
An intrinsic treatment of ubiquity phenomena

in higher-order computability models

(Part I, draft version)

John Longley

April 19, 2017

Abstract

We introduce some simple conditions on typed partial combinatory algebras (viewed
as models of higher-order computability) which suffice for an axiomatic development of
some non-trivial computability theory, including various forms of the Kreisel-Lacombe-
Shoenfield theorem, along with the author’s earlier ‘ubiquity’ theorems which say that
a wide range of computability models all give rise to the same ‘hereditarily total’ func-
tionals. This results in a cleaner, more ‘intrinsic’ formulation of the latter theorems,
which we are moreover able to generalize to cover certain computability models of
a non-deterministic character. Within our axiomatic framework, we also investigate
extensions of the ubiquity results to a much wider class of types, arising from simple
types via subset and quotient constructions. This enables us to cover many types of
interest that arise naturally in mathematical practice (e.g. in real or complex analysis),
and establishes the existence of robust computability notions at such types.

In the present Part I, we introduce our axioms and the conceptual framework, and
carry through the required proofs for first- and second-order types. The focus here is
on the Kreisel-Lacombe-Shoenfield theorem, which we adapt to our axiomatic setting
in various ways. In Part II, we will extend our results to type 3 and above, using the
construction of Normann which we exploited in our earlier work on ubiquity.

1 Introduction and motivations

This paper makes some contributions to the general theory of typed partial combinatory
algebras (TPCAs), viewed as models of higher-order computability as in [16, 14, 15]. In
particular, we offer some new perspectives on the ‘ubiquity’ results of [14], where we showed
that a wide range of TPCAs, which may differ considerably in the ‘computable’ partial
operations of simple type that they support, nevertheless all agree on the class of hereditarily
extensional total functionals over N that they give rise to. More specifically, it was shown in
[14] that a large class of full continuous models all give rise to the Kleene-Kreisel Continuous
Functionals, and a large class of effective models all give rise to the Hereditarily Effective
Operations.

The contributions of the present paper (and its intended sequel) are of two kinds. Firstly,
we identify a set of axioms on TPCAs which allows us to treat the abovementioned results

1

(and others) as part of the ‘intrinsic’ theory of a given TPCA A, in contrast to the more
‘extrinsic’ approach taken in [14]. Secondly, we show that the ubiquity phenomenon —
that is, the agreement of widely differing computability models on certain classes of total
functionals — typically extends to a much larger repertoire of types, including many subset
and quotient types such as appear frequently in ordinary mathematical practice. We discuss
these two contributions in turn.

1.1 An axiomatic basis

As portrayed in [16], the theory of higher-order computability consists of some general theory
applicable to TPCAs (or more specifically to λ-algebras), alongside more specialized results
pertaining to particular models or computability notions. As a broad assessment of the
present state of the subject, it would seem fair to say that the general theory mostly offers a
organizing framework and a uniform treatment of some of the basic material, whereas most
of the ‘deep theorems’ in the area concern the structure of individual models. A significant
exception is provided by the ubiquity results of [14], which demonstrate the possibility of
proving highly non-trivial theorems at a general level, thus dealing with a whole class of
models in a single swoop.

In order to obtain non-trivial general results of this kind, it appears that one needs
some stronger hypothesis than simply the axioms for a TPCA A endowed with a certain
level of computational machinery. In [14], these additional hypotheses took the form of
a requirement that A admitted a well-behaved simulation in some other well understood
TPCA: specifically, we called A a continuous TPCA if it admitted a well-behaved simulation
in Kleene’s K2, and an effective TPCA if it admitted a good simulation in K1. It was
shown that the existence of a suitable simulation was sufficient to allow certain well-known
‘continuity’ properties of K2 or K1 to be transferred to A, leading to the proofs of the
ubiquity theorems.

Whilst the possibility of such general theorems was encouraging in principle, their formu-
lation in terms of simulations was somewhat cumbersome and not entirely clean. Moreover,
the proofs were somewhat complicated by the fact that rather than working simply with
properties of a model A in itself, we were forced to work with a simulation in another model,
so that two distinct computational ‘tiers’ had to be kept in play. (Actually, since the results
in question concerned the simulation of yet another type structure within A, there were
in practice three tiers involved.) It is therefore reasonable to ask whether a cleaner, more
axiomatic approach is possible: can we identify some key properties of A itself which are
implied by the existence of a certain kind of simulation, and which in turn suffice as a basis
for the proofs of the ubiquity theorems?

One of the main contributions of the present work is the identification of a selection of
relatively simple and clean axioms on a model A which, in various combinations, allow for the
development of the main results of [14] (and further extensions of these), in conjunction with
various forms of the Kreisel-Lacombe-Shoenfield theorem, as part of the ‘intrinsic theory’
of A (in other words, without reference to a simulation in some other model or any other
structure external to A). Specifically, we shall introduce five main axioms, which we call
Continuity, Enumeration, Normalization, Collection and Restriction (some of these come in
more than one flavour).

Although the particular selection of axioms adopted here is to some extent engineered

2

to support the specific proofs we have in mind, our longer term goal is the identification of
a more general-purpose set of axioms that can serve as the basis for the clean mathematical
development of a substantial body of general theory, redressing the imbalance we hinted at
above. It is therefore encouraging that our axioms show signs of convergence with other
conditions that have emerged as useful in our work elsewhere (see e.g. [16, Section 7.1]).
There are also reminiscences of axioms previously considered, e.g. in synthetic domain theory
[11] and synthetic computability theory [2], although the spirit of our present work is rather
different (for instance, we do not here consider our datatypes as ‘sets’ within an appropriate
topos).1

Whilst our objective is to render the use of simulations formally unnecessary, it is worth
noting that some of our axioms can be seen as inspired by the typical scenario of a model A
equipped with a simulation in K2 or K1. That is, we ask ourselves: if A did admit such a
simulation, what traces of this fact would be discernible within A itself? This is perhaps a
helpful light in which to view our axioms for Continuity and Enumeration, and even more
so our Collection Axiom, a more novel condition which was specifically suggested to us
by this way of thinking. (The relationships between our axioms and the more extrinsic,
simulation-based view will be spelt out in Section 2.7.)

Having freed ourselves from the need to postulate a K2- or K1-simulation, our axiomatic
development of the theory is in principle more general than before — although we do not see
this as a major selling-point, since as far as we are aware, all particular models of interest
that satisfy our new axioms also admit a simulation satisfying the conditions in [14]. In one
respect, however, we make a genuine advance: we show how to generalize our treatment to
embrace models of a ‘non-deterministic’ flavour, addressing a gap noted in [14]. (Indeed, the
way forward here has perhaps become easier to see now that simulations has been removed
from the picture.) The appropriate generalization, which involves non-deterministic variants
of the Continuity and Enumeration Axioms, will be presented in Section 6.

One curious point that deserves mention is that not all of our axioms express properties
that are stable under simulation equivalence of TPCAs (see [16, Section 3.3]) — in other
words, they do not all manifest themselves as categorical properties ofMod(A), the category
of modest sets over A. On the one hand, one could argue that this is not a serious problem:
since the conclusions we aim for are indeed properties ofMod(A), all that really matters is
that some model A′ equivalent to A satisfies our axioms. On the other hand, one might see
this non-robustness of our axioms as an indication that we have not yet put our finger on
the essential properties that really explain the phenomena in question. Against this latter
point, however, there is some experience to suggest that whilst Mod(A) may be argued to
embody what is essential about A from the perspective of realizability, a finer-grained view
is desirable if we wish to consider A from the perspective of computability as we do here (see
[5] and the discussion in [15]). Clearly, such questions deserve further consideration, but
our present position is that whilst we are at the ‘fieldwork stage’ in gathering candidates
for axioms and evidence for their value, we should not be constrained by the dictates of one
particular categorical perspective on the nature of TPCAs.

In the present Part I, our emphasis is on setting up the framework and introducing the

1Our general enterprise of trying to develop portions of computability theory on an axiomatic footing
may also recall earlier work in generalized or abstract computability theories, as in Kreisel [12], Moschovakis
[17], Fenstad [8]. However, there appears to be little substantial connection between these earlier theories
and our present endeavour, which is specifically addressed to a higher-order setting.

3

axioms, which we then use to prove ubiquity-style results at type level 2: this amounts
to showing how various forms of the classical Kreisel-Lacombe-Shoenfield argument [13]
can be carried over to our general setting. Mathematically this corresponds only to a tiny
fragment of the results of [14]: the real substance of the ubiquity theorems, which depends
on an ingenious construction due to Normann [18], only kicks in at type level 3. Nonetheless,
the situation at type 2 presents a self-contained and already quite rich story that illustrates
the potential of our axiomatic framework. It is also interesting to note that this portion of
the theory requires only relatively weak computational machinery: at type 2 it is enough
that A supports iteration, whereas at higher types a more general form of recursion is
necessary. The task of carrying through the proofs for type 3 and above will be left for
Part II.

1.2 Subset and quotient types

We now turn our attention to the ways in which our results go beyond those of [14].
We may begin by noting the fundamental role of Church’s simple theory of types [4],

not only as providing the basic infrastructure for our theory of TPCAs and indeed for many
simply typed programming languages, but also as a possible setting for the foundation
of mathematics. It is well known, for example, that much of ordinary number theory
can be developed within first-order arithmetic (with just a single type for the natural
numbers), whilst much of the theory of real and complex numbers can be formulated within
second-order arithmetic (where one also has a type for functions on the natural numbers).
Extending this to all finite type levels, we obtain higher-order arithmetic (typified by the
systems PAω and HAω); and it is has frequently been asserted that this system, and even
the first three or four levels of it, is sufficient as a foundation for the bulk of traditional
mathematics. Indeed, a foundational framework of just this kind is employed in the HOL
theorem proving system and its relatives [10]; in a somewhat more constructive context,
the idea that a finite type structure over N provides a sufficiently rich universe for much of
mathematical practice is also a theme of Feferman’s work (e.g. [7]).

In practice, however, a typical mathematical development will use not just the plain
simple types over N, but a variety of subset and quotient types derived from these: the
classical constructions of the rationals and the Cauchy or Dedekind reals provide a case in
point. Indeed, derived types of this kind are a staple of the HOL system, where a mechanism
for forming subset types is provided as a primitive, and a quotient type may be defined as a
certain subtype of a powerset type. In the context of HOL, of course, this is really a matter
of practical convenience rather than strict logical necessity: for instance, any function whose
domain is a subset type σ ⊆ τ could in principle be adequately represented by a function on
τ , since in classical logic there is no problem in extending a function on a subset of τ to one
on the whole of τ . However, the situation is quite different if our intention is to model some
constructive or semi-constructive system via some more restricted universe of continuous or
even computable objects. In some situations, the existence of suitable extensions may be
guaranteed by some explicit extension theorem or injectivity property, but there are also
many naturally arising situations in which no such extension is available. We mention here
a small selection of ‘mainstream’ examples:

1. The minimization or µ operator, defined on functions f : N → N with f 6= Λn.0 and

4

yielding the smallest n for which f(n) 6= 0, is (Kleene) computable, but does not
extend to a computable or even a continuous function on the whole of N→ N.

2. The computable function x 7→ 1/x : R−{0} → R does not extend computably or even
continuously to the whole of R.

3. Let L be the space of closed curves in the plane (i.e. continuous functions from the
unit circle S1 to the plane R2), and let L′ be the set of all γ ∈ L that avoid the point
o = (0, 0) (i.e. such that o 6∈ Im γ). Then there is a well-defined function w : L′ → N
which returns the winding number of a given curve γ about o, and this function is
even computable in an appropriate sense. However, w does not extend to a continuous
function L→ N for any reasonable topology on L, since we may smoothly interpolate
between a curve with winding number 0 and one with winding number 1. Indeed, since
the transition between 0 and 1 will typically happen abruptly as the curve passes over
the point o, we are unable to give a continuous extension of w even if we replace the
codomain N by R.

Similar situations will arise in connection with numerous other topological invariants.

4. Let D denote the closed unit disc in the complex plane, and δ its boundary. Let F
denote the set of real-differentiable functions D → C that are non-zero on γ, and let
F ′ denote the set of analytic functions in F . Then there is a well-defined function
] : F ′ → N where](f) is the number of zeros of f within D (counting zeros by their
multiplicity). Indeed, a standard result of complex analysis says that

](f) =
1

2πi

∫
δ

f ′

f
,

which in turn shows that] is computable in an appropriate sense. However, an inter-
polation argument again shows that] cannot be continuously extended to a function
F → N. (In this case, we can obtain a continuous extension if we replace the codomain
by R — indeed, the integral formula above gives one way to do this.)

There are also many examples arising from computability theory itself: for instance, if
H ⊆ N is the halting set, the ‘halting time’ function H → N has no computable extension
to the whole of N.

The essential point here is that if we are given some universe of ‘continuous’ or ‘com-
putable’ functionals only at the simple types over N, then there is no way, without further
conditions, to extrapolate from this to determine what the corresponding functions on all
subsets of interest ought to be. There is therefore the danger that we may miss out on some
important functions if we commit ourselves to working with total functionals of simple type.

We may now make the connection with our earlier discussion of TPCAs and ubiquity
theorems. Regarding a TPCA A as providing some class of ‘computable’ entities of higher
type, the total type structure over N obtained from A (equivalently the type structure over
the evident object N withinMod(A)) can be seen as the class of ‘A-computable’ functionals
of simple type, and the force of the ubiquity phenomenon is that this class is remarkably
robust with respect to the choice of A. However, in the light of the above, we now see that
this total type structure might fail to capture important aspects of what is ‘A-computable’

5

in the realm of subset and quotient types. It is therefore natural to ask what may be said
about the A-computable functionals at such types (which are, after all, present as objects
ofMod(A)), and in particular whether a similar ubiquity phenomenon holds for all or some
of these new types.

