science, London, Ontario,
pp. 207–236.
Y. N. Moschovakis [1981], On the Grilliot-Harrington-MacQueen theorem, Logic Year 1979–

80, Lecture Notes in Mathematics, vol. 859, Springer-Verlag, pp. 246–267.
Y. N. Moschovakis [1983], Abstract recursion as a foundation for the theory of algorithms,

Computation and Proof Theory: Proceedings of the Logic Colloquium, vol. 2 (E. Boerger, W. Ober-
schelp, M. M. Richter, B. Schinzel, andW.Thomas, editors), Lecture Notes in Mathematics, vol.
1104, Springer-Verlag, pp. 289–364.
Y. N. Moschovakis [1989], The formal language of recursion, The Journal of Symbolic Logic,

vol. 54, pp. 1216–1252.
K. Mulmuley [1987], Full abstraction and semantic equivalence, MIT Press.
P. S. Mulry [1982], Generalized Banach-Mazur functionals in the topos of recursive sets, Jour-

nal of Pure and Applied Algebra, vol. 26, pp. 71–83.
J. Myhill and J. C. Shepherdson [1955], Effective operations on partial recursive functions,

Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 1, pp. 310–317.
A. Nerode [1957], General topology and partial recursive functionals, Cornell Summer Institute

of Symbolic Logic, Cornell, pp. 247–251.
A. Nerode [1959], Some Stone spaces and recursion theory, Duke Mathematical Journal, vol.

26, pp. 397–406.
H. Nickau [1994], Hereditarily sequential functionals, Proceedings of 3rd Symposium on Log-

ical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 813, Springer-
Verlag, pp. 253–264.
K.-H. Niggl [1993], Subrecursive hierarchies on Scott domains, Archive of Mathematical

Logic, vol. 32, pp. 239–257.
K.-H. Niggl [1999],Mù considered as a programming language, Annals of Pure and Applied

Logic, vol. 99, pp. 73–92.
D. Normann [1978a], A continuous functional with noncollapsing hierarchy, The Journal of

Symbolic Logic, vol. 43, pp. 487–491.
D. Normann [1978b], Set recursion, Generalized Recursion Theory II (J. E. Fenstad, R. O.

Gandy, and G. E. Sacks, editors), North-Holland, pp. 303–320.
D. Normann [1979a], A classification of higher type functionals, Proceedings of 5th Scandina-

vian Logic Symposium (F. V. Jensen, B. H.Mayoh, andK. K.Møller, editors), Aalborg University
Press, pp. 301–308.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 101

D. Normann [1979b], Nonobtainable continuous functionals, Proceedings of 6th International
Congress on Logic, Methodology and Philosophy of Science, Hanover, pp. 241–249.
D. Normann [1980], Recursion on the countable functionals, Lecture Notes in Mathematics,

vol. 811, Springer-Verlag.
D. Normann [1981a], The continuous functionals: computations, recursions and degrees, An-

nals of Mathematical Logic, vol. 21, pp. 1–26.
D. Normann [1981b], Countable functionals and the projective hierarchy, The Journal of Sym-

bolic Logic, vol. 46, pp. 209–215.
D. Normann [1982], External and internal algorithms on the continuous functionals, Patras

Logic Symposion (G. Metakides, editor), North-Holland, pp. 137–144.
D. Normann [1983], Characterising the continuous functionals,The Journal of Symbolic Logic,

vol. 48, pp. 965–969.
D. Normann [1989], Kleene–spaces, Logic colloquium 1988 (Ferro, Bonotto, Valentini, and

Zanardo, editors), Elsevier, pp. 91–109.
D. Normann [1997], Closing the gap between the continuous functionals and recursion in 3E,

Archive of Mathematical Logic, vol. 36, pp. 269–287.
D. Normann [1999a], The continuous functionals, Handbook of computability theory (E. R.

