
Analysing PCF and Kleene computability

via sequential procedures

John Longley

Laboratory for Foundations of Computer Science

University of Edinburgh

Theory Seminar, University of Birmingham

6 July 2012

Introduction: The language PCF

PCF is a prototypical higher order sequential and purely func-
tional programming language (Plotkin 1977). Basically a toy
version of Haskell (without monads).

We’ll take PCF to be a simply typed lambda calculus over a
single ground type N, with constants

n̂ : N for each n ∈ N
suc, pre : N→ N

ifzero : N→ N→ N→ N

Yσ : (σ → σ) → σ for each σ

and suitable (call-by-name) reduction rules.

Pure types: we’ll write 0 = N, k + 1 = k → N.

1

‘Algorithms’ for PCF programs

Consider the following two (sugared) PCF programs for comput-
ing the minimization operator f1 7→ µn. f(n) = 0.

M0 f = if f 0̂ = 0̂ then 0̂ else suc(M0(λn.f(suc n)))

M1 f = if f 0̂ = 0̂ then 0̂ else

if f 1̂ = 0̂ then 1̂ else suc(suc(M1(λn.f(suc(suc n)))))

In terms of their interactions with their argument f , these em-
body the same ‘algorithm’, which we can display as an infinite
decision tree:

λf. case f(0) of (0 ⇒ 0
| 1 ⇒ case f(1) of (0 ⇒ 0

| 1 ⇒ case f(2) of · · ·
| · · ·)

| · · ·)

2

Nested calls

We can loosely think of bound variables like f as ‘oracles’ received
from the outside world.

In general, in a higher order setting, the arguments we feed to
these oracles will themselves be ‘algorithms’ of a similar kind.

Example: Kierstead functional λF2. F (λx. F (λy.x)).

λF. case F() of (0 ⇒ 0 | 1 ⇒ 1 | …)

λx. case F() of (0 ⇒ 0 | 1 ⇒ 1 | …)

λy. case x of (0 ⇒ 0 | 1 ⇒ 1 | …)

3

Nested sequential procedures

We’ll refer to trees of the above kind as (nested) sequential

procedures (NSPs). They’re typically infinitely broad (with N-

indexed conditional branching), and can be infinitely deep.

The minimization example illustrates one kind of infinite depth.

Another (more serious) kind is illustrated by the tree for Y1. This

is λF.T , where ‘T = λx. FT x’. More formally:

T = λx. case F T (case x of (j ⇒ j)) of (i ⇒ i)

These trees are what we shall study, in relation both to PCF and

to Kleene (S1–S9) computability (1959) for total functionals.

[Idea: NSPs capture what is common to these two notions.]

4

History of ideas

• Sazonov (1970s) used Turing machines with oracles to iden-
tify sequentially computable elements of Scott model.

• Ideas also implicit in late work of Kleene and Gandy.

• Explicitly defined in papers on game semantics of PCF (1993),
where they played an ancillary role. (AJM: evaluation trees.
HO: canonical forms.)

• Amadio and Curien (1998) study NSPs as PCF Böhm trees,
showing they form a model of PCF in their own right.

• Sazonov (2007) used same ideas to give a standalone char-
acterization of the sequentially computable functionals.

• Normann and Sazonov (2012) considered them under the
name sequential procedures. They used this model to obtain
order-theoretic properties of the sequential functionals.

5

Aside: NSPs and game models (Take 1)

In game models, interactions between programs and arguments
are captured via a dialogue between Player and Opponent. A
program’s behaviour is modelled by a strategy for Player.

Both NSPs and game strategies are definitely intensional: they
each allow many representations of the same (extensional) func-
tion. (E.g. multiple NSPs/strategies for + : N→ N→ N.)

In fact, there’s a perfect bijection between NSPs and e.g. the
innocent strategies of Hyland-Ong. However:

• A game strategy can prima facie only be applied to another
strategy — not to a function considered as ‘pure oracle’. So
less well suited e.g. to Kleene computability.

• On the other hand, game models of PCF fit into a broader
semantic framework (Abramsky et al). NSPs don’t seem to.

6

Present contributions

1. We give a semi-novel construction of the NSP model offering

various advantages. In particular, we show that much of the

theory of NSPs works in a completely untyped setting.

2. We identify substructures of the NSP model corresponding to

interesting ‘sub-PCF’ notions of computability. We use these

to give semantic proofs of some new expressivity results.

(E.g. bar recursion is not definable in System T+min.)

3. Finally, we look briefly at the light shed by NSPs on Kleene

computability, e.g. in the full set-theoretic (total) model.