Our present work breaks some new ground in this area. At the heart of our investigation
is a concept of the spectrum of a TPCA A with numerals. This is in effect just the infinite
tree representing the generation of a class of modest sets (starting from N) via just two
operations: forming exponentials − ⇒ N , and taking arbitrary regular subobjects. The
first of these, by itself, would lead us to the familiar class of pure types, and it is well
known that these are sufficient to encode the whole universe of simple types (see e.g. [16,
Section 4.2]). In a somewhat similar way, we will see in Section 7 that the spectrum of
A determines the entire full subcategory of Mod(A) generated from N by closing under
finite products, exponentials, regular subobjects and quotients (we shall call this category
the envelope of the spectrum). The idea here is to break free from the shackles of simple
type structures and instead to work with a richer repertoire of types better suited to the
demands of mathematical practice.

By studying various parts of the spectrum of A, we are able to learn something about
the corresponding portions of the envelope that they give rise to. Specifically, we will show
under various combinations of axioms on A that some substantial and interesting parts of
the spectrum of A are regular, meaning in effect that they are determined purely by the set
∆ of functions N→ N present in A. (As we shall see, exactly which parts of the spectrum
can be proved regular will depend on the particular combination of axioms adopted.) We
thus obtain some robust classes of ‘∆-computable’ functions for these parts of the spectrum,
and hence for the portions of the envelope that they encode.

This in turn promises to yield robust computability notions for many types arising in
mathematical practice, e.g. for spaces of continuous or analytic functions on a specified
domain, or for spaces of operators acting on such functions. As mentioned above, in the
present Part I we have only carried through this programme up to second-order types, and
at this level the fruits of our labours are relatively modest (see Section 7.1). However, we
fully expect that once our results have been extended in Part II to higher types, a wealth
of interesting and non-trivial applications of this kind will be forthcoming, and the present
paper paves the way for this.

1.3 Content and outline of paper

In Section 2 we present our axiomatic setup, establishing the basic notion of a TPCA
with iteration, introducing in turn our axioms for Continuity, Enumeration, Normalization,
Collection and Restriction (and their variants), and indicating the range of models that these
axioms cover. We also show which of these axioms hold as consequences of the existence
of a well-behaved simulation in K2 or K1. In Section 3, as a gentle warm-up, we show
from the Enumeration Axiom alone that the set ∆ of A-representable functions N → N
completely determines the 1-spectrum of A, that is, the types of level 1 within the spectrum
of A. The core of the paper is in Sections 4 and 5, where we investigate (under various
axiom combinations) how much of the 2-spectrum is likewise determined by ∆. Section 4
considers this problem for types of the form R ⇒ N where R is a subset of N ⇒ N . The
key mathematical ingredient here is the original proof of the Kreisel-Lacombe-Shoenfield

6

theorem ([13]; also [16, Section 9.2]) which we are able to adapt to our axiomatic setting
in two slightly different ways. Section 5 extends the investigation to types R ⇒ N where
R ⊆ Q→ N and Q ⊆ N ; here we present some positive results and some counterexamples.

In Section 6, we show that a small adjustment to our framework allows to embrace many
models of a non-deterministic flavour, and that a version of the KLS argument still goes
through in this setting. As mentioned above, this represents a genuine advance over [14]
where we were unable to treat such models. In Section 7, we introduce a general concept
of abstract spectrum, and show that any such spectrum gives rise to a concrete cartesian
closed category endowed with all possible ‘subset’ and ‘quotient’ types; in the concrete case
of the spectrum of a model A this envelope coincides with a full subcategory ofMod(A). We
also give a simple illustration of the intended use of this concept, addressing the concept
of computability for functions on subsets of Rn. Finally, in Section 8, we mention some
outstanding questions and the prospects for further work, including the extensions to higher
types which we will undertake in Part II.

2 The axiomatic setup

We here introduce the structures we will be dealing with, along with the axioms which, in
various combinations, will allow us to derive the results of this paper.

In Section 2.1 we recall some basic material on TPCAs from [16, Chapter 3], and es-
tablish a notion of ‘TPCA with iteration’ as a suitable baseline for our investigations. In
Sections 2.2 to 2.6 we introduce, in turn, our axioms for Continuity, Enumeration, Nor-
malization, Collection and Restriction (and their variants), informally discussing the role of
each axiom within our theory and the range of models to which it applies. In Section 2.7 we
consider which of our axioms follow from the existence of a certain kind of simulation in K2

or K1; this clarifies the relationship between our present work and the ‘extrinsic’ approach
of [14].

As in [16], we adopt the following notational conventions in connection with potentially
non-denoting expressions: = denotes strict equality (the values of both sides are defined and
they are equal); ' denotes Kleene equality (if either side has a defined value then so does
the other and they are equal); and ↓, ↑ denote definedness and undefinedness respectively.

2.1 TPCAs, numerals and iteration

We first define the class of ‘models of generalized computation’ that we will be working
with. We refer the reader to [16, Chapter 3] for a more detailed exposition of the basic
theory and for numerous examples.

Throughout this paper, we shall work with the set of simple types σ generated syntac-
tically by the grammar

σ ::= N | σ → σ ,

where N is the type we shall use for representing the natural numbers. (As usual, we treat
→ as right-associative.) We write k for the pure type of level k: 0 = N, and k + 1 = k → N.
We also write σr → τ for the type defined by σ0 → τ = τ and σr+1 → τ = σ → (σr → τ);
this should cause no confusion as we are not including product types in our system.

The following specializes Definition 3.1.16 of [16] to this setting:

7

Definition 1 (i) A partial applicative structure A consists of an inhabited set A(σ) for each
type σ, and for each pair of types σ, τ a partial function ·σ→τ : A(σ → τ) × A(σ) ⇀ A(τ)
(called application, and treated as left-associative).

(ii) A partial applicative structure A is a typed partial combinatory algebra, or TPCA,
if for all types σ, τ, υ there exist elements

k ∈ A(σ → τ → σ) , s ∈ A((σ → τ → υ)→ (σ → τ)→ σ → υ)

such that the following hold for all a, b, c, f, g of suitable types:

k · a · b = a , s · f · g ↓ , s · f · g · a ' (f · a) · (g · a) .

The motivation for part (ii) of the above definition is that it is equivalent to a certain
combinatory completeness property for partial applicative structures, which informally says
that any function representable by means of a formal expression in the language of the
applicative structure is also representable by an element within the structure itself. To make
this precise, we consider formal (applicative) expressions over A, built up syntactically via
formal application from typed variables xσ and constants aτ for each a ∈ A(τ), subject to
the obvious typing constraints. We shall represent application within formal expressions by
simple (left-associative) juxtaposition of sub-expressions, in contrast to semantic application
for actual elements of A which will be denoted by ‘·’. Given any formal expression e of type
σ and a valuation ν assigning to each variable appearing in e an element of A of the
appropriate type, we write [e]ν ∈ A(σ) for the value of e with respect to ν defined in the
obvious way; note that [e]ν will be undefined if some of the applications prescribed by e are
undefined in A with respect to ν.

In its general form, combinatory completeness may be stated as follows: for any formal
expression e whose variables are among x, y0, . . . , yr−1, we may construct a certain formal
expression d with variables among y0, . . . , yr−1 such that for any valuation ν for y0, . . . , yr−1

and any value a for x, we have [d]ν ↓ and [d]ν · a ' [e]ν,x 7→a. We denote this expression d
using the meta-notation (λ∗x.e) in order to indicate its significance: note that [(λ∗x.e)a]ν '
[e[x 7→ a]]ν for any ν. We shall in practice assume a certain fluency in the use of this principle
for ‘programming in TPCAs’.

We are interested in TPCAs that admit a good representation of natural numbers. For
the present paper, we shall only require quite weak properties of our representation:

Definition 2 A TPCA with weak numerals is a TPCA A equipped with a choice of distinct
elements 0̂, 1̂, 2̂, . . . ∈ A(N) such that the following hold:

• There exists suc ∈ A(N→ N) such that suc · n̂ = n̂+ 1 for all n ∈ N.

• There exists rec ∈ A(N→ (N2 → N)→ N→ N) such that for a ∈ A(N), f ∈ A(N2 → N)
and n ∈ N we have

rec · a · f · 0̂ = a , rec · a · f · n̂+ 1 ' f · n̂ · (rec · a · f · n̂) .

For our present purposes, we take the choice of numerals to be part of the data for a model,
and write N ⊆ A(N) for the set of numerals.

8

Although A(N) may contain other elements besides numerals, we shall typically be in-
terested in whether or not a computation of type N yields a numerical result. Accordingly,
we supplement our existing notation and terminology as follows. If e is an expression of
type N, we shall say that e converges (and write e ⇓) if the value of e is defined as in within
N ; likewise, e diverges (e ⇑) if the value of e is either undefined or outside N . We will also
write e ∼= e′ to mean that e, e′ either both diverge or converge to the same numeral. (Note
that this is quite different in spirit from the treatment of convergence and divergence via
dominances as in synthetic domain theory [11].)

As we shall see in Proposition 5, all our models of interest will admit diverging computa-
tions. Note, however, that there are many natural models in which evaluation of expressions
is total (and diverging expressions will typically take a special value ⊥), and many others
in which N is the whole of A(N) (so that diverging expressions will never have a defined
value). Our setup is designed to handle both of these situations (and others besides) in a
uniform way.

In contrast to the usual definition of ‘TPCA with numerals’ (see [16, Section 3.3.4]) we
do not require a recursor recσ ∈ A(σ → (N→ σ → σ)→ N→ σ) for every type σ, but only
for σ = N. Although most naturally arising TPCAs with weak numerals also have numerals
in the stronger sense, an important example of one that does not is the TPCA SP0,lbd of
left-bounded closed sequential procedures, which can be seen as embodying Kleene’s concept
of µ-recursiveness (see [16, Section 6.3.3]).

We assume from now on that A is a TPCA with weak numerals, and allow ourselves
to write x : σ in place of x ∈ A(σ). Clearly, every primitive recursive function Nr → N is
representable by an element of A. We now take 〈· · ·〉 : N∗ → N to be some standard primitive
recursive encoding of finite sequences of natural numbers, and shall make incessant use of
the fact that the length, cons, head and tail operations for this encoding are A-representable.
We take (−)i to be an operation that extracts the element at position i from a coded list
when this exists, primitive recursively uniformly in i: thus (〈x0, . . . , xl−1〉)i = xi when i < l.

We also note that A contains an element ifeq : N4 → N such that for all m,n ∈ N and
a, b ∈ A(N) we have

ifeq · m̂ · n̂ · a · b =

{
a if m = n
b if m 6= n .

However, a corresponding operator ifeqσ : N2 → σ2 → σ is not available for arbitrary σ.
Finally, we may encode the disjoint sum N+N as N using e.g. the left and right injections

inl(n) = 2n, inr(n) = 2n+ 1, noting that these are representable in A, and that there is an
operator case : 1→ 1→ 1 satisfying

case · f · g · înl(n) ' f · n̂ , case · f · g · înr(n) ' g · n̂ .

We make use of this encoding in the next definition:

Definition 3 Let A be a TPCA with weak numerals. We say A has (ground-type) iteration
if it contains an element iter : 1→ 1 such that:

iter · f · n̂ = m̂ if f · n̂ = ̂inl(m)

iter · f · n̂ ' iter · f · m̂ if f · n̂ = ̂inr(m) .

9

The operation iter in effect gives us the power of while-loops manipulating ground type
data. It is an easy exercise in programming in TPCAs to show that the existence of such
an element iter is equivalent to the existence of a minimization or µ operator min : 2

such that whenever g : 1 and m satisfy g · n̂ = 0̂ for all n < r and g · r̂ = m̂+ 1, we
have min · g = r̂.2 Although there has been a tradition in computability theory of using
minimization as a primitive, we consider the notion of iteration to be more fundamental,
and we are also eager to express our required levels of computational power in terms of
familiar programming language constructs. It is a pleasing fact, for instance, that ground-
type iteration will suffice for our analysis at type level 2, whereas at higher types a more
powerful recursion operator will be required. The model SP0,lbd mentioned above is an
example of a TPCA with ground-type iteration but without recursion even at the lowest
useful level.

Relative to a choice of model A, we shall write NN for the set of g ∈ A(1) such that
g · a ∈ N for every a ∈ N , and ∆A, or just ∆, for the set of mathematical functions N→ N
representable by elements of NN .

If A has iteration, it is easy to see that ∆A contains every computable function N→ N,
and indeed is closed under Turing computation: if f0, . . . , fr−1 ∈ ∆A and g : N → N is
Turing computable relative to f0, . . . , fr−1 then also g ∈ ∆A. The set ∆A will play a key
role as an index of the computational power available in A: indeed, we shall see that under
certain conditions, the class of A-representable functions at many other types is completely
determined by ∆A.

The class of TPCAs with weak numerals and iteration is quite wide: it embraces term
models for a wide range of simply-typed programming languages (such as Plotkin’s PCF and
extensions thereof), complete partial order and lattice models such as the Scott, stable and
strongly stable models, many ‘intensional’ models such as those arising in game semantics
[1], and many ‘relational’ models such as the multiset model of [3]. Moreover, several of
these models are often considered in both a ‘full’ flavour (with ∆ = NN) and an ‘effective’
one (with ∆ consisting of just the computable functions on N). However, one may also
construct models in which ∆ is (for instance) the set of hyperarithmetic functions, or those
computable in some specific oracle h : N→ N.

Furthermore, our framework also embraces all untyped PCAs. An untyped PCA is just
a single set U equipped with a partial application · : U × U ⇀ U , such that there exist
k, s ∈ U satisfying

k · a · b = a , s · a · b ↓ , s · a · b · c ' (a · c) · (b · c)

for all a, b, c ∈ U . We may turn any such U into a TPCA A in our present sense simply by
taking Aσ = U for every σ, and ·στ = · for every σ, τ . It is well known that any untyped PCA
automatically possesses numerals, iteration and indeed much more (see [16, Section 3.3]).
Important examples of untyped PCAs include: Kleene’s first and second models K1 and
K2; the Scott graph model Pω and similar relational models; the van Oosten model B
for untyped sequential algorithms and similar untyped game models; and term models for
various untyped λ-calculi.