Griffor, editor), North-Holland, pp. 251–275.
D. Normann [1999b], A Mahlo-universe of effective domains with totality, Models and Com-

putability (S. B. Cooper and J. K. Truss, editors), Cambridge University Press.
D. Normann [2000], Computability over the partial continuous functionals, The Journal of

Symbolic Logic, vol. 65, pp. 1133–1142.
D. Normann [2001], The continuous functionals of finite types over the reals, Domains and

processes: Proceedings of 1st international symposium on domain theory, Shanghai (K. Keimel,
G. Q. Zhang, Y. Liu, and Y. Chen, editors), Kluwer, pp. 103–124.
D. Normann [2002], Exact real number computations relative to hereditarily total functionals,

to appear in Theoretical Computer Science.
D. Normann and C. Rørdam [2002], The computational power of Mù , Mathematical Logic

Quarterly, vol. 48, no. 1, pp. 117–124.
D. Normann and S. S. Wainer [1980], The 1-section of a countable functional, The Journal of

Symbolic Logic, vol. 45, pp. 549–562.
P. G. Odifreddi [1989], Classical recursion theory, volume I, Studies in Logic and the Foun-

dations of Mathematics, vol. 125, Elsevier, second edition 1999.
P. W. O’Hearn and J. G. Riecke [1995], Kripke logical relations and PCF, Information and

Computation, vol. 120, no. 1, pp. 107–116.
C.-H. L. Ong [1995], Correspondence between operational and denotational semantics, Hand-

book of logic in computer science (S. Abramsky,D. Gabbay, and T. S. E.Maibaum, editors), vol. 4,
Oxford University Press, pp. 269–356.
C.-H. L. Ong and C. A. Stewart [1997], ACurry-Howard foundation for functional computa-

tion with control, Proceedings of 24th Symposium on Principles of Programming Languages, ACM
Press, pp. 215–227.
J. van Oosten [1991], Exercises in realizability, Ph.D. thesis, University of Amsterdam.
J. van Oosten [1997], The modified realizability topos, Journal of Pure and Applied Algebra,

vol. 116, pp. 273–289.
J. van Oosten [1999], A combinatory algebra for sequential functionals of finite type, Models

and Computability (S. B. Cooper and J. K. Truss, editors), Cambridge University Press, pp. 389–
406.
J. van Oosten [2002], Realizability: a historical essay,Mathematical Structures in Computer

Science, vol. 12, no. 3, pp. 239–264.
P. Päppinghaus [1985], Ptykes in Gödel’s T und verallgemeinerte Rekursion über Mengen und

Ordinalzahlen, Habilitationsschrift, Hannover.



102 JOHN R. LONGLEY

R. Péter [1951a], Probleme der Hilbertschen Theorie der höheren Stufen von rekursiven Funk-
tionen, Acta mathematica Academiae Scientarum Hungaricae, vol. 2, pp. 247–274.
R. Péter [1951b], RekursiveFunktionen, AkademischerVerlag, Budapest, English translation

published as Recursive Functions, Academic Press, 1967.
W. K.-S. Phoa [1991], From term models to domains, Proceedings of Theoretical Aspects of

Computer Software, Sendai, Lecture Notes in Computer Science, vol. 526, Springer-Verlag.
R. Platek [1966], Foundations of recursion theory, Ph.D. thesis, Stanford University.
R. Platek [1971], A countable hierarchy for the superjump, Logic Colloquium 1969 (R. O.

Gandy and C. E. M. Yates, editors), North-Holland, pp. 257–271.
G. D. Plotkin [1977], LCF considered as a programming language, Theoretical Computer Sci-

ence, vol. 5, pp. 223–255.
G. D. Plotkin [1978],

� ù as a universal domain, Journal of Computer and System Sciences,
vol. 17, pp. 209–236.
G. D. Plotkin [1983], Domains, Technical report, Department of Computer Science, Univer-

sity of Edinburgh.
G. D. Plotkin [1997], Full abstraction, totality and PCF, Mathematical Structures in Com-

puter Science, vol. 9, no. 1, pp. 1–20.
E. L. Post [1936], Finite combinatory processes—formulation 1, The Journal of Symbolic