7

PART 1. Untyped and typed NSPs

Untyped NSPs are defined coinductively as follows:

Procedures: p, q ::= λx0x1 · · · . e
Expressions: e ::= ⊥ | n | case a of (0 ⇒ e0 | 1 ⇒ e1 | · · ·)

Applications: a ::= x q0q1 · · ·

Every λ binds an infinite sequence of variables, and every appli-
cation involves an infinite sequence of arguments.

For typed NSPs: use typed variables, consider finite abstrac-
tions/applications, and impose the obvious typing constraints.
Alternatively, can retrieve the typed model from the untyped
one via its Karoubi envelope.

The typed/untyped dichotomy is pretty much orthogonal to ev-
erything else involved. Here we’ll follow the untyped route, to
see how much can be done in a type-free setting.

8

Defining application for NSPs

In Amadio/Curien and Normann/Sazonov, application is defined
first for finite NSP, then extended to general ones via continuity.
However, even showing that finite NSPs are closed under appli-
cation is surprisingly non-trivial, and the existing proofs require
at least Π0

2 induction.

By contrast, our treatment . . .

• requires no non-trivial theorems for the mere construction of
the model;

• requires only ‘finitistic’ reasoning to obtain key properties;

• gives a way of computing directly with NSPs. This makes it
clear that NSP application is itself ‘sequentially computable’
(e.g. it’s realizable over van Oosten’s B).

9

The computation calculus

We shall explain how a procedure p ‘interacts with’ a sequence
of arguments q0q1 · · · to yield a ground type result. To represent
the ‘intermediate forms’, we expand our language to a calculus
of meta-terms. The choice of both this extended language and
its reduction system are somewhat delicate.

Meta-procedures: P, Q ::= λx0x1 · · · . E
Meta-expressions: E ::= ⊥ | n | case G of (0 ⇒ E0 | 1 ⇒ E1 | · · ·)

Ground meta-terms: G ::= E | x Q0Q1 · · · | PQ0Q1 · · ·

Top-level reductions:

(λx0x1 · · · .E)Q0Q1 . . . E[x 7→ Q]
case ⊥ of (i ⇒ Ei) ⊥
case n of (i ⇒ Ei) En

case (case G of (i ⇒ Ei)) of (j ⇒ Fj) case G of (i ⇒ case Ei of (j ⇒ Fj))

10

The computation calculus (continued)

The foregoing reductions may be applied in ‘head position’, as
specified by:

• If G G′ and G is not a case meta-term, then

case G of (i ⇒ Ei) case G′ of (i ⇒ Ei)

• If E E′ then λx.E λx.E′.

General reduction proceeds by reducing a meta-term T to ‘head
normal form’, and then recursively reducing its subterms, Böhm
tree style. (Formal details omitted.) Since the calculus is infini-
tary, we then define the ‘value’ of T by

�T � =
⊔

{t finite | ∃T ′. T ∗ T ′ ∧ t v T ′}

Finally, if p = λx0x1x2 · · · .e, we define

p · q = λx1x2 · · · . � e[x0 7→ q] �

11

What this gives us

The set of closed untyped NSPs under · forms a λη-algebra USP0.

(Requires real work, but entirely ‘elementary’.) Our construction

also yields a simulation (i.e. applicative morphism) USP0−−BB.

By standard results, the Karoubi envelope of USP0 is a cartesian

closed category. Moreover, the idempotent

λxy0y1 · · · . x⊥⊥ · · ·

gives an object playing the role of N⊥, so we obtain a simply

typed model SP0. This coincides exactly with the typed NSP

model given by direct definition. So the explicit typing con-

straints fall out naturally from a general abstract construction.

Furthermore, the untyped route lets us glimpse a wider category

that SP0 naturally sits inside.

12

What else this gives us

As is already known, SP0 provides an adequate model of PCFΩ

(i.e. PCF with an ‘oracle constant’ Cf for each f : N ⇀ N).

Furthermore, for each σ, there’s a PCF program Iσ : 1 → σ

such that for every p ∈ SP0(σ) we have [[Iσ]] · dpe = p, where

dpe ∈ SP0(1) is the ‘type 1 code’ for p. Thus, every p ∈ SP0(σ) is

definable on the nose by a term of PCFΩ.

Likewise for effective procedures and PCF, modulo a minor and

idiosyncratic deficiency of standard (call-by-name) PCF.

Various standard results about PCF (e.g. Context Lemma; ab-

sence of parallel operations) can now be treated slightly more

abstractly in terms of NSPs.

Finally, most other reasonable interpretations of PCF (e.g. the

one in the Scott model) factor readily through SP0.

13

The extensional quotient

As with game models, we can pass from SP0 to the model SF

of sequential functionals by taking an ‘observational quotient’ at

each type σ.