2This is slightly stronger than the definition of minimization in [16, Section 3.3.5], because we do not
require that g · n̂ ⇓ when n ≥ r. We are also here adopting the convention that min searches for the first
non-zero value rather than the first zero one, though this is inessential.

10

For the remainder of the paper, a standard model with iteration will mean a TPCA with
weak numerals and ground-type iteration. This will provide our baseline notion of ‘model
of computation’ on which we shall build by adopting several more specialized axioms. We
now consider these additional axioms in turn, roughly in order of their significance.

2.2 Continuity

Our first axiom — and the most fundamental to our approach — will capture the idea that
within a world of ‘finitary’ computation it is impossible to distinguish the function Λj.0
from all other functions. One possible intuition for this, applicable to many models, is that
any test that succeeds for f = Λj.0 can only ‘look at’ the value of f on finitely many j, and
must therefore also succeed on other functions that take the value 0 on these j. Another
possible intuition, more appropriate in certain situations, is that being able to distinguish
an infinite sequence of 0s from a sequence that at some point yields 1 would be tantamount
to solving the halting problem.

We can capture this idea as follows. Let ⊥,> ⊆ A(1) denote the sets

⊥ = {α | ∀j ∈ N. α · ĵ = 0̂ } ,
> = {α | ∃t. (∀j < t. α · ĵ = 0̂) ∧ α · t̂ = 1̂ } .

Definition 4 (Continuity) By the Continuity Axiom for A we shall mean the statement:
For any F ∈ A(2), if F · α = n̂ for all α ∈ ⊥, then F · α = n̂ for some α ∈ >.

The Continuity Axiom is clearly satisfied by a wide range of models that have some
notion of continuity built into their definition: for instance, by CPO models such as the
Scott, stable and strongly stable models. It is also easily seen to be satisfied by models
based on some evidently finitary concept of computation, such as typical game models for
simply-typed languages. Finally, it is satisfied in typical ‘effective’ models thanks to the
undecidability of the halting problem; this will be explained more fully in Section 2.7.

Of course, there are models that violate the Continuity Axiom because they contain
genuinely discontinuous second-order functionals such as ∃N; the results we have in mind
cannot be expected to hold for these models. (The dichotomy between ‘continuous’ and
‘discontinuous’ models is explored in detail in [16, Section 5.3].) However, there are other,
intuitively ‘continuous’ models that do not satisfy the axiom in the above form. Perhaps
most significantly, there are order-theoretic models in which distinct numerals n̂, m̂ may
have an upper bound n̂ t m̂: we can think of such an element as representing some kind of
non-deterministic computation that might yield either m or n as its result. Examples of such
models include Scott’s Pω and other lattice-theoretic models, as well as syntactic models
for various non-deterministic languages; these models do not satisfy our axiom, because it
is easy to construct an operation F such that F (α) = n̂ whenever α ∈ ⊥, but F (α) = n̂t m̂
whenever α ∈ >. In Section 6 we shall present a slightly modified version of our framework
including an alternative Continuity Axiom that allows us to develop much of our theory in
typical non-deterministic settings.

A further caveat is that besides the idea of continuity, our axiom also builds in the idea
that each n̂ is in some way a ‘compact’ element of A(N). To illustrate this, consider the
model Λ0/H∗ of closed untyped λ-terms modulo Nakajima tree equality. This is a CPO

11

model, and each element n̂ is non-compact in the sense that it is a supremum of a chain of
elements strictly below it. It is thus possible to construct an element F such that F ·α = n̂
for all α ∈ ⊥, but F · α is strictly below n̂ for all α ∈ >. A somewhat similar problem also
arises for Kleene’s second model K2, however, in this case, the refinements we shall introduce
in Section 6 will allow this model to be accommodated naturally within our theory.

The following notation will be useful in connection with the Continuity Axiom. Let
t : > ∪⊥ → N∞ be defined by

t(α) = min j. f(α) > 0

so that t(α) < ∞ for all α ∈ >, and t(α) = ∞ for all α ∈ ⊥. Intuitively, if we think of α
as a process that emits zeros for as long as it is ‘running’, then t(α) gives the ‘halting time’
for α. For α ∈ >, the above formula gives us a way of actually computing t(α) within A:

we write t̂ ∈ A(2) for some element such that α ∈ > implies t̂ · α = t̂(α).
We conclude this subsection with a small but important consequence of the Continuity

Axiom. (A much more substantial consequence of Continuity alone will be presented as
Theorem 36.)

Proposition 5 Divergent computations exist: there exists div : 1 with div · 0̂ ⇑.

Proof Suppose there are no F : σ → N and f : σ with F ·f ⇑. Then min ·f has a numeral
value for every f ∈ NN . Now consider H = λ∗f. if f(min f) = 0̂ then 0̂ else 1̂. Then for
all f ∈ NN we have H · f = 0̂ if f ∈ >, and H · f = 1̂ if f ∈ ⊥, which contradicts the
Continuity Axiom.

Once we have found any F, f with F · f ⇑, we may take div = λ∗x. Ff = s(kF)(kf). �

2.3 Enumeration

Our second axiom can be seen as adapting a familiar fact from basic computability theory:
namely, that if T ⊆ N is the range of a partial computable function and is inhabited, then
T is also the range of a total computable function. To articulate this in our general setting,
the following notions will be helpful:

Definition 6 (i) Given any f ∈ A(1), the proper range of f is the set

{m ∈ N | ∃n ∈ N. f · n̂ = m̂} .

(ii) For any g : N→ N, the offset range of g is the set

{m ∈ N | ∃n ∈ N. g(n) = m+ 1} .

The significance of the offset range is simply that it allows us to formulate the property
of interest without treating the empty set as an exceptional case, allowing for a more con-
structive development of our theory. Readers with no scruples regarding classical reasoning
may as well work with the ordinary range of g rather than the offset one.

A mild variant of the abovementioned range property says that for any partial com-
putable f : N ⇀ N we can computably enumerate all pairs 〈n, f(n)〉 where f(n) ↓. We
adapt this to the setting of a general model A as follows.

12

Definition 7 (Enumeration) By the Enumeration Axiom for A we shall mean the state-
ment: For every f ∈ A(1), there exists g ∈ ∆A whose offset range is the set of 〈n,m〉 such
that f · n̂ = m̂. In other words, for all f there exists g such that for all n,m ∈ N we have

∃i. g(i) = 〈n,m〉+ 1 iff f · n̂ = m̂ .

The Enumeration Axiom holds in all natural models of which we are aware. For instance,
in any model in which ∆ is the full set NN, the axiom holds trivially; in models of an ‘effective’
character it holds by virtue of the familiar interleaving argument from basic computability
theory. Further motivation for the axiom may be gleaned from the easy proof (in Section 3
below) that Enumeration by itself suffices to characterize the 1-spectrum of A completely
in terms of ∆A.

One might also consider a more ‘uniform’ version of Enumeration which asserts that the
passage from f to g can itself be effected within A via some Ψ ∈ A(1→ 1); we may call this
the Computable Enumeration Axiom. However, we do not adopt this as a basic axiom since
relatively few models of interest satisfy it. Those that do are typically highly intensional
models that support ‘parallel computations via interleaving’, such as Kleene’s K1 and K2,
or models for languages with timeout: see e.g. [16, Section 12.2].3

It is also worth noting that the combination of Continuity, P-Normalizability and Com-
putable Enumeration is inconsistent (the proof of this offers an interesting exercise). On the
other hand, Continuity, T-Normalizability and Computable Enumeration are all satisfied
by Kleene’s K2.

It may come as a surprise that something as flagrantly non-uniform as our Enumeration
Axiom serves our purposes well. However, it is essential that some such non-uniformity be
present in our axioms, since the main results we are hoping to prove (e.g. every representable
operation of a certain type has a ‘graph’) typically do not themselves hold computably
within A.4 One useful intuition is that our axioms trying to capture aspects of what would
be true if it admitted, for instance, a well-behaved simulation in K1. As discussed in the
Introduction, we are asking what trace of the existence of such a simulation would visible
within A itself, and the Enumeration Axiom can certainly be seen as such a property. One
may thus informally think of the passage from f to g as being ‘secretly effective’ (at the level
of some putative K1-realization), though such effectivity is not typically manifest within A
itself.

2.4 Normalizability

The next pair of axioms represent pleasing properties that hold in some but not all models
of interest. We shall therefore be exploring both how far we can get without them, and
how much further we can get with them. Informally, these axioms say that within A we
may select a canonical choice of realizer for each representable function from N to N. We
shall present this principle in two flavours: a weaker one for total functions N → N and a
stronger one for partial functions N⇀ N.

3The Computable Enumeration Axiom is also trivially satisfied by models with a ‘full set-theoretic’
flavour such as Platek’s monotone model, but these models lie outside the intended scope of our investigation
and are ruled out by the Continuity Axiom below.

4Our Continuity Axiom also lacks this uniformity; however, it is an interesting exercise is to show that
Continuity plus Computable Enumeration would imply an A-computable version of Continuity.

13

Definition 8 (Normalizability) (i) A T-normalizer for A is an element norm : 1 → 1
such that

• for any g ∈ NN and n ∈ N we have norm · g · n = g · n,

• if g, g′ ∈ NN represent the same function N→ N, then norm · g = norm · g′.
(ii) A P-normalizer for A is an element norm : 1→ 1 such that

• for any g ∈ A(1) and n,m ∈ N , we have norm ·g ↓, and norm ·g ·n = m iff g ·n = m,

• if g, g′ ∈ A(1) and g(n) = m iff g′(n) = m for all n,m ∈ N , then norm ·g = norm ·g′.
(iii) By the T-Normalizability Axiom for A we shall mean the statement: A has a T-

normalizer. The P-Normalizability Axiom will be the statement: A has a P-normalizer.

Clearly any P-normalizer is a T-normalizer. T-Normalizability was one of the conditions
on continuous models used in [14], while the P-Normalizability axiom was employed in [16,
Section 7.1].

In many models, a P-normalizer is trivially available. As a typical example, in a domain-
theoretic model in which A(N) = N⊥ and A(1) is the set of monotone functions N⊥ → N⊥,
there will be two elements of A(1) representing the constant zero function N → N, but a
suitable element norm may be defined by

norm(g)(n) = g(n) , norm(g)(⊥) = ⊥ .

Likewise, in a typical game model, there will be two strategies for the constant zero function
— one that requests the value of its argument and one that does not — but a normalizing
strategy can be used to transform any strategy of type N → N into the one that requests
its argument.

Most models with a T-normalizer will naturally possess a P-normalizer as well, though
there are a few exceptions. Notably, Kleene’s second model K2 and the λ-term model Λ0/B
modulo Böhm tree equality both satisfy T-Normalizability but not P-Normalizability.

In general, a model will have a T-normalizer provided it is ‘not too fine-grained’: the
kinds of models that do not are highly intensional models such as Kleene’s first model K1

or the term model for PCF+timeout.

2.5 Collection

Our discussion of Enumeration introduced the idea of looking for consequences within A
itself of the existence of a well-behaved simulation in K1 (or similar), and our next axiom
represents a more radical application of this idea. Although its formulation is inspired by
‘effective’ models, it is in fact valid for all known models of interest.

To motivate the axiom, suppose that A were realizable over K1, and that moreover for
some type σ, the set Rσ ⊆ N of all K1-realizers for elements of A(σ) were c.e. (This is
indeed the case for practically all known effective models with the exception of Keff

2 .) It
may or may not be the case that the function N → A(σ) induced by an enumeration of
Rσ is representable within A itself, but in any case, the image of any map Φ ∈ A(σ → N)
will again be c.e. at the level of realizers. Assuming that the set of K1-realizers for n̂ is
semidecidable uniformly in n, it follows that the proper range of Φ is c.e. Abstracting out
this property, and generalizing to multi-argument functions, we obtain:

14

Definition 9 (Collection) By the Collection Axiom for A, we shall mean the statement:
For any types σ0, . . . , σr−1 and any Φ ∈ A(σ0 → · · · → σr−1 → N), there exists f ∈ A(1)
such that f �N has the same proper range as Φ (i.e. ran(f �N) ∩N = ran(Φ) ∩N).

To be more specific, the assertion that the above holds for some particular list of types
σ0, . . . , σr−1 may be referred to as the σ0, . . . , σr−1-Collection Axiom.

As already explained, Collection holds in most naturally occurring effective models (we
will spell out the above argument more formally in Section 2.7). However, it also holds
even in uncountable models A provided they contain a ‘dense’ effective submodel. Finally,
it holds even in the anomalous case of K2 and Keff

2 since it is easy to find a dense c.e. subset
of these models.

Together with Enumeration, Collection serves as a way of gathering together some com-
putably generated set of numerals into a computable listing within A. This will turn out
to be useful in settings where Normalization is not available and Enumeration alone is
not sufficient for the purpose. Although Collection and Enumeration will in practice be
used in conjunction, we keep the two axioms separate as they appear to represent distinct
conceptual ingredients.

We also mention the following stronger and more subtle axiom, which is not used within
the present paper but which we expect to play a role at higher types:

Definition 10 (Dependent Collection) By the Dependent Collection Axiom for A, we
shall mean the statement: For any Ψ ∈ A(N→ σ0 → · · · → σr−1 → N), there exists f ∈ A(1)
such that

1. for any ~x ∈ A(~σ) there exists n such that f · n ∼= Ψ · n̂ · ~x, and

2. for any n ∈ N there exists ~x ∈ A(~σ) with f · n ∼= Ψ · n̂ · ~x.

Again, this clearly holds in well-behaved effective models: focussing on the unary case,
if Rσ ⊆ N is as before, h ∈ A(1) represents a computable enumeration of Rσ and p : N→ N
is a computable function tracking Ψ, then λ∗n. p(n, h(n)) provides a suitable element f .
We therefore view Dependent Collection as a variant of Collection with a diagonal flavour.
However, it is unclear at present whether Dependent Collection holds in any (or most)
uncountable models of interest.