Logic, vol. 1, pp. 103–105.
M. B. Pour-El [1960], A comparison of five “computable” operators, Zeitschrift für mathema-

tische Logik und Grundlagen der Mathematik, vol. 6, pp. 325–340.
M. B. Pour-El [1999], The structure of computability, Handbook of computability theory

(E. R. Griffor, editor), North-Holland, pp. 315–359.
M. B. Pour-El and J. I. Richards [1989], Computability in analysis and physics, Springer-

Verlag.
H. G. Rice [1953], Classes of recursively enumerable sets and their decision problems, Transac-

tions of the American Mathematical Society, vol. 74, pp. 358–366.
H. G. Rice [1956], On completely recursively enumerable classes and their key arrays,The Jour-

nal of Symbolic Logic, vol. 21, pp. 304–308.
W. Richter [1967], Constructive transfinite number classes, Bulletin of the American Mathe-

matical Society, vol. 73, pp. 261–265.
J. G. Riecke [1993], Fully abstract translations between functional languages, Mathematical

Structures in Computer Science, vol. 3, pp. 387–415.
H. Rogers [1967], Theory of recursive functions and effective computability, McGraw-Hill.
A. Rohr [2002], A universal realizability model of sequential functional computation, Ph.D.

thesis, Technical University of Darmstadt.
G. Rosolini [1986], Continuity and effectiveness in topoi, Ph.D. thesis, Oxford; Carnegie-

Mellon.
J. S. Royer [2000], On the computational complexity of Longley’s H functional, presented at

Second International Workshop on Implicit Computational Complexity, UC/Santa Barbara.
G. E. Sacks [1971], Recursion in objects of finite type, Proceedings of International Congress

of Mathematicians, Gauthiers-Villars, Paris, pp. 251–254.
G. E. Sacks [1974], The 1-section of a type n object, Generalized Recursion Theory (J. E.

Fenstad and P. G. Hinman, editors), North-Holland, pp. 81–96.
G. E. Sacks [1977], The k-section of a type n object,American Journal ofMathematics, vol. 99,

pp. 901–917.
G. E. Sacks [1980], Post’s problem, absoluteness and recursion in finite types, The Kleene Sym-

posium (J. Barwise, H. J. Keisler, and K. Kunen, editors), North-Holland, pp. 201–222.
G. E. Sacks [1985], Post’s problem in E-recursion, Proceedings of Symposia on Pure Mathe-

matics, vol. 42, AMS, pp. 177–193.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 103

G. E. Sacks [1986], On the limits of E-recursive enumerability, Annals of Pure and Applied
Logic, vol. 31, pp. 87–120.
G. E. Sacks [1990], Higher recursion theory, Springer-Verlag.
G. E. Sacks [1999], E-recursion, Handbook of computability theory (E. R. Griffor, editor),

Elsevier, pp. 301–314.
L. E. Sanchis [1967], Functionals defined by recursion, Notre Dame Journal of Formal Logic,

vol. 8, pp. 161–174.
L. E. Sanchis [1992], Recursive functionals, Studies in Logic and the Foundations of Mathe-

matics, vol. 131, North-Holland.
L. P. Sasso [1971], Degrees of unsolvability of partial functions, Ph.D. thesis, University of

California, Berkeley.
V.Yu. Sazonov [1975], Sequentially and parallelly computable functionals, ë-calculus andCom-

puter Science Theory: Proceedings of the symposium held in Rome, Lecture Notes in Computer
Science, vol. 37, Springer-Verlag, pp. 312–318.
V.Yu. Sazonov [1976a], Degrees of parallelism in computations, Proceedings of Symposium on

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 45,
Springer-Verlag, pp. 517–523.
V.Yu. Sazonov [1976b], Expressibility of functions in Scott’s LCF language, Algebra i Logika,

vol. 15, pp. 308–330.
V.Yu. Sazonov [1976c], Functionals computable in series and in parallel, Matematicheskii