Alternatively, we can take the quotient of USP0 by a single ‘ap-

plicative equivalence’ relation:

p ∼app p′ iff ∀q0, q1, . . . ∈ USP0. � pq0q1 · · · �=� p′q0q1 · · · �

This yields an extensional λ-model, and from its Karoubi enve-

lope we can retrieve SF.

So this part of the story, at least, can be told in a ‘type-free’

way. Of course, that doesn’t alter the fact that the equivalence

relation in question is intractable (Loader’s theorem)!

14

PART 2: Substructures. Finite sequential procedures

‘Finite NSPs’ may be construed as NSPs in our sense by ‘adding
⊥ everywhere else’. A known but non-trivial fact is that the
finite sequential procedures in SP0 are closed under application.
(Our development so far has avoided relying on this fact.) The
‘natural’ proof is by induction on types and uses Π0

2 induction.

A symptom of the non-triviality is that the size of p · q is in
general super-elementary in the sizes of p, q. (Closely analogous
to normalization in pure simply typed lambda calculus.)

Surprisingly, perhaps, the same results also hold in the untyped
setting, though they require a little more work there.

This contrasts starkly with the situation for lambda calculus:
e.g. λx.f(xx) applied to itself generates an infinite Böhm tree.
The secret is that any untyped finite procedure can be annotated
with indices that play a role similar to ‘type levels’.

15

Well-founded sequential procedures

Finite NSPs don’t form a model by themselves, since k, s are

infinite.

However, the above results carry over easily to well-founded

NSPs, i.e. those generated by our original grammar construed

inductively.

In SP0, well-founded procedures are closed under application and

include k, s. Indeed, they form a model for Gödel’s System T

and other ‘total type theories’ in a similar spirit.

Even in the untyped setting, the well-founded procedures are

closed under application (though they don’t include k, s). So

again, the basic phenomenon isn’t dependent on the presence of

typing. (Proof here uses transfinite ‘level annotations’.)

16

Left-well-founded sequential procedures

Now things get interesting.

Say a procedure p is left-well-founded (LWF) if the tree of ap-

plication subterms xq0q1 · · · (ordered by syntactic inclusion) is

well-founded. (LWF is weaker than WF.)

Again, the LWF procedures are closed under application, both

in SP0 and USP0. In SP0, they form a model e.g. for System

T+min, and embody a seemingly natural notion of what can be

computed without ‘nesting to infinite depth’.

This structural condition on NSPs can be used to give semantic

proofs of some new results (cf. Berger, Minimization vs. recursion

on the partial continuous functionals, 2001). . . .

17

Application 1: Bar recursion

Notation: If x = 〈x0, . . . , xr−1〉 ∈ N, write x.z for 〈x0, . . . , xr−1, z〉,
and take φx,t(i) = xi for i < r, t for i ≥ r.

Say B : 2,1,2 → 1 is a bar recursor if for all total F, L, G we have

B(F, L, G)(x) = L(x) if F (φx,0) = F (φx,1)
B(F, L, G)(x) = G(λz. B(F, L, G)(x.z)) otherwise.

Here F specifies a well-founded tree, L defines the behaviour at

leaf nodes, and G defines the behaviour at branch nodes.

These clauses fairly directly yield a definition of a bar recursor

in PCF. However, the corresponding NSP is clearly not LWF.

In fact, we can prove that in SP0, no bar recursor can be LWF

(even under a very conservative notion of ‘total’ element). So

no bar recursor is definable in T + min.

18

Sketch of proof

We show bar recursion isn’t LWF-computable even if the leaf
function L is specialized to x 7→ 2x + 1, and the node x to 〈〉.
Suppose B, B′ ∈ SP0(2,2 → 0) where B is a (specialized) bar
recursor and B′ is an LWF procedure. We cook up F, G ∈ SP0(2)
such that B · F ·G 6= B′ · F ·G.

Essentially, we choose F sufficiently ‘deep’ that computing B·F ·G
requires deeper nesting than B′ is willing to perform.

Problem: Which part of B′ does F need to go deeper than? This itself seems

to depend on knowing F and G!

Idea: start with G0 = λg.2g(0). Build a suitable F by a process of successive

approximation in tandem with our analysis of the computation of B′ · F ·G0.

Now choose G1 sufficiently ‘close to’ G0 that B′ · F · G1 = B′ · F · G0, but

carefully designed so that B · F ·G1 is something else entirely.

19

Some related history (encroaching on PART 3)

Let Ct denote the total continuous functionals (Kleene-Kreisel).

It was an open problem in the 1970s (posed by Kreisel) whether

any elements of Ct were Kleene computable (via S1–S9) but not

µ-computable (via S1–S8 + S10).