2.6 Restriction

Many functional programming languages include a ‘sequencing’ construct −;−, where the
meaning of M ;N is ‘evaluate M , discard the result, then evaluate N and return the result’.
The effect of this is that the evaluation of M ;N will succeed only if the evaluations of both
M and N succeed. The Restriction Axiom is a simple and natural one, saying simply that
such an operator is available in our model.

Definition 11 (Restriction) By the Restriction Axiom for A we will mean the statement:
A contains an (infix) restriction operator � : N2 → N with the properties that

a � b ⇓ iff a, b ∈ N , n̂ � m̂ = n̂ for all n,m ∈ N .

15

In the great majority of natural models, the existence of a restriction operator is com-
pletely trivial. However, in a few cases the axiom is surprisingly problematic: for instance,
in the untyped λ-term models Λ0/β or Λ0/B, it appears that restriction is not available.
The Restriction Axiom will be necessary for the development of our theory in the non-
normalizable case (Section 4.2), but we will see that it can be dispensed with in the presence
of T-Normalizability (Section 4.3), allowing models such as Λ0/B to be accounted for.

As a typical illustration of the use of restriction, suppose we require an element eqtest :
N2 → N with the property

eqtest n̂ a ⇓ iff a = n .

We can define such an element as follows:

eqtest = λ∗n.λ∗a. (if (eq na) then 0̂ else div 0̂) � a ,

where eq implements equality testing on numerals and div is as in Proposition 5. Note
that without the restriction to a, we could not guarantee that that the if-expression never
spuriously returns a numeral value on some non-numerals a.

Using a similar idea, we can now improve on the construction of Proposition 5 as follows:

Lemma 12 Assume A satisfies Continuity and Restriction. Then there is a element min ′ ∈
A(2) that satisfies the usual condition for minimization and an additional one:

1. If f · n̂ = 0̂ for all n < r and f · r̂ = m̂+ 1 for some m, then min ′ · f = r̂.

2. If f · n̂ = 0̂ for all n, then min ′ · f ⇑.

Proof Define min ′ = λ∗f. (if f(minf) > 0 then min f else div 0̂) � (min f). �

Corollary 13 Assume A satisfies Continuity and Restriction. Then any partial computable
f : N⇀ N is strongly representable in A: there exists f̂ ∈ A(1) such that f(n) = m implies

f̂ · n̂ = m̂, and f(n) ↑ implies f̂ · n̂ ⇑.

Proof Using the Kleene normal form theorem, take e such that f(n) = U(min y. T (e, n, y))

for each n. Take T̂ , Û ∈ A representing the primitive recursive functions T,U , and define

h = λ∗n. min ′(λ∗y. T̂ (ê, n, y)) ,

f̂ = λ∗n. (Û (hn)) � (hn)

with min ′ as in Lemma 12. �

Lemma 12 also yields the following key property:

Theorem 14 (Non-Invertibility) Assume A satisfies Continuity and Restriction.
(i) There is no element ¬ ∈ A(1→ 1) such that

α ∈ > ⇒ ¬ · α ∈ ⊥ , α ∈ ⊥ ⇒ ¬ · α ∈ > .

(ii) Let >0 = {f ∈ A(1) | f · 0̂ ⇓} and ⊥0 = {f ∈ A(1) | f · 0̂ ⇑}. Then there is no
element ¬0 mapping >0 into ⊥0 and vice versa.

16

Proof (i) The element min ′ from the previous lemma satisfies min ′ · α ⇓ if α ∈ > and
min ′ · α ⇑ if α ∈ ⊥. So if ¬ existed as above, then λα. 0̂ � (min ′(¬α)) would map all α ∈ ⊥
to 0̂ and would diverge for all α ∈ >, contradicting the Continuity Axiom.

(ii) Note that λ∗f.λ∗x.min ′ f maps > into >0 and ⊥ into ⊥0. So if ¬0 existed, then
λ∗f. 0̂ � (¬0 (λ∗x.min ′ f) 0̂) would map ⊥ to 0̂ and > to divergence, again contradicting
Continuity. �

The following consequence of part (ii) above is sometimes useful. If x, y ∈ A(σ), let us
write x � y if there exists F ∈ A(1 → σ) mapping all of ⊥0 to x and all of >0 to y. We
refer to � as the link relation; note that it is not in general a partial order. As we shall
see in Section 4.4, instances of the link relation arise quite naturally in the presence of the
P-Normalizability Axiom.

Lemma 15 Suppose x� y. If g · x = n̂, then g · y = n̂.

Proof Suppose F maps ⊥0 to x and >0 to y, and take eqtest as above. If g · x = n̂
but g · y 6= n̂, then clearly λ∗f.λ∗z. eqtest n̂ (g(F (f))) interchanges ⊥0 and >0, contrary to
Theorem 14(ii). �

Finally, for certain specialized purposes in Section 4.2, we shall need a more powerful
operator which allows the conjunction of a dynamically chosen list of restriction conditions:

Definition 16 (Iterated Restriction) By the Restriction Axiom for A we will mean the
statement: A contains an operator �� : N→ N→ (N→ N)→ N such that:

• a ��t̂ f ⇓ iff a ⇓ and f · i ⇓ for all i < t,

• in this case, a ��t̂ f = a.

Clearly Iterated Restriction implies Restriction, and all models we know that satisfy
Restriction also satisfy Iterated Restriction. However, to construct an iterated restrictor
from an ordinary one requires a slightly more powerful iteration principle than the operation
iter of Definition 3, since we potentially need to carry round a non-numeral as data in
addition to the loop counter. Since we have no other uses for this stronger kind of iteration,
it seems simplest to posit Iterated Restriction directly as a possible axiom.

As a sample application, in the presence of Iterated Restriction we can improve our
minimization operator yet further: there is now an element min ′′ such that for any f and

r ∈ N , we have min ′′ · f = r̂ if and only if f · n̂ = 0̂ for all n < r and f · r̂ = m̂+ 1 for some
m (so that for instance min ′′ · f ⇑ if f · 0̂ ⇑).

2.7 Relationship to extrinsic conditions involving simulations

Before we proceed to develop our mathematical theory on the basis of the above axioms,
we pause to consider how our ‘intrinsic’ axiomatic approach relates to the more ‘extrinsic’
approach involving simulations. In particular, we shall clarify which of our axioms are
readily implied by the existence of a well-behaved simulation in K2 or K1. This makes the
connection with our previous work in [14], and indeed enables us to compare the levels of
generality of the two approaches. That said, the material in this section is not really required

17

for the rest of the paper, and since it largely concerns somewhat artificial conditions from
[14] which our present approach has the merit of avoiding, the reader may prefer to skip it.

We assume familiarity here with Kleene’s untyped PCAs K1 and K2 (here regarded as
TPCAs), and with the general concept of an applicative simulation between TPCAs (see
[16, Section 3.3]). The idea in [14] was that a TPCA A with numerals could be regarded
as continuous if it admitted a certain kind of simulation γ : A−−BK2, and effective if
it admitted a simulation γ : A−−BK1. We shall consider the effective case first as it is
somewhat easier to explain.

First, we required that γ : A−−BK1 ‘respects numerals’: if 0̂, 1̂, . . . is a system of
numerals in A, there is an element d ∈ K1 such that if a γ n̂ then d ·a = n. (The existence
of a realizer that translates in the other direction is immediate.) An applicative simulation
γ with this property was called a realization in [14]. Clearly, this condition implies that the
functions N→ N representable within A(1) are all Turing computable, a property one would
certainly expect of an ‘effective’ TPCA. Conversely, in both [14] and the present paper, the
computational hypotheses on A are strong enough to ensure that all computable functions
N→ N are A-representable.

As hypotheses for our ubiquity theorems in [14], we also formulated the following con-
ditions on effective models:

(A) For any type σ, there is an element ασ ∈ K1 that tracks application of elements of
A(σ → N) in the following sense: if m γσ→N f and n γσ x, then ασ ·m ·n γN y ∈ A(N)
iff f · x = y.

(B’) The relation m ·γN n̂ is c.e. in m,n.

Condition (A) is a very mild requirement that holds in all effective models have ever con-
sidered. Condition (B’) is also a natural requirement, in that we expect to be able to
recognize when a computation yields the numerical result n. However, this condition does
not hold in Scott’s Pωeff and similar models of a non-deterministic flavour (cf. the discussion
in Section 2.2), and in [14] we did not have a way of dealing with such models.

One of the major results of [14] was that in any effective model A satisfying conditions
(A) and (B)’, the type structure of hereditarily extensional total functionals over N (obtained
as the extensional collapse with respect to the set of numerals) coincides with the classical
type structure HEO of Hereditarily Effective Operations. Actually, this result was obtained
under a marginally weaker version of (B)’:

(B) The relation m ·γN 0̂ is c.e.

However, it would seem to be a kind of accident that this was sufficient, and (B’) (which
featured elsewhere in [14]) would appear to be the more natural condition.

We may relate these conditions to our present axioms as follows:

Proposition 17 Any effective model satisfying (A) and (B’) above satisfies Continuity.

Proof For Continuity, suppose >,⊥ ⊆ A(1) are as defined in Section 2.2. Let H ⊆ N
denote the halting set. We shall construct a computable function θ : N → N such that

18

n ∈ H implies θ(n) γ α for some α ∈ >, and n 6∈ H implies θ(n) γ α for some α ∈ ⊥.
First, given n it is straightforward to compute a K1-realizer δ(n) such that

n ∈ H ⇒ ∀j. δ(n) · j = 0 ,

n 6∈ H ⇒ ∃j. (∀j < t. δ(n) · j = 0) ∧ δ(n) · t = 1 .

Next, using the realizer d from the definition of effective TPCA, we may transform δ(n) into

a realizer for the numeral δ̂(n) ∈ A(N). Finally, if app ∈ A(N → N → N) represents Kleene

application, then clearly n ∈ H implies app · δ̂(n) ∈ >, and n 6∈ H implies app · δ̂(n) ∈ ⊥;
this computation may also be simulated at the K1 level via γ, so that from a realizer for

δ̂(n) we may compute a realizer for an element of > or ⊥ as appropriate. Combining these
constructions gives the required θ.

To verify the Continuity Axiom, suppose F ∈ A(2) satisfies F ·α = p̂ for all α ∈ ⊥. Using
γ, take φ : N⇀ N computable such that φ(m) γ F (α) whenever m γ α and F (α) ↓; and
using condition (B’), take εp : N ⇀ N computable such that εp(m) ↓ iff m γ p̂. We then
have that εp(φ(δ(n))) ↓ for all n 6∈ H. By the undecidability of the halting problem, there
is therefore some n ∈ H such that εp(φ(δ(n))) ↓, i.e. φ(δ(n)) γ p̂. But now δ(n) realizes
some α ∈ >, so condition (A) implies that F (α) = p̂ as required. �

Proposition 18 Any effective model satisfying (A) and (B’) satisfies Enumeration.

Proof Suppose f ∈ A(1), and use γ along with condition (A) to obtain a computable
ψ : N⇀ N such that if m γ n̂ then ψ(m) γ p̂ iff f · n̂ = p̂. Using the realizer d to encode
natural numbers as realizers for numerals, and condition (B’) to decode such realizers into
natural numbers again, we obtain a computable χ : N⇀ N such that χ(n) = p iff f(n̂) = p̂.
By basic computability theory, there is a total computable function g whose offset range is
precisely the set of such pairs 〈n, p〉. Since A represents all computable functions N → N,
this g is present in ∆A. (We may, if desired, effectively compute a γ-realizer for an A-
representative of g from a γ-realizer for F , although this is not required here.) �

Our conditions on effective models imply nothing as regards Normalizability — indeed
it is explicit in [14] that the results for effective models apply even to highly intensional
models. They also do not imply Restriction, although we view this as a relatively mild
condition which we are happy to adopt when necessary.

It remains to consider Collection. We here firm up the argument already sketched in
Section 2.5 to the effect that Collection holds in almost all natural effective models. Let us
introduce the following condition on models:

(D) For each type σ, the set of n such that n γσ x for some x ∈ A(σ) is c.e.

This condition did not feature in [14], but it appears to hold for all the effective models we
have in mind, with the somewhat anomalous exception of Keff

2 (for which Collection can
be seen to hold anyway). In particular, if A arises as a term model for some programming
language, and γ is given by Gödel numbering of terms, then condition (D) simply amounts
to saying that the terms of the language are computably enumerable. Moreover, we have:

Proposition 19 Any effective model satisfying (A), (B’) and (D) and the Restriction Ax-
iom also satisfies σ-Collection for any type σ.

19

Proof Given Φ ∈ A(σ → N), by condition (A) we may again take a computable ψ : N⇀ N
such that if m γ x ∈ A(σ) then ψ(m) γ n̂ iff Φ ·x = n̂. Using condition (D) to enumerate
all such realizers m, and (B’) to decode the resulting realizers for n̂, we obtain a partial
computable function θ whose range is the set of all n such that Φ ·x = n̂ for some x ∈ A(σ).

Finally, we note that our model satisfies Continuity by Proposition 17, and Restriction
by hypothesis; hence by Corollary 13, θ is strongly representable in A, and this gives us
f ∈ A(1) with ran(f �N) ∩N = ran(Φ) ∩N . �

An obvious generalization of condition (A) to types σ0 → · · · → σr−1 → N likewise yields
σ0, . . . , σr−1-Collection for all σ0, . . . , σr−1.

We now turn our attention to continuous models. Here we consider a model A endowed
with an applicative simulation γ : A−−BK2. As in the effective case, we shall require that
γ ‘respects numerals’, but this condition must now be formulated in terms of some standard
choice of numerals 0̃, 1̃, . . . for K2 as well as a choice 0̂, 1̂, . . . for A. That is, we require that
there is an element d ∈ K2 such that if a γ n̂ then d · a = ñ. In this situation we say that
A is a continuous TPCA with realization γ.