Zhurnal, vol. 17, pp. 648–672.
V.Yu. Sazonov [1998], An inductive definition of full abstract model for LCF (preliminary

version), available from http://csc.liv.ac.uk.
B. Scarpellini [1971], A model for barrecursion of higher types, Compositio Mathematica,

vol. 23, pp. 123–153.
H. Schwichtenberg [1975], Elimination of higher type levels in definitions of primitive recursive

functionals by means of transfinite recursion, Logic Colloquium 1973 (H.Rose and T. Shepherdson,
editors), North-Holland, pp. 279–303.
H. Schwichtenberg [1991], Primitive recursion on the partial continuous functionals, Infor-

matik und Mathematik (M. Broy, editor), Springer-Verlag, pp. 251–269.
H. Schwichtenberg [1996], Density and choice for total continuous functionals, Kreiseliana.

About and around Georg Kreisel (P. Odifreddi, editor), A. K. Peters, Wellesley, Massachusetts,
pp. 335–362.
H. Schwichtenberg [1999], Classifying recursive functions,Handbookof computability theory

(E. R. Griffor, editor), North-Holland, pp. 533–586.
D. S. Scott [1969], A theory of computable functions of higher type, unpublished seminar

notes, University of Oxford. 7 pages.
D. S. Scott [1970], Outline of amathematical theory of computation, Proceedings of 4thAnnual

Princeton Conference on Information Science and Systems, pp. 165–176.
D. S. Scott [1972], Continuous lattices, Toposes, Algebraic Geometry and Logic (F. W. Law-

vere, editor), Springer-Verlag.
D. S. Scott [1976], Data types as lattices, SIAM Journal of Computing, vol. 5, no. 3, pp. 522–

587.
D. S. Scott [1982], Domains for denotational semantics, Proceedings of 9th International Col-

loquium on Automata, Languages and Programming, Aarhus, Denmark (M. Nielsen and E. M.
Schmidt, editors), Lecture Notes in Computer Science, no. 140, Springer-Verlag, pp. 577–610.
D. S. Scott [1993], A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical

Computer Science, vol. 121, pp. 411–440, firstwritten in 1969 andwidely circulated in unpublished
form since then.



104 JOHN R. LONGLEY

J. R. Shoenfield [1962], The form of the negation of a predicate, Recursive function theory:
Proceedings of Symposia on Pure Mathematics (J. C. E. Dekker, editor), vol. 5, AMS, pp. 131–
134.
J. R. Shoenfield [1967],Mathematical logic, Addison-Wesley.
J. R. Shoenfield [1968], A hierarchy based on a type two object, Transactions of the American

Mathematical Society, vol. 134, pp. 103–108.
K. Sieber [1990], Relating full abstraction results for different programming languages, Pro-

ceedings of 10th Conference on Foundations of Software Technology and Theoretical Computer
Science, Bangalore, Lecture Notes in Computer Science, vol. 472, Springer-Verlag.
K. Sieber [1992], Reasoning about sequential functions,Applications of Categories in Computer

Science, Durham 1991 (M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors), London
Mathematical Society Lecture Note Series, vol. 177, Cambridge University Press, pp. 258–269.
A. Simpson [1998], Lazy functional algorithms for exact real functionals,Mathematical Foun-

dations of Computer Science, Proceedings, Lecture Notes in Computer Science, vol. 1450,
Springer-Verlag, pp. 456–464.
T. A. Slaman [1981], Aspects of E-recursion, Ph.D. thesis, Harvard University.
T. A. Slaman [1985], The E-recursively enumerable degrees are dense, Proceedings of Symposia

on Pure Mathematics, vol. 42, AMS, pp. 195–213.
C. Spector [1962], Provably recursive functionals of analysis: a consistency proof of analysis

by means of principles formulated in current intuitionistic mathematics, Recursive function theory:
Proceedings of Symposia on Pure Mathematics, vol. 5, AMS, pp. 1–27.
D. Spreen [1992], Effective operators and continuity revisited,Logical Foundations of Computer