This was answered positively by Bergstra (1976) by means of an

ad hoc example involving degree theory.

At the same time, however, the bar recursor BR ∈ Ct(2,1,2 → 1)

(Scarpellini 1971) was well known as a natural example of a total

continuous (and Kleene computable) functional!

It follows easily from our theorem that BR is not µ-computable.

20

Application 2: Sublanguages of T + min

In System T, we have a ‘primitive recursor’ for each type σ:

recσ : σ → (σ → N→ σ) → (N→ σ)

By restricting recσ to types σ of level ≤ k, get sublanguages Tk.

It’s well known that T0,T1, . . . form a strict hierarchy. Berger

(2001) asks: is the same true for the languages Tk+min ?

Using NSPs, we can prove T0+min ≺ T1+min. [Idea: any

F ∈ SP0(2) definable in T0+min has call tree of height < ωω.]

Related fact: there’s no universal program U : 0 → 2 in T0+min.

I expect all this to extend easily to arbitrary k.

21

An open problem?

The following very natural question about PCF was posed in

(Berger 2001). To my knowledge, it is still open.

Let PCFk be the sublanguage of PCF with operators Yσ only for

σ of level ≤ k. Do the PCFk form a strict hierarchy as regards

expressivity?

At first sight, the NSP model would seem ideally suited to ad-

dressing this: we just need some structural property of PCFk-

definable procedures not shared by Yk+1. But I haven’t suc-

ceeded in finding such a property.

I now suspect this may be a hard problem . . . perhaps the most

obvious outstanding question about PCF?

22

Aside: NSPs and game models (Take 2)

Before we leave PCF, some tentative remarks NSPs in relation

to game models. Do these approaches offer different things?

In Hyland-Ong parlance, an innocent function on Player views is very close
to a de Bruijn representation of an NSP.

OQ ∼ occurrence of λ

PQ ∼ occurrence of head variable
OA ∼ case branch numeral
PA ∼ leaf numeral

justification sequence ∼ upward path in tree

However, the definitions of application look quite different, and the equiva-
lence isn’t quite trivial. Intuitively, in game models everything is more ‘local’.

Probably all our proofs could be translated into a game framework, though
at the cost of some extra clutter. Conversely, there’s a result from games
that I can’t prove with NSPs: The type structure SF has no universal type.

23

PART 3 proper: Kleene S1–S9 computability

Let A be a (suitable) total type structure over N (e.g. the full set-

theoretic one S, or Ct.) Kleene’s schemas S1–S9 give a monster

inductive definition of a relation ‘{e}(~x) = n’, where e, n ∈ N and

the xi are elements of A.

If ’{e}(~x)’ is defined for all ~x of appropriate types, say e is the in-

dex of a total Kleene-computable function {e} ∈ A(σ). Whether

this is so may depend on A.

However, if e defines a total function of type σ in S, it does so

in any other (suitable) A, by an easy logical relation argument.

If σ has level ≥ 2, the set of total indices of type σ (w.r.t. S) is

Π1
1-complete (essentially Moldestad and Normann).

24

Kleene computability and NSPs

Kleene indices e are very ‘syntactic’. What underlying mathe-

matical objects do they represent?

For any σ and any index e ∈ N, it’s possible to ‘grow’ a proce-

dure [e]σ ∈ SP0(σ), independently of A. The interpretation of

Kleene indices in any suitable A then factors through a (partial)

interpretation of SP0 in A.

So we get a finitely branching tree for e itself. (Kleene considered

only the infinitary computation trees arising from apply e to given

elements xi ∈ A.

We can now investigate the character of these trees . . .

25

Kleene computability and well-foundedness

On the strength of the last two slides, one might conjecture:

Every Kleene computable functional in S is definable by a well-

founded NSP.

However, there is a counterexample:

λF2. if F (λn.n) = F (λn.F (λx.n)) then 0 else min n. F (λx.n) 6= n

I believe there are even total Kleene computable functionals in S

not definable by any left-well-founded NSP.

Conceptually, this sheds some light on the nature of Kleene

computability: ‘demand-driven’, not ‘supply-driven’. However,

the WF- and LWF- submodels seem to represent natural ‘sub-

Kleene’ computability notions. More to explore here!

26

Conclusions

The NSP model may seem rather ‘syntactic’ for some tastes.

But it does what we want denotational models to do:

• Raises the level of abstraction of proofs, by comparison with

reasoning based directly on operational semantics.

• Provides mathematical structure which gives us new leverage

on properties of programs.

Though closely related to game models, NSPs appear to offer

their own distinctive slant on PCF.

Furthermore, NSPs convincingly capture the notion of ‘algo-

rithm’ common to both PCF and Kleene computability.

I expect more applications to follow!

27