We say that A is full continuous with respect to γ if every set-theoretic function f :
N → N is represented in A(1), and moreover there is an element h ∈ K2 such that for any

f : N → N, h · f γ f̂ for some f̂ ∈ A(1) representing f . The situation treated in [14] was
that of a full continuous model satisfying the following special conditions:

(AB) For any type σ, any f ∈ A(σ → N) and any p ∈ N, there is an open subset Up ⊆ NN

such that if b γσ x then f · x = p̂ iff b ∈ Up.

(C) A satisfies T-Normalizability.

Condition (AB) may appear rather obscure, but its purpose is to capture the import of the
above conditions (A) and (B) in the K2 setting via a single condition. This slightly strange
approach is necessitated by the annoying fact that the definedness of application in K2 is
not semidecidable. Condition (C) was a hypothesis we were unable to dispense with in the
continuous setting, but managed to avoid in the effective setting. Under these conditions,
it was shown in [14] that the hereditarily extensional total functionals arising from A are
precisely the Kleene-Kreisel continuous functionals.

Proposition 20 Any full continuous model satisfying (AB) satisfies Continuity.

Proof Let a∞ ∈ K2 be the constant zero function, and an be the function mapping i to
0 if i ≤ n and 1 otherwise. The realizer h from the definition of full continuity then maps
a∞ to a realizer for an element of ⊥, and each an to a realizer for an element of >. To
verify Continuity, suppose F ∈ A(2) maps every element of ⊥ to p̂, and take F̂ ∈ K2 such

that whenever f̂ γ
1
f̂ and F · f ↓, we have F̂ · f̂ γN F · f . Then F̂ · (h · a∞) p̂. Let Up

be the open set given by condition (AB) so that if b γ
1
α then F · α = p̂ iff b ∈ Up. Then

h · a∞ ∈ Up. Moreover, h · a∞ is the limit of the h · an, so h · an ∈ Up for some n. But now
h · an realizes some α ∈ >, where F · α = p̂. �

In the case of full continuous models, both Enumeration and Collection are immediate
from the fact that every f : N→ N is represented in A. For Enumeration, the construction
of the required g ∈ ∆ from f ∈ A(1) can also be carried out ‘effectively in K2’ if desired;

20

it appears that a similarly ‘constructive’ treatment is also possible using a suitable K2

analogue of condition (D), though we shall not pursue this here.
As before, our conditions do not imply Restriction, though as commented earlier, we find

that we have little need for it in the presence of T-Normalizability, which is here explicitly
built in by condition (C).

Finally, in the light of these observations, we may comment on how our coverage of
models via our present approach compares with that in [14] (with the caveat that we have
not yet carried through our axiomatic proofs of ubiquity beyond level 2).

The first point to make is that whereas in [14] the ‘full continuous’ and ‘effective’ situa-
tions were treated separately, there is no such dichotomy in our present approach. All our
main proofs will work uniformly regardless of what the A-representable functions N → N
are (although the set of such functions does have a key role to play). They therefore apply
to many full continuous models as well as many effective ones, and indeed to other kinds of
models such as those based on hyperarithmeticity. Nevertheless, there is still something to
say about the various axiom combinations we shall consider and the extent to which they
cover the full continuous and effective settings as defined above.

In Section 4.3, we shall analyse the situation in the presence of Continuity, Enumeration
and T-Normalizability. As shown by the above discussion, this covers the whole class of full
continuous models treated in [14]. Although we have so far only completed the analysis at
type level 2, we fully expect that the same combination of axioms will allow the proof in
[14] for the full continuous case to be adapted to our present setting.

In Section 4.2, we shall consider the situation without normalizability assumptions, but
with Continuity, Enumeration, Iterated Restriction and Collection. This in practice covers
the vast majority of effective models addressed by the treatment in [14]: we have seen that
all of the latter satisfy Continuity and Enumeration, and also Collection under the additional
condition (D). We are thus left only with the handful of models that fail to satisfy (D) and
Iterated Restriction; moreover, some of the most prominent examples of such models (e.g.
Λ0/B) actually satisfy T-Normalizability, so are conveniently covered by the treatment of
Section 4.3. There are also some minor gains: whereas our theorems in [14] covered the
(effective) term model for a version of PCF+timeout, our treatment in Section 4.2 covers
both this and the ‘oracle’ version PCFΩ+timeout, which we were unable to handle in [14].

As regards the extension to higher types, however, the picture is less clear in the effective
setting. We are hopeful that in the absence of T-Normalizability, we will be able to carry
over the proof in [14] for the effective case to the axiomatic setting of Section 4.2 (perhaps
augmented by Dependent Collection or similar), although this has yet to be confirmed.

For further remarks on the prospects for extensions to higher types, see Section 8.

3 The 1-spectrum of a model

We are now ready to start proving some consequences of our axioms. We will show that
in various combinations, these axioms enable us to characterize significant parts of the
spectrum of a model A purely in terms of the set ∆A. As a gentle first step, we shall show
in this section how the Enumeration Axiom alone allows us to characterize completely the
1-spectrum of A. In Sections 4 and 5 we will see how similar results may be obtained (much
less trivially) for portions of the 2-spectrum.

21

It is convenient to frame our definition of the spectrum using the terminology of modest
sets. We recall the following standard notions:

Definition 21 Let A be any TPCA.
(i) A modest set X over A consists of an ordinary set |X|, a choice of type σX , and a

realizability relation X ⊆ A(σX)× |X| such that:

• for any x ∈ |X| there exists at least one a ∈ A(σX) such that a X x,

• if a X x and a X x′ then x = x′.

(ii) If X,Y are modest sets, a morphism X → Y is an ordinary function |X| → |Y | that
is tracked by some t ∈ A(σX → σY), in the sense that for any x ∈ |X| and a ∈ A(σX) we
have

a X x =⇒ t · a ↓ ∧ t · a Y f(x) .

(iii) If X,Y are modest sets, the exponential modest set X ⇒ Y is defined as follows:
|X ⇒ Y | is the set of morphisms f : X → Y ; σX⇒Y = σX → σY ; and t X⇒Y f iff t
tracks f .

(iv) If X is a modest set and S ⊆ X, the (regular) subobject of X determined by S,
written Sub(X,S), is the modest set Y defined by: |Y | = S, σY = σX , and a Y x iff x ∈ S
and a X x.

It is well-known that modest sets over A and the morphisms between them form a
category Mod(A) with a great deal of structure: for instance, it is cartesian closed (with
exponentials defined as above) and has equalizers (with regular monos corresponding to the
subobjects indicated above).

It is now a simple matter to define the 1-spectrum. We start with the (trivial) 0-spectrum
in order to give an idea of the general construction.

Definition 22 Let A be any TPCA with weak numerals, and let N ⊆ A(N) denote its set
of numerals.

(i) The 0-spectrum of A consists of simply the set N, and the realized 0-spectrum of
A consists of the modest set N = (N, N,N) where a N n iff a = n̂. (We tolerate some
overloading of the symbol N here.)

(ii) The 1-spectrum of A is simply the mapping S1 = S1
A that associates to each subset

Q ⊆ N the set S1(Q) of all morphisms from Sub(N,Q) to N .
(iii) The realized 1-spectrum of A is the mapping R1 = R1

A that associates to each Q ⊆ N
the modest set R1(Q) = Sub(N,Q)⇒ N .

The 1-spectrum is thus a purely set-theoretic structure built up from N and not con-
taining any elements from A itself; it is therefore reasonable to ask whether two models
A,B share the same 1-spectrum. The realized 1-spectrum enriches the 1-spectrum with a
realizability structure specific to A; note that |R1(Q)| = S1(Q).

The point of the 1-spectrum is that there may be realizable functions Q → N that do
not extend to realizable functions N→ N. (For instance, if Q is the halting set, the function
associating to each n ∈ Q its halting time does not extend to a total computable function
on N.) So on the face of it, S1 captures more information about computability in A than is
immediately given by the set ∆A ⊆ NN. Nonetheless, ∆A does determine a lower bound on
the contents of the 1-spectrum in the following way.

22

Definition 23 Suppose Q ⊆ N, f : Q→ N and g : N→ N. We say g is a graph of f if for
every n ∈ Q and m ∈ N, 〈n,m〉 is in the range of g if and only if m = f(n).

Thus, the range of a graph of f : Q→ N contains all 〈n, f(n)〉 for n ∈ Q, but is allowed
to contain values 〈n,m〉 where n 6∈ Q, and even values that do not code pairs at all. Note
too that a graph may contain repetitions: we may have g(i) = g(j) where i 6= j.

Proposition 24 Suppose A is a standard model with iteration. If f : Q → N has a graph
within ∆A, then f ∈ S1(Q).

Proof Suppose g ∈ ∆A is a graph of f . Since g is itself realized by an element of NN ,
the following operation h : N→ N can be programmed within A: given an argument n ∈ N ,
use minimization to search for the least i such that fst(g(i)) = n; and if such an i is found,
return snd(g(i)). This gives a realizer h for f , thus f ∈ S1(Q). �

The key idea is that we shall consider a model A to be ‘well-behaved’ if this is all that
its 1-spectrum contains: that is, if the whole of S1

A is determined by ∆A in this sense.

Definition 25 Let A be a TPCA with weak numerals. We say A is 1-regular if for all
Q ⊆ N, every f ∈ S1

A(Q) has a graph in ∆A.

Thus, in a 1-regular model, the set ∆A determines the whole of S1
A by:

S1
A(Q) = {f : Q→ N | f has a graph in ∆A} .

Theorem 26 If A satisfies Enumeration, then A is 1-regular.

Proof Suppose A satisfies Enumeration. Suppose that Q ⊆ N and that f ∈ S1(Q) is
realized by h ∈ A(N → N). We wish to show that f has a graph in ∆. Applying the
Enumeration Axiom to h, we obtain g ∈ ∆ whose offset range consists exactly of all pairs
〈n,m〉 with h · n̂ = m̂. Finally, define

g′(n) = if n = 0 then 〈〉 else g(n)− 1

and note that g′ ∈ ∆. Recalling that h realizes f , it is now easy to see that g′ serves as a
graph of f : Q→ N. �

Notice that the above proof would not work if our ‘graphs’ of f were required not to
feature any pairs 〈n,m〉 where n 6∈ R. For the same reason, the converse of the above
theorem does not hold: if we try to use a graph of f to construct an offset enumeration for
the proper range of f , we may find that the enumeration contains spurious elements.

Although trivial in the present setting, this use of Enumeration will serve as a model for
many of its uses later on.

4 The 2-spectrum below N
We now come to the core of the paper and to our main results. We will introduce the concept
of the 2-spectrum of A, and show that under various axiom combinations, significant parts
of the 2-spectrum are completely determined by ∆A.

The following naturally extends our definition of the 1-spectrum to the next level:

23

Definition 27 Let A be any TPCA with weak numerals, with N ⊆ A(N) the set of numerals.
(i) The 2-spectrum of A is the mapping S2 associating to each Q ⊆ N and each R ⊆

S1(Q) the set S2(Q,R) of all morphisms from Sub(R1(Q), R) to N .
(ii) The realized 2-spectrum of A is the mapping R2 associating to each Q ⊆ N and

R ⊆ S1(Q) the modest set R2(Q,R) = Sub(R1(Q), R)⇒ N .

For completeness, we note here the evident generalization to arbitrary levels, although
this will not be formally required until Section 7.

Definition 28 (i) The realized spectrum RA of A is an infinite tree whose nodes are labelled
with modest sets over A, constructed as follows:

• The root node is labelled with the modest set N.

• If γ is a node labelled with a modest set X, then for each R ⊆ |X| there is a branch
from γ labelled by R, leading to a node labelled with the modest set Sub(X,R)⇒ N.

(ii) The spectrum SA of A is the tree obtained from RA by replacing each modest set X
with its underlying set |X|.

(iii) The realized k-spectrum RkA of A is the subtree of RA consisting of the nodes down
to level k, counting the root node as of level 0. Similarly for the k-spectrum SkA.

We pause to comment briefly on what is not present in the 2-spectrum. Within the
category Mod(A) of modest sets on A, there are in general many more subobjects of a
modest set X than those arising as Sub(X,S) for some S ⊆ |X|. For instance, we might
consider a modest set Y with |Y | ⊆ |X| but in which an element y ∈ |Y | may have fewer Y
realizers than X realizers. Subobjects of this kind are not accounted for in the spectrum,
and indeed it seems that such subobjects would quickly take us into regions of Mod(A)
whose contents were highly specific to the particular choice of A (although this requires
further investigation).

As in the case of the 1-spectrum, the contents of ∆A in general provide a lower bound
on the contents of S2. For this, we need a notion of graph for second-order functionals.
For later convenience, we give a definition that also makes sense for partial functionals F ,
although our interest at present is in total ones.

Definition 29 (i) A number a is a 1-code if it is of the form 〈〈q0, p0〉, . . . , 〈qr−1, pr−1〉〉.
Such an a matches a function f : N→ N if f(qi) = pi for each i < r. We write Ua for the
set of all functions N→ N matched by a.

(ii) Suppose Q ⊆ N, R ⊆ S1(Q) and F : R ⇀ N. We say G ⊆ N is a set graph of F if:

1. For every f ∈ dom F , G contains some 〈a,m〉 where a is a 1-code matching f .

2. For each 〈a,m〉 ∈ G where a is a 1-code, and for every f ∈ R matched by a, we have
F (f) = m.

3. For every 〈〈〈q0, p0〉, . . . , 〈qr−1, pr−1〉〉,m〉 ∈ G, we have qi ∈ Q for each i.

(iii) Under the hypotheses of (ii), we say g : N → N is an enumerated graph (or just
graph) of F if the range of g is a set graph of F .

24

Once again, we allow a graph of F to contain repetitions, and to feature elements not of
the specific form above, as well as elements of this form that do not ‘cover’ any f ∈ R.
However, we do require condition 3 above to ensure that it makes sense to test a graph
element against an arbitrary f ∈ R; the importance of this is made clear by the proof of
the next proposition.