Science, Second International Symposium, Tver (A. Nerode and M. A. Taitslin, editors), Lecture
Notes in Computer Science, vol. 620, Springer-Verlag, pp. 459–469.
D. Spreen and P. Young [1983], Effective operators in a topological setting, Computation and

Proof Theory: Proceedings of the Logic Colloquium, vol. 2 (E. Boerger, W. Oberschelp, M. M.
Richter, B. Schinzel, andW.Thomas, editors), LectureNotes inMathematics, vol. 1104, Springer-
Verlag, pp. 437–451.
V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor [1994],Mathematical theory of

domains, Cambridge Tracts in Theoretical Computer Science, no. 22, Cambridge University
Press.
A. Stoughton [1991a], Interdefinability of parallel operations in PCF, Theoretical Computer

Science, vol. 79, pp. 357–358.
A. Stoughton [1991b], Parallel PCF has a unique extensional model, Proceedings of 6th An-

nual Symposium on Logic in Computer Science, IEEE, pp. 146–151.
W.W. Tait [1962], A second order theory of functionals of higher type, in Stanford report on

the foundations of analysis, Stanford University.
W.W. Tait [1967], Intensional interpretations of functionals of finite type I, The Journal of

Symbolic Logic, vol. 32, pp. 198–212.
M. B. Trakhtenbrot [1975], On representation of sequential and parallel functions, Proceed-

ings of 4th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, vol. 32, Springer-Verlag, pp. 411–417.
A. S. Troelstra [1973],Metamathematical investigation of intuitionistic arithmetic and analy-

sis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, second edition (with corrections):
ILLC Prepublication Series X-93-05, University of Amsterdam, 1993.
G. S. Tseitin [1959], Algorithmic operators in constructive complete separable metric spaces,

Doklady Akademii Nauk, vol. 128, pp. 49–52.
G. S. Tseitin [1962], Algorithmic operators in constructive metric spaces, Trudy Matematich-

eskogo Instituta imeni V. A. Steklova, vol. 67, pp. 295–361, translated in AMS Translations (2),
vol. 64 (1966), 1–80.



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 105

J. V. Tucker [1980], Computing in algebraic systems, Recursion theory: its generalizations and
applications (F.R.Drakeand S. S.Wainer, editors), LondonMathematical Society LectureNotes,
vol. 45, Cambridge University Press, pp. 215–235.
T. Tugué [1960], Predicates recursive in a type-2 object and Kleene hierarchies, Commentarii

Mathematici Universitatis Sancti Pauli, Tokyo, vol. 8, pp. 97–117.
A. M. Turing [1937a], Computability and ë-definability, The Journal of Symbolic Logic, vol. 2,

pp. 153–163.
A. M. Turing [1937b], On computable numbers, with an application to the Entscheidungsprob-

lem, Proceedings of the London Mathematical Society, vol. 42, pp. 230–265, a correction, ibid.,
vol. 42, pp. 455–546, 1937.
A. M. Turing [1939], Systems of logic based on ordinals, Proceedings of the London Mathe-

matical Society, vol. 45, pp. 161–228.
V. A. Uspenskii [1955], On enumeration operators,DokladyAkademii Nauk, vol. 103, pp. 773–

776.
J. Vuillemin [1973], Correct and optimal implementations of recursion in a simple programming

language, Proceedings of 5th ACM Symposium on Theory of Computing, pp. 224–239.
S. S. Wainer [1974], A hierarchy for the 1-section of any type two object, The Journal of Sym-

bolic Logic, vol. 39, pp. 88–94.
S. S. Wainer [1975], Some hierarchies based on higher type quantification, Logic Colloquium

1973 (H. Rose and T. Shepherdson, editors), North-Holland, pp. 305–316.
S. S. Wainer [1978], The 1-section of a non-normal type-2 object,GeneralizedRecursionTheory