From here on, A will be assumed to be a standard model with iteration.

Proposition 30 Let Q,R be as above. If F : R → N has a graph within ∆A, then F ∈
S2(Q,R).

Proof Suppose g is a graph of F within ∆A, so that g has a realizer ĝ ∈ NN ⊆ A(1). We
need to show that F exists as a morphism Sub(R1(Q), R) → N , that is, there is a realizer

F̂ ∈ A(2) such that whenever f ∈ R and f̂ · q̂ = f̂(q) for all q ∈ Q, we have F̂ · f̂ = F̂ (f).

Informally, the algorithm for F̂ is as follows. Given a realizer f̂ for f ∈ R:

• Search the range of g looking for ‘graph elements’ of the form

〈〈〈q0, p0〉, . . . , 〈qr−1, pr−1〉〉,m〉

• For each such element found, test for each i < r in turn whether f(qi) = pi. Each
such test is guaranteed to yield a yes/no result by Condition 3 of Definition 29.

• If the graph element in question passes all these tests, stop the search and return m̂.

It is easy to see how this algorithm is programmable in a standard model with iteration,
making use of ĝ, and that this yields a realizer F̂ as required. �

Remark 31 The above proof illustrates the informal style in which we shall typically
present algorithms. Technically, the computation performed by F̂ works entirely at the
level of realizers within A, but for readability we shall wherever possible couch it in terms
of properties of the mathematical entities they represent, as long as the implementation in
terms of realizers is clear. For example, in the above, the condition f(qi) = pi will actually

be tested by evaluating something of the form eq · (f̂ · q̂i) · p̂i. We hope that in each similar
case below the intention will be sufficiently clear from the context.

Definition 32 For Q,R as above, we say the 2-spectrum of A is regular at Q,R if every
F ∈ S2(Q,R) has a graph within ∆A. We say A is 2-regular if the whole of its 2-spectrum
is regular.

More generally, we can consider restricted notions of regularity that apply only to certain
portions of the spectrum. For instance, we will say A is 2-regular below N if its 2-spectrum
is regular at N, R for all R ⊆ S1(N).

We will show how various combinations of axioms imply regularity for various parts of
the 2-spectrum. In this section we concentrate on the 2-spectrum below N; other subsets
Q ⊆ N will be considered in Section 5.

As we have seen, Proposition 30 already gives us a lower bound on the contents of the 2-
spectrum, so it remains to show that this is also an upper bound. Our main technology here
will come from the original proof of the Kreisel-Lacombe-Shoenfield (KLS) theorem [13] (see

25

also [16, Section 9.2]). In its simplest form, this theorem in effect says that in the case A =
K1, every modest set morphism (N ⇒ N)→ N is continuous and indeed has a computable
graph: this is tantamount to regularity at N,∆. Moreover, as explained in [13] the same
argument works for morphisms Sub(N ⇒ N,R) → N for any effectively separable subset
R, and this idea provides an important jump-off point for our approach. In Section 4.1,
we introduce the general notion of a ∆-separable subset of NN; these include typical ‘tame’
subsets that arise in mathematical practice, and we illustrate the scope of the concept by
numerous examples. In Section 4.2, we shall show that under a combination of axioms
that holds in almost all models of interest (and in particular without Normalizability), a
KLS-style argument can be used to show regularity at N, R for all ∆-separable R ⊆ ∆. In
Section 4.3, we will show that under certain axioms including T-Normalizability, another
variation on the KLS argument yields regularity at N, R for all R ⊆ ∆. In Section 4.4, we
will show that in the presence of P-Normalizability, much simpler arguments (modelled on
Myhill-Shepherdson rather than KLS) can be used to show this much and a little more.

Let us comment briefly on how this relates to what can be done in the presence of simula-
tions as in Section 2.7. If we knew, for example, that A admitted a well-behaved simulation
in K1, then the required upper bound on the 2-spectrum would be almost immediate from
the classical KLS theorem. So in one sense, we are simply substituting a general axiomatic
proof of KLS for the usual one; and although the theorems we obtain are new as general
results, they do not really yield anything new in typical concrete instances. The stronger
results possible in the presence of T-Normalizability appear to improve on classical KLS by
dispensing with the separability requirement, but again this corresponds in concrete cases
only to a mild and easy extension of existing results.

In the continuous case, where A admits a well-behaved simulation in K2 or some sub-
model thereof, the upper bound on the 2-spectrum can be inferred even more straightfor-
wardly from continuity in K2. So in this case, we are having to work harder in our axiomatic
setting to make up for the absence of a simulation.

In summary, then, our present results at second-order types do not in themselves yield
much actual new information on particular models. Rather, the significance of our theorems
is conceptual and methodological: they show that the axioms identified in Section 2 form a
suitable basis for the development of the relevant theory at a general level. The extensions
to higher types to be presented in Part II will provide further support for this claim, as well
as yielding some genuinely new contributions to computability theory in particular cases.

4.1 ∆-separable sets

We start by introducing the concept of a ∆-separable subset of NN, generalizing a familiar
concept of effectively separable subset. Informally, a set R will be considered separable if
the set of 1-codes a that match some f ∈ R is enumerable, and moreover some such f ∈ R
can be computed from a:

Definition 33 Suppose ∆ ⊆ NN is any set closed under Turing computation. A subset
R ⊆ NN is ∆-separable if there exist a ∆-decidable set H ⊆ N and a uniformly A-computable
family of functions ζ0, ζ1, . . . ∈ ∆ such that:

1. if i ∈ H then ζi ∈ R (it will not matter what ζi is when i 6∈ H),

26

2. for all f ∈ R and k ≥ 0, there exists i ∈ H such that ζi(j) = f(j) for all j < k.

In this situation, we call the family (ζi | i ∈ H) a ∆-enumerable basis for R.

Once again, the set H is needed only to cover the case R = ∅ in a uniform and construc-
tive way. We may also write ζ̂i for some fixed choice of realizer for ζi computable from î
within A.

We say R is effectively separable if it is NN
eff-separable; clearly, any such R is ∆-separable

for any ∆. Note too that in the above setting each ζi is in ∆, so if R is ∆-separable then
so is R ∩∆ with the same enumerable basis.

We now give some examples to show the scope of this concept:

Examples 34 (i) If ∆ = NN, any R ⊆ ∆ at all is trivially ∆-separable: take an offset
enumeration of all 1-codes a such that R ∩Ua is inhabited, then use the axiom of choice to
pick some ζi ∈ R ∩ Ua for all such a. By assembling these into a single function ζ ∈ ∆, we
see that ζi is A-computable uniformly in i. So in this case, the analysis below will apply to
the whole of the 2-spectrum below N.

(ii) Let us say a function f : N → N is eventually zero if there is some n such that
f(i) = 0 for all i ≥ n. It is easy to define a uniformly primitive recursive enumeration
ζ0, ζ1, . . . of the eventually zero functions such that whenever i is a 1-code, ζi matches i; we
shall call this the standard basis. Clearly this serves as an effectively enumerable basis for
R = NN, or indeed for any R ⊆ NN whatsoever that contains all the ζi.

(iii) By a ∆-open set R ⊆ NN, we shall mean one such that there exists e ∈ ∆ with
R =

⋃
{Ue(i) | e(i) a 1-code}. Then any ∆-open set is ∆-separable: indeed, it is easy

to construct an enumerable base for each Ue(i) uniformly in i, and these may be readily
combined to yield an enumerable base for R.

(iv) Any ∆-enumerable (and hence countable) subset of ∆ is ∆-separable: in this case,
we may take the set itself as its own basis.

(v) Suppose we use functions N → N to represent real numbers in some standard way
(e.g. via Cauchy sequences of rationals with fixed rate of convergence). Then all sets of the
following kinds are effectively separable (we leave the construction of suitable bases as an
exercise): enumerable unions of open intervals; enumerable unions of closed intervals; the
set of rationals; the set of irrationals.

The following proposition affords another rich source of examples of separable sets; it
provides our first example of a typical use of Continuity, and will itself be used in Section 4.3
below. We shall say a partial function F : ∆ ⇀ N is strictly represented by F̂ ∈ A(2) if

whenever f̂ ∈ NN represents f ∈ ∆, we have F̂ · f̂ = m̂ iff F (f) = m. (Thus, if F (f) ↑,
then F̂ · f̂ ⇑.)

Proposition 35 Suppose A satisfies Continuity, Enumeration and Restriction, and sup-
pose F : ∆ ⇀ N is strictly represented by some F̂ ∈ A(2). Then dom F ⊆ ∆ is ∆-separable.

Proof Let R = dom F , let F̂ strictly represent F , and let >,⊥ be as in Section 2.2. We
first use Continuity to show that if a is a 1-code and R∩Ua is inhabited then it is inhabited

27

by an eventually zero function. Suppose f ∈ R ⊆ Ua with F (f) = n, and for any α ∈ > ∈ ⊥
define

fα(i) =

{
f(i) if i ∈ dom a and i < t(α)
0 otherwise

Note that the condition i < t(α) can be tested within A by checking whether α(k̂) = 0̂ for

all k ≤ i. Thus fα is realizable in A by some f̂α constructed uniformly in α. Moreover, if

α = ⊥ then fα = f , so F̂ · f̂α = F̂ (f) = n̂. Hence by Continuity there is some α ∈ > with

F̂ · f̂α = n̂, which means that fα ∈ dom F . Finally, it is clear by construction that fα ∈ Ua,
so fα ∈ R ∩ Ua and also that fα is eventually zero.

Now suppose i 7→ ζi is the standard enumeration of eventually zero functions, and
form within A(1) the operation λi.F (ζi). Applying Enumeration to this, we obtain an
offset enumeration in ∆ of all pairs 〈i,mi〉 where ζi ∈ R and F (ζi) = mi, and it is now
straightforward to collect all such ζi into a ∆-enumerable basis for R. �

Under mild hypotheses, any ∆-open subset of ∆ as in Example 34(iii) arises as the
domain of some such F . However, there may also be more exotic domains that arise in this
way: in the case A = K1, there is an example due to Friedberg [9] of a partial function F
as above whose domain is not open.

4.2 The non-normalizable case

We now consider what may be said about the 2-spectrum below N in the absence of a
Normalizability Axiom; the results here will therefore apply even to extremely intensional
models such as K1 or models for PCF+timeout. We will see that a direct adaptation of the
classical KLS proof allows us to get a certain distance using no axioms except Continuity.
We then appeal to the Collection Axiom to complete the proof that certain parts of the
2-spectrum are indeed regular.

The original KLS theorem concerned, in effect, the 2-spectrum of K1 at N, R for an
arbitrary effectively separable set R ⊆ NN

eff.5 We here adapt this proof to the general
setting of a model A and a ∆A-separable subset R ⊆ ∆A.

Suppose first that A is any model satisfying the Continuity Axiom, with >,⊥ ⊆ A(1)
and t : > ∪⊥ → N∞ as in Section 2.2. We write ∆ for ∆A.

The following shows how part of the classical KLS argument goes through in this setting.

Theorem 36 Assume A satisfies Continuity. Suppose R ⊆ ∆ is ∆-separable, and F ∈
S2(N, R). Then F is continuous on R: for any f ∈ R, there exists a 1-code a matching f
such that F (f ′) = F (f) for all f ′ ∈ Ua ∩R.

Proof Suppose R ⊆ S1(N) is ∆-separable, with (ζi | i ∈ H) an enumerable basis for R.

Suppose also that F ∈ S2(N, R), and take F̂ ∈ A(2) a realizer for F .
By an initial 1-code a, we shall mean one of the form 〈〈0, p0〉, . . . , 〈r − 1, pr−1〉〉. We write

ra = r for the length of this 1-code, and (as usual) Ua for the associated neighbourhood

5The original treatment in [13] was at essentially the level of generality considered here; in [16] the result
was stated only for a smaller class of effectively separable sets. We also point out a minor error in the
statement of [16, Corollary 9.2.6]: the functional F ′ should be declared to be partial, i.e. of type NN ⇀ N.

28

{f ∈ NN | a matches f}. Given m ∈ N, we shall say 〈a,m〉 is a suitable graph element for
F if for any f ∈ R ∩ Ua we have F (f) = m.

We will describe a test performable within A that can be used to recognize suitable graph
elements. For this purpose, we shall represent our initial 1-codes in a rather roundabout
way, by means of pairs (f, α) where f ∈ ∆ and α ∈ >. To any such pair we associate the
initial 1-code a(f, α) = 〈〈0, f(0)〉, . . . , 〈t(α)− 1, f(t(α)− 1)〉〉. Clearly, any initial 1-code is
associated with infinitely many (f, α).

Given any f̂ ∈ NN realizing f ∈ ∆, α ∈ >∪⊥ and m ∈ N, we may construct an element
ξ̂f̂ ,α,m ∈ A(1) that behaves as follows when applied to ĵ ∈ N :

• If j < t(α) (that is, α(k̂) = 0̂ for all k ≤ j), return f̂(j).

• Otherwise, search for an i ∈ H such that ζi(k) = f(k) for all k < t(α) and F (ζi) 6= m.

(Recall that for all i ∈ H we have ζi ∈ R, so that F̂ · ζ̂i ⇓.)

• If such an i is found, return ζ̂i(j).

Notice that ‘ζi(k) = f(k) for all k < t(α)’ is equivalent to ‘ζi ∈ Ua(f,α)’. Notice too that
exactly the same search for i will be performed for any j ≥ t(α), so that if this search
succeeds, the same i will be found irrespective of j.

Clearly ξ̂f̂ ,α,m may be computed within A uniformly in f̂ , α, m̂.

We shall now say that a triple (f̂ , α,m) passes the test if α ∈ > and F̂ · ξ̂f̂ ,α,m = m̂.
We will show that any triple passing the test yields a suitable graph element for F , and
moreover that enough graph elements arise in this way to form a complete set graph of F .

Claim 1: If (f̂ , α,m) passes the test where f̂ realizes f , then 〈a,m〉 is a suitable graph
element, where a = a(f, α).

Proof: We wish to show that for any f ′ ∈ Ua ∩ R we have F (f ′) = m. We first show
this for the case where f ′ is one of our functions ζi for i ∈ H.

Suppose ζi ∈ Ua ∩ R for i ∈ H, so that F (ζi) ∈ N, and let us suppose for contradiction
that F (ζi) = m′ 6= m. Then since also i ∈ H and ζi ∈ Ua(f,α) and i ∈ H, the search in the

definition of ξ̂f̂ ,α,m will conclude at i or earlier. Let i′ be the index returned by this search,

so that ζi′ ∈ Ua and F (ζi′) 6= m. It is easy to see that ξ̂′
f̂ ,α,m

represents ζi′ where ζi′ ∈ R;

hence F̂ · ξ̂f̂ ,α,m = F̂ (ζi′) 6= m̂, contradicting that (f, α,m) passes the test. Thus F (ζi) = m
after all.

Next, consider an arbitrary f ′ ∈ Ua ∩ R, so that F (f ′) ∈ N, and again suppose for
contradiction that F (f ′) = m′ 6= m. We shall use Continuity to obtain some ζi ∈ Ua ∩ R
close to f ′ with F (ζi) = m′, contrary to what we have shown above. For each β ∈ > ∪ ⊥,
define f ′β ∈ A(1) by

f ′β(n) =

 f ′(n) if n < ra or n < t(β)
ζi(n) otherwise, where h(i) = a(f ′, β′) + 1

with t(β′) = max(ra, t(β))

Note again that n < t(β) is equivalent to β(k̂) = 0̂ for all k ≤ n, and also that in the second
case above, an i with the required properties will exist and can be found by a search through

29

h. We can therefore compute a realizer f̂ ′β for f ′β within A uniformly in β and any realizer

for f ′. Moreover, when β ∈ ⊥, we have t(β) =∞ so f ′β = f ′, so that F̂ · f̂ ′β = F̂ (f ′) = m̂′.

Hence by the Continuity Axiom, there must exist β ∈ > with F̂ · f̂ ′β = m̂′. But now f ′β is
equal to ζi ∈ R for a certain i ∈ H; thus F (ζi) = F (f ′β) = m′. Also ζi ∈ Ua, since f ′β ∈ Ua
by construction. But this is a contradiction, since we have shown above that F (ζi) = m for
all ζi ∈ Ua ∩R. Thus F (f ′) = m after all. This completes the proof of Claim 1.

Claim 2: For any f ∈ R with F (f) = m and any f̂ realizing f , there exists α ∈ > such

that (f̂ , α,m) passes the test and f ∈ Ua(f,α).

Proof: It is easy to see that if α ∈ ⊥ then ξ̂f̂ ,α,m represents f , so that F̂ · ξ̂f̂ ,α,m = m̂.

Hence by Continuity there exists α ∈ > with F̂ · ξ̂f̂ ,α,m = m̂, so that (f̂ , α,m) passes the

test. That f ∈ Ua(f,α) is automatic if f ∈ ∆ and α ∈ > by definition of a(f, α). This proves
Claim 2.

The theorem itself now follows easily. Given f ∈ R, take any f̂ realizing f , set m = F (f),

then use Claim 2 to pick α such that (f̂ , α,m) passes the test and f ∈ Ua where a = a(f, α).
Claim 1 now says that 〈a,m〉 is a suitable graph element, which is to say that F (f ′) = F (f)
for all f ′ ∈ Ua ∩R. �

Some of the constructions in the above proof may be usefully generalized a little. If
f̂ ∈ NN is a realizer for f , let us allow the notation a(f̂ , α) in place of a(f, α), so that

a(f̂ , α) = 〈〈0, c0〉, . . . , 〈r − 1, cr−1〉〉 iff r = t(α) and ∀k < r. f̂ · k̂ = ĉk .

We can use this to also serve as a definition of a(f̂ , α) even for f̂ 6∈ NN , provided that α ∈ >
and f̂ · k̂ ⇓ for all k < t(α): it does not matter how f̂ behaves on larger k̂. Let us take

P = {(f̂ , α) | α ∈ >, f̂ · k̂ ⇓ for all k < t(α) } .

We now observe that the definition of ξ̂f̂ ,α,m makes good sense as long as (f̂ , α) ∈ P , and
indeed that the proof of Claim 1 also goes through under this weaker hypothesis. There is
thus no danger of generating unsuitable graph elements if we allow these additional elements
f̂ , provided the condition (f̂ , α) ∈ P is respected.

This suggests the idea of trying to generate a set graph for F as the proper range of an
operation within A mapping each suitable (f̂ , α,m) to 〈a(f̂ , α),m〉. To make this work, we
now adopt the Iterated Restriction Axiom from Section 2.6.

Lemma 37 Assume A satisfies Continuity and Iterated Restriction, and suppose R and F
are as in Theorem 36. Then there exists Ψ ∈ A(1→ 1→ 0→ 0) whose proper range

Ĝ = {Ψ · x · y · z | x : 1, y : 1, z : 0, Ψ · x · y · z ⇓ }

exactly corresponds to some set graph G ⊆ N for F .

Proof Let â ∈ A(1→ 1→ 0) be a realizer for a as a function P → N , constructed in the
obvious way using iteration. Now consider the element

Φ = λ∗xyz. pair (â x y) z ∈ A(1→ 1→ 0→ 0) .

From the discussion above, it is clear that Φ · x · y · z will return the numeral for a suitable
graph element for F , provided all of the following conditions are satisfied:

30

1. z ∈ N (say z = m̂).

2. y ∈ >.

3. (x, y) ∈ P .

4. F̂ · ξ̂x,y,m ⇓ and F̂ · ξ̂x,y,m = m̂.

We have also seen that enough graph elements can be thus obtained to cover every f ∈ R.
We claim that each of the above conditions can be checked via the convergence of

some expression involving x, y, z, assuming that all the previous conditions are satisfied.
Condition 1 is readily checked via a convergence test. For Condition 2, we first check that
the value for t(α) computed by minimization converges, say to û, and then used Iterated
Restriction to check that indeed α(û) = 1̂ and α(k) = 0̂ for all k < u. Having obtained this
numeral û, we may now again use Iterated Restriction to test Condition 3 by checking that
f̂ · k̂ ⇓ for all k < u. Finally, Condition 4 is easily checked via two simple convergence tests.

Putting all this together, we may construct an expression e(x, y, z) that converges iff all
four conditions are satisfied. Finally, we may define

Ψ = λ∗xyz. (Φxyz) � e(x, y, z)

and it is clear that the proper range of Ψ yields a graph for F . �

We have thus obtained a set graph for F . With our current axioms, we cannot collect the
graph elements into an enumerated graph for F , as we have no way within A to enumerate
all, or sufficiently many, elements f̂ ∈ A(1). (Even if we can arrange that an enumerable
family of functions f ∈ ∆ suffices, as we shall in the proof of Theorem 42, it seems that
we cannot enumerate sufficiently many realizers for these functions.) However, it is at this
point that the Collection Axiom exactly meets our need:

Theorem 38 Assume A satisfies Continuity, Iterated Restriction, Collection and Enumer-
ation, and suppose R ⊆ ∆ is ∆-separable. Then A is 2-regular at N, R.

Proof Let F be any function R → N. We have seen in Proposition 30 that if F has a
graph then F ∈ S2(N, R). Conversely, if F ∈ S2(N, R), then by Lemma 37 there exists
Ψ : 1 → 1 → 0 → 1 whose proper range yields a set graph G for F . Now apply the 1, 1, 0-
Collection Axiom to this Φ to obtain f ∈ A(1) whose proper range gives a graph of F ; then
apply Enumeration to obtain g ∈ NN whose offset range is a graph of F . Finally, since this
graph is certainly inhabited, we may (within A) remove the offsetting to obtain an ordinary
enumerated graph g′ ∈ ∆ for F . �

Corollary 39 If A satisfies the above axioms and ∆A = NN, then A is 2-regular below N.

We emphasize again that the combination of the above four axioms holds in almost all
our models of interest, with the exception of certain untyped λ-algebras in which Iterated
Restriction is problematic, and with the qualification that the treatment of certain ‘non-
deterministic’ models requires a few additional refinements as described in Section 6 below.

31

Remark 40 Our argument above is in essence nothing more than the classical KLS proof
transposed to our setting. Indeed, our version can be seen as offering a conceptual analysis of
the classical proof in terms of three ingredients: the proof that K1 satisfies the Continuity
Axiom (using the undecidability of the halting problem), the proof that certifiable local
moduli exist and give rise to graph elements (which requires only the Continuity Axiom),
and the construction for collecting these graph elements into an enumerable family (which
exploits the specific fact that ‘type 2’ objects in K1 are just natural numbers).

Since we have noted in Example 34(iv) that the class of ∆-separable sets includes the
domains of all representable partial functions on ∆, it might be expected that Theorem 38
suffices to determine the entire 2-spectrum below N, since (one might suppose) any partial
function F whatever is present in S2(N,dom F) and hence has a graph, which will then
also be applicable to the restriction F to other sets R ⊆ dom F . However, this is not the
case: Proposition 35 applies only to operations F̂ whose domains are extensional, i.e. such
that if f̂ , f̂ ′ ∈ NN realize the same f ∈ ∆, then F̂ · f̂ ⇓ iff F̂ · f̂ ′ ⇓. There are many other
elements F̂ whose domains appear ‘ragged at the edges’ if we try to view them as realizing
partial functions on NN, and such elements can contribute to the 2-spectrum at various
non-separable R.

The following counterexample (inspired by Friedberg’s) shows that under the present
hypotheses, one cannot hope to extend Theorem 38 to arbitrary subsets of ∆.

Counterexample 41 Consider Kleene’s first model K1, the untyped PCA consisting of
the natural numbers with (partial) Kleene application •. Let us say a function f : N → N
attains its maximum at i if f(i) ≥ f(j) for all j ∈ N, and (when f is computable) write ef
for the smallest e such that e• j = f(j) for all j. Now consider the effectively non separable
set

Rmax = {f ∈ NN
eff | f attains its maximum at some i ≤ ef }

and define Fmax : Rmax → N by taking F (f) to be the maximum value f(j) attained by f .
Then Fmax is realizable in K1: given any realizer e for any f ∈ Rmax, the required value of
Fmax(f) is just max(e • 0, e • 1, . . . , e • e). However, it is an easy exercise to show that Fmax

cannot have a graph. Thus the spectrum of K1 is not regular at N, Rmax.

This marks a limit to the extent of the regularity phenomenon in the absence of Nor-
malizability. We will see in Section 4.3 that T-Normalizability gives rise to regularity at all
N, R.

4.3 The T-normalizable case

For this subsection, we assume that A satisfies T-Normalizability as well as Continuity and
Enumeration. Our main result here is that under these hypothesis, regularity extends to
the whole of the 2-spectrum below N. Our proof will appeal to Theorem 36, but in addition,
T-Normalizability will play two distinct roles. Firstly, by working with normalized realizers,
it becomes trivial that any F̂ ∈ A(2) behaves extensionally on type 1 realizers whenever it
is defined, even outside the originally intended domain of F . Secondly, it allows us to work
with a more minimalist version of the sets >,⊥, with the property that > is enumerable

32

within A; this will mean that Enumeration alone suffices to collect sufficiently many graph
elements to form an enumerated graph of our functional F .

For the purpose of this section, it will be sufficient to work with the standard basis
ζ0, ζ1, . . . consisting of all eventually zero functions. As before, we write ζ̂i ∈ NN for a
realizer for ζi computed uniformly in i within A. We may also assume by construction that
each ζ̂i is normalized (that is, norm · ζ̂i = ζ̂i where norm is as in Definition 8).

It will also be convenient to reformulate the Continuity Axiom slightly in this setting.
For each n ∈ N∞, let us take αn ∈ A(1) to be the unique normalized element such that

αn · î =

{
0̂ if i < n,

1̂ if i ≥ n.

As an alternative to the usual sets ⊥,> from Section 2.2, let us define

⊥1 = {α∞} , >1 = {αn | n ∈ N} .

It is easy to see that there is an element C ∈ A(1→ 1) mapping > to >1 and ⊥ to ⊥1: take

C = λ∗α.norm (λ∗i. α(min j. j = i ∨ α(j) = 1̂)) .

The Continuity Axiom as stated in Definition 4 therefore immediately implies the following
new version of Continuity: For any F ∈ A(2), if F · α∞ = m̂ then F · αn = m̂ for some
n ∈ N. It is clear that the proof of Theorem 36 above goes through under this new form of
Continuity, using >1,⊥1 in place of >,⊥.

Theorem 42 Suppose A satisfies Continuity, T-Normalizability and Enumeration. Then
A is 2-regular below N.

Proof Suppose R ⊆ S1(N) and F ∈ S2(N, R); we wish to find a graph of F within ∆ = ∆A.

Let F̂ ′ ∈ A((N → N) → N) be any realizer for F , and let F̂ = λ∗f. F̂ ′ (norm f), so that F̂

also realizes F . Now let R+ ⊆ S1(N) be the set of f such that F̂ · f̂ ⇓ for some (and hence

any) f̂ realizing f , so that R+ ⊇ R, and let F+ : R+ → N be the extension of F that is

realized by F̂ . Since F̂ has normalization built in, it is clear that F̂ strongly represents F+

in the sense of Proposition 35. We shall in fact construct a graph of F+ in ∆; this will a
fortiori be a graph for F , so we may henceforth forget about F .

By Proposition 35, R+ is ∆-separable and indeed has a basis consisting of eventually
zero functions. So by Theorem 36, we immediately have that F+ is continuous on R+.
Furthermore, the proof of Theorem 36 (adapted to use >1,⊥1) shows that the set

G = { 〈a(f, α),m〉 | f ∈ R+, α ∈ >1, m ∈ N, f̂ realizes f, (f̂ , α,m) passes the test }

constitutes a set graph for F . As it stands, this set is not amenable to enumeration, as we
have no way within A to enumerate a set of representatives for all f ∈ R+. However, we
will show that we still have enough graph elements if we restrict to the class of eventually
zero f , which we can enumerate.