II (J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors), North-Holland, pp. 407–417.
K. Weihrauch [1985], Type 2 recursion theory, Theoretical Computer Science, vol. 38, pp. 17–

33.
K. Weihrauch [2000a], Computability, EATCS Monographs on Theoretical Computer Sci-

ence, vol. 9, Springer-Verlag.
K. Weihrauch [2000b], Computable analysis: an introduction, Texts in Theoretical Computer

Science, Springer-Verlag.
P. R. Young [1968], An effective operator, continuous but not partial recursive, Proceedings of

the American Mathematical Society, vol. 19, pp. 103–108.
P. R. Young [1969], Toward a theory of enumerations, Journal for theAssociation ofComputing

Machinery, vol. 16, pp. 328–348.
I. D. Zaslavskii [1955], Refutation of some theorems of classical analysis in constructive anal-

ysis, Uspekhi Matematichekikh Nauk, vol. 10, pp. 209–210.
I. D. Zaslavskii and G. S. Tseitin [1962], On singular coverings and properties of constructive

functions connected with them, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 67,
pp. 458–502, translated in AMS Translations (2), vol. 98 (1971), 41–89.
J. I. Zucker [1971], Proof theoretic studies of systems of iterated inductive definitions and sub-

systems of analysis, Ph.D. thesis, Stanford University.

INDEX

[· · · ], 〈· · ·〉, 10

[xi ], 39

U [V/x], 13

X/R, 10

{m}(x), 27

x (boldface), 11, 27

x : ó, 27

[[U ]], 14, 15

dfe, 49
�

f, 10

n, 11
�

è, 20

:, 14, 27

→, 11
·, 12
·ó,ô , 12



106 JOHN R. LONGLEY

⇓, 14
|, 36
⇀, 9
�, 29
�c , 41
;, 14
;

∗, 14
v, 53
=,', 10
#, 27
⊥, X⊥, 9, 46
↓, 10, 39
↑, 10, 54
0, 23, 25
2∃, 5, 29
k∃, 32
Λx.e, 10
ëx.U , 13
ìn.e, 22
Φ, 38
φm , 10
C, 36
C2, C20, 55
D, 47
EC(−), 12
ECF, 36
ECF(R), 43
EN , 55, 57
Fx , 54
HEO, 42
HRC, 43
HRO, 42
Ió , 47
Kóô , 47
KC(−), 30, 38
M, 46

�
, 10

���
,

���

p ,
���

rec ,
���

p rec , 10
Nó , 36
P, 53
PER(−), 44

P
eff, 53, 54, 57
por, 48
R(−), 47
RC, 37
rec, 23�

rec, 25
Sñóô , 47
S, 12
Seq(−), 10
kS, 35

succ, 23, 25
T(−,−), 15

� ù, 57
U, 51
X (−), 27
Yó , 47
Z, 22

Aberth, 7, 21
Abramsky, 16
abstract computability, 5, 31, 34
Ackermann function, 18, 26
Aczel, 5, 35
adequacy, 49
admissible set theory, 5, 33, 35
algebraic
DCPOs, 54
lattices, 39

anti-Church’s thesis
for total functionals, 43

associates, 36, 42, 43

Banach-Mazur functional, 16
generalized, 18, 57

bar recursion, 25, 39
Barendregt, 25, 26
basic types, 11
Bauer, 7, 41, 42
Beeson, 5, 7, 21
Bellantoni, 6
Berger, 16, 41
Bergstra, 39, 40
Berry, 16, 52, 53
â-rule, 14, 16
Bezem, 44
Birkedal, 41
black boxes, 20, 21, 26
Brouwer, 25, 38
Bucciarelli, 53

call-by-name (CBN), 45, 52, 55
call-by-value (CBV), 45, 46, 52, 55
cartesian closed category, 15
Church, 16, 29
Church’s thesis, 1, 16
at higher types, 8, 28, 50

Clarke, 35
codensity, 41
coherent domains, 57
compactly generated Hausdorff spaces, 39
complete f0-spaces, 56
complete lattices, 54



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 107

complete partial orders, 53
complexity, 6
logical, 5, 29, 34, 40

computation trees, 28, 50
congruence rules, 14, 16
consistent
elements, 54
functionals, 46

consistently complete, 54
constructibility, 5
constructive
logic, 4, 24, 37

continuity, 19, 21, 44, 53
continuous
functionals, 36
functions, 53

Cook, 2, 6, 16
Cooper, 7
countable functionals, 36
course-of-values function, 10
CPOs, 53
Curien, 16, 52, 53

datatypes, 6
Davis, 46
DCPOs, 54
definability
recursive, 47

(L-)definable, 14
definedness, 10
degrees, 33, 35, 40–41
Kleene, 29, 40

density, 41
theorem, 37, 41

dependent types, 41
descriptive set theory, 5
Dialectica
interpretation, 23–25
translation, 24, 37

directed
sets, 54

domains, 54
double-negation translation, 24, 38
Draanen, van, 52
Dragalin, 24

E-recursion, 35
effective
elements, 54
enumeration, 54
operation, 20

Ehrhard, 16
enumerated sets, 55
enumerators, 49
envelopes, 33–34, 41
equilogical spaces, 41
Ershov, 16, 39, 41, 44, 53, 55–57
Escardó, 7
extensional
collapse, 12, 16, 36, 42, 44, 56
type structure, 12

f-sets, 55
f0-spaces, 55–57
fan functional, 38, 43
Feferman, 5, 26, 31, 40
Fenstad, 31, 34
filter spaces, 39
final value, 14
finite
elements, 20, 54
information, 36, 37, 54, 55
types, 11

first recursion theorem, 29, 30, 48, 50
fixed point operators, 47
Friedberg, 18, 21
Friedman, 5
functionals, 2, 12

Gödel, 5, 6, 16, 22–26
game models
of PCF, 52

Gandy, 16, 21, 24, 31, 32, 34, 35, 38, 40, 44,
48

Girard, 25, 44
Griffor, 35
Grilliot, 16, 33, 34, 39, 40
Grzegorczyk, 7, 16, 19, 21, 24
hierarchy, 6

Harrington, 16, 33–35
Henkin, 16
Herbrand-Gödel equations, 19, 29, 48
hereditarily, 12
effective operations, 42–44
extensional, 56
majorizable, 25
monotone functionals, 46
recursive operations, 42, 44
recursively countable functionals, 43
total, 13, 56

hierarchies, 34–35
Hilbert, 16



108 JOHN R. LONGLEY

Hinata, 24, 37
Hinatani, 24
Hinman, 5, 16, 34, 35, 40
Howard, 25
Hyland, 38–41, 44, 50, 53
hyperanalytic hierarchy, 35
hyperarithmetic
functions, 29, 34
hierarchy, 34

hyperfinite type structure, 39

ideals, 56
index, 28
application, 27
recursive, 10, 20, 27

information systems, 55
interpretation, 14, 15
irreducible element, 40
Irwin, 7, 26

j-expression, 50

Kapron, 7, 26
Kechris, 31, 33
Kierstead, 16, 52
functional, 51

Kleene, 5, 6, 10, 16, 18–19, 21, 22, 25–31,
34, 36–38, 45, 49–53
computability, 27, 30
over C, 38
over S, 30–35, 48
relative, 29
degree, 29, 40
equality, 10
tree, 21, 43

Kohlenbach, 5
Korovina, 7
Kreisel, 5, 16, 22, 24, 25, 36–38, 42–43
Kreisel-Lacombe-Shoenfield theorem, 21
generalized, 41, 43, 44

Kristiansen, 41
Kudinov, 7

L-spaces, 39
Lacombe, 7, 16, 21
ë-calculus, 1, 29
simply typed, 13, 15
untyped, 13, 48, 57

Lambek, 16
Lawvere, 18
level (of a type), 11
Loader, 16, 25

Longley, 6, 16
Longo, 57
Lowenthal, 34

MacQueen, 33
Markov, 7
algorithms, 1

Martin-Löf, 41
model, 16
modulus
of continuity, 19
of extensionality, 25
of uniform continuity, 38

Moggi, 57
Moldestad, 34, 49
monotone partial functionals, 46
Moschovakis, 5, 6, 16, 31–35
Mulry, 18, 57
Myhill, 16
Myhill-Shepherdson theorem, 20
generalized, 56

neighbourhoods, 36
formal, 37, 43

Nerode, 20
Niggl, 6, 7
no-counterexample interpretation, 38
non-termination, 9
normal form theorem, 29
normal objects/functionals, 31–35
Normann, 5, 7, 16, 35, 38–41
number selection, 32

object
type n, 12

observational equivalence, 25
Odifreddi, 1, 21
Ong, 50, 53
operation
effective, 20

oracles, 16, 19, 20, 26–29, 51–53

Péter, 16, 18–19, 22, 23, 26
parallel or, 48
partial continuous functionals, 53
partial equivalence relations, 10, 44
partial recursive
uniformly, 19

PCF, 48
physics, 7
Platek, 16, 22, 31, 32, 35, 46–50, 52
Plotkin, 6, 16, 57



NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 109

plus-one theorem, 33
plus-two theorem, 33
Post, 16
Post’s problem, 33
Pour-El, 7, 18, 22
primitive recursion
at higher types, 23, 26
at type 2, 18
uniform, 19

programming languages, 6
projective hierarchy, 40
pure types, 11
Putnam, 46

quantifiers, 5, 29

real numbers, 7
realizability, 4
recursive topos, 57
recursively
continuous functionals, 37
countable functionals, 37

reduction, 14
representations
of sets, 41

represents, 47
retracts, 6, 57
Rice, 16, 20
Richards, 7
Richter, 34
Rogers, 18, 21
Royer, 7, 26

S1–S8, 25–26
S1–S9, 26–31, 48
spirit of, 26

S8, anomalies arising from, 30–31, 44
S9, 28
S11, 50–52
Sacks, 5, 16, 33, 35
Sanchis, 24
Sazonov, 16
Scarpellini, 39
Schwichtenberg, 6, 7, 41
Scott, 6, 16, 39, 41, 53–55
domains, 54

second recursion theorem, 21, 50
sections, 33, 40
selection theorems, 32–33
sequential
algorithms, 52, 53
continuity, 39, 44

strategies, 51
set theory, 31
admissible, 5, 33, 35
descriptive, 5

Shapiro, 16, 20
Shepherdson, 16
Shoenfield, 16, 24, 34
simple types, 11
Simpson, 7
Slaman, 35
Spector, 25
stage comparison, 32
strong normalization, 24
strong or, 48
subrecursion, 6
superjump, 35
Suslin quantifier, 34
System T, 6, 23–26

System
�

T, 26

Tait, 16, 24, 37, 38, 43
term models, 14
theories, 14, 25
Θ-computability, 32
topos, 16
recursive, 57

total
continuous functionals, 25, 35–42

total recursive
uniformly, 19

totality
in domains, 41

transfinite
iteration, 47
types, 3, 16, 41

Troelstra, 5, 7, 16, 25, 43
Tseitin, 21
Tucker, 5
Tugué, 34, 37
Turing, 16
machines, 1, 16, 29, 41

type structure, 12
extensional, 12
over X , 12
partial, 12
total, 12

type two effectivity, 41

uniformly (primitive, partial, total) recur-
sive, 18

unimonotone functionals, 51



110 JOHN R. LONGLEY

universal
domain, 57
type, 57

Uspenskii, 20

Wainer, 34, 40

Weihrauch, 7, 41

well-pointed categories, 15

Zaslavskii, 21

Zucker, 16

DIVISION OF INFORMATICS

UNIVERSITY OF EDINBURGH

EDINBURGH, EH9 3JZ, UK

E-mail: jrl@dcs.ed.ac.uk