Claim: For any f ∈ R+ with F+(f) = m, there exist ζi ∈ R+ and α ∈ >1 such that

(ζ̂i, α,m) passes the test and f ∈ Ua(ζi,α) .

33

Proof: Given f,m as above, take α ∈ >1 so that (f, α,m) passes the test and f ∈ Ua
where a = a(f, α). Exactly as in the proof of Theorem 36, we may construct elements fβ for
β ∈ >1∪⊥1 such that fβ = f for all β ∈ ⊥1, fβ is an eventually zero in R+ for β ∈ >1, and
fβ ∈ Ua for all β. Since (f, α,m) passes the test, by Continuity there is some β ∈ >1 such
that (fβ , α,m) passes the test. Moreover, since fβ ∈ Ua, we have a(fβ , α) = a. But f ∈ Ua,
so f ∈ Ua(fβ ,α). Finally, since fβ is eventually zero, we may pick i such that ζi = fβ ∈ R+,
and this proves the claim.

Our final task is to collect together these elements to obtain an actual graph in ∆.
Construct within A an enumeration (i0, α0,m0), (i1, α1,m1), . . . of all triples (i, α,m) with
α ∈ >1 ∪ ⊥1 and ζi in our basis for R+, and compose this with the operation

(i, α,m) 7→ F̂ · ξ̂(ζi, α,m) .

Write h for the resulting element of A(N→ N). Applying Enumeration to h, we obtain g ∈ ∆

with offset range consisting of exactly the pairs 〈j,m′j〉 where F̂ · ξ̂(ζij , αj ,mj) converges

to m̂′j . By further easy programming within A, we may transform this into g′ ∈ ∆ whose
offset range is exactly the set of 〈a(ζi, α),m〉 such that (ζi, α,m) passes the test, and hence
into g′′ ∈ ∆ whose ordinary range is the set of such 〈a(ζi, α),m〉, perhaps with 〈〉 added.

It is now easy to see that g′′ ∈ ∆ serves as a graph of F . Condition 1 of Definition 29
follows immediately from the Claim above; Condition 2 holds because G is a set graph for
F+; and Condition 3 is vacuous here since Q = N. �

4.4 The P-normalizable case

P-Normalizability gives us a very good grasp indeed of elements of type 1: since every
f ∈ A(1) represents some partial function N ⇀ N, the normalizer norm in effect collapses
the whole of A(1) into a set of such partial functions. Moreover, in the presence of Continuity
and Restriction, it is not hard to show that any A-representable function (N ⇀ N) enjoys
certain monotonicity and continuity properties.

If f ∈ A(1), we shall write f̌ : N ⇀ N for the associated partial function: f̌(n) = m iff
f(n̂) = m̂.

Lemma 43 Assume A satisfies Continuity, Restriction and P-Normalizability, and suppose
F ∈ A(2).

(i) If f ∈ A(1) is normalized and F · f = n̂, then there exists d ∈ A(1) such that ď is
finite, f̌ extends ď and F · d = n̂.

(ii) If d ∈ A(1) with ď finite and F · d = n̂, then for any normalized f ∈ A(1) with f̌
extending ď, we have F · f = n̂.

Proof (i) Using Restriction as indicated in Section 2.6, define K ∈ A(1 → 1) so that

K · f ↓ for all f ∈ A(1), K · f · ĵ = 0̂ if f · ĵ = 0̂, and K · f · ĵ ⇑ otherwise. Now given
f ∈ A(1), define Ef ∈ A(1→ 1) by

Ef = λ∗α. norm (λ∗j. (fj) � (Kαj)) .

If α ∈ ⊥ then K · α · ĵ = 0̂ for all j, so Ef · α represents f̌ , whence Ef = norm · f .

34

Now suppose F · f = n̂. Then F · (Ef · α) = n̂ for all α ∈ ⊥, so by continuity we may

take α ∈ > such that F · (Ef · α) = n̂. But now K · α · ĵ ⇓ iff j < t, where t = t(α) < ∞;
hence d = Ef · α represents a finite function ď : N ⇀ N, where ď(j) ' f(j) for j < t, and
ď(j) ↑ for j ≥ t. Thus f̌ extends ď, and we have seen that F · d = n̂.

(ii) Suppose ď is finite and F · d = n̂, and consider a normalized f with f̌ extending ď.
We may assume d is normalized. Write {q0, . . . , qr−1} for the domain of d, set pi = d(qi)
for each i, and consider G : 1→ 1 defined by

G = λ∗h. norm (λj. if (eq j q̂0) then p̂0 else · · · if (eq j q̂r−1) then p̂r−1 else (fj) � (h 0̂)) .

Clearly, if h ∈ ⊥0 then G · h is a normalized realizer for ď, so G · h = d. On the other hand,
if h ∈ >0 then G · h is a normalized realizer for f̌ , so G · h = f . Thus d� f in the sense of
Lemma 15, and since F · d = n̂ it follows that F · f = n̂. �

We may now obtain a result for representable partial functionals which has no counter-
part in the non-P-normalizable setting. Recall that Definition 29 defined a notion of graph
for partial functionals. We shall write ∆⊥ for the set of functions N→ N⊥ representable in
A; we will henceforth feel free to identify normalized elements of A(1) with elements of ∆⊥.

Theorem 44 (Myhill-Shepherdson property) Assume A satisfies Continuity, Restric-

tion, P-Normalizability and Enumeration. Suppose F : ∆⊥ ⇀ N has a realizer F̂ ∈ A(2),

in the sense that for all f ∈ ∆⊥, F̂ · f = m̂ iff F (f) = m. Then F has a graph in ∆.

Proof Suppose F, F̂ are as above. Take γ ∈ A(1) an enumeration of all 1-codes for finite
partial functions N→ N, and take δ ∈ A(0→ 1) mapping any such 1-code to a realizer for
the finite partial function it codes. Now consider ε ∈ A(1) defined by

ε = λi. 〈γi, F̂ (δi)〉 � (F̂ (δi)) .

Then the proper range of ε consists of all graph elements 〈a,m〉 such that F (da) = m, where
da denotes the finite partial function with 1-code a. By Theorem 43(ii), each of these is a
suitable graph element for F , and by Theorem 43(i), every f such that F (f) ↓ is covered
by some such graph element. Applying Enumeration to ε, we may obtain an actual graph
g ∈ ∆ for F . �

Recall that the classical Myhill-Shepherdson theorem also includes what is essentially
the converse property: if F has a computable graph then F has a realizer. However, this
fails in our general setting, since there are functionals with computable graphs that require
‘parallel’ operations for their evaluation.

We may now easily deduce 2-regularity below N. We shall give a version of this that
strengthens what we already know from Theorem 42:

Definition 45 Suppose R ⊆ S1(N).
(i) A graph g for F ∈ S2(N, R) is a strong graph if the following strengthening of

Condition 2 from Definition 29 holds: For every 〈a,m〉 in the range of g and every f ∈ ∆
matching a (without requiring f ∈ R), we have F (f) = m.

(ii) The spectrum of A is strongly regular at N, R if every F ∈ S2(N, R) has a strong
graph.

35

Theorem 46 Assume A satisfies Continuity, Enumeration, Restriction and P-Normaliza-
bility. Then S2

A is strongly regular below N.

Proof Suppose R ⊆ S1(N) and F ∈ S2(N, R), and take F̂ ∈ A(2) a realizer for F . Let

g ∈ ∆ be a graph of F̂ as in Theorem 44 (obtained without reference to R). It is easy to

see that g serves as a graph for F : if f ∈ R then F (f) ↓ so that F̂ ·f ⇓, whence f is covered
by an element 〈a,m〉 of g, and the suitability of such graph elements over the whole of ∆⊥
entails the strong graph property. �

5 The 2-spectrum below Q ⊆ N
Thus far we have concentrated on the 2-spectrum below N. We now consider what can be
said about the 2-spectrum below an arbitrary Q ⊆ N. If Q is inhabited and enumerable
within A, say via a surjection ρ : N → Q in ∆, the 2-spectrum below Q is easily obtained
from that below N. In this case, ρ has a one-sided inverse τ (with ρ ◦ τ = idQ), com-
putable in A by minimization, so that Sub(N,Q) is a retract of N in Mod(A), whence also
R1(Q) is a retract of R1(N) = N ⇒ N . For any R ⊆ S1(Q), this restricts to a retraction
Sub(R1(Q), R) C Sub(R1(N), R′), where R′ = {f ∈ NN | f �Q ∈ R}, and it follows that
the elements of S2(Q,R) are precisely those induced by elements of S2(N, R′). Moreover,
any graph g ∈ ∆ for an element F ∈ S2(N, R′) readily induces a graph g′ ∈ ∆ for the
corresponding F ′ ∈ S2(N, R), simply by using the surjection ρ to translate graph elements
as follows:

〈〈〈q0, p0〉, . . . , 〈qr−1, pr−1〉〉,m〉 7→ 〈〈〈ρ(q0), p0〉, . . . , 〈ρ(qr−1), pr−1〉〉,m〉

The use of ρ here ensures that Condition 3 of Definition 2-graph is satisfied. (The translation
process might of course give rise to elements involving ‘inconsistent’ 1-codes: these may be
either suppressed in g′ or left as they are, since they do no particular harm.)

Let us now declare a set R ⊆ S1(Q) to be ∆-separable if the induced set

R′ = {f | f �Q ∈ R } ⊆ NN

is ∆-separable. From Theorem 38 we may now conclude:

Theorem 47 Suppose A satisfies Continuity, Iterated Restriction, Collection and Enumer-
ation. If Q ⊆ N is ∆A-enumerable and R ⊆ S1(Q) is ∆A-separable, then S2

A is regular at
Q,R.

Note that in the case ∆ = NN, then (classically) every inhabited setQ ⊆ N is enumerable,
and every R′ ⊆ NN is separable. So we may conclude:

Theorem 48 Under the hypotheses of Theorem 47, if ∆A = NN, then A is 2-regular.

We also have the counterpart to Theorem 47 in the T-Normalizable setting:

Theorem 49 Suppose A satisfies Continuity, T-Normalizability and Enumeration. If Q ⊆
N is enumerable and R ⊆ S1(Q) is arbitrary, then S2

A is regular at Q,R.

36

The situation when Q is not enumerable is harder to analyse. Although this perhaps
takes us outside the realm of computable functionals arising in typical mathematical prac-
tice, having formulated our definition of the 2-spectrum it is natural to inquire how far the
regularity phenomenon extends into it.

The following shows that even in some very well-behaved models, regularity can fail even
at Q,S1(Q) when Q is non-enumerable.

Counterexample 50 Work in the effective Scott model PCeff, which satisfies P-Normaliza-
bility along with Continuity, Enumeration, Restriction and Collection. For our present pur-
pose, let us say a statement is provable if some natural formalization of it is provable in
(say) Peano Arithmetic. We also fix on some algorithmic procedure for searching for a proof
of a given statement of PA, which will eventually find one if it exists.

Let Q be the complement of the halting set H; for convenience we suppose 0 ∈ Q. Define
F : S1(Q)→ N classically by

F (f) =

 0 if f(0) + 1 ∈ H
1 if a proof of f(0) + 1 ∈ Q is found within time f(f(0) + 1)
0 if f(0) + 1 ∈ Q but no proof of this is found within time f(f(0) + 1).

This is a valid definition in that it makes no reference to the behaviour of f outside its
domain Q. Moreover, it is easy to see that a realizer for F within PCeff(2) is given by the
following c.e. set of compact elements:

{((0 7→ q) 7→ 0) | q + 1 ∈ H} ∪
{((0 7→ q), (q + 1 7→ t) 7→ 1) | ‘q + 1 ∈ Q’ proven within time t } ∪
{((0 7→ q), (q + 1 7→ t) 7→ 0) | ‘q + 1 ∈ Q’ not proven within time t }

This is a consistent set of compacts because PA is sound. Thus F ∈ S2(Q,S1(Q)).
Suppose however that F had a computable graph g in the sense of Definition 29. Then

for every q ∈ N, g contains either an element 〈〈〈0, q〉, . . .〉, 0〉 where the ‘. . .’ does not involve
a pair 〈q+1, t〉, or an element of the form 〈〈〈0, q〉, 〈q+1, t〉, . . .〉, i〉. (It may of course contain
both.) Note that if q + 1 ∈ H then an element of the second kind cannot be present, and
if provably q + 1 ∈ Q then an element of the first kind cannot be present. By searching
for which kind of element appears first within g, we can thus obtain a decidable set D such
that H ⊆ D but P ⊆ D, where P is the set of p for which p ∈ Q is provable.

However, a Gödelian argument shows that no such decidable separation of H and P is
possible. Clearly, the question is equivalent to whether there is a decidable set E of Σ0

1

statements such that E contains all the true such statements and E all the provably false
ones. (Recall that ‘true’ and ‘provably true’ coincide for Σ0

1 statements.) Let φ0, φ1, . . . be
some effective enumeration of all Σ0

1 statements with a single free variable x, and let ψ[q]
be the statement ‘φq[x 7→ q] ∈ E’, framed as a Σ0

1 statement. Take p so that φp = ψ[x];
we now ask whether the Σ0

1 statement ψ[p] holds. If ψ[p] is true then φp[x 7→ p] ∈ E,
i.e. ψ[p] ∈ E, contradicting that E contains all true Σ0

1 statements. On the other hand, if
ψ[p] is false then there is a finite computation showing that φp[x 7→ p] ∈ E, whence ψ[p] is
provably false; but then we have ψ[p] ∈ E, contradicting that E contains all provably false
Σ0

1 statements. So we have reached a contradiction.
We thus conclude that our functional F does not have a computable graph, and hence

that PCeff is not regular at H, S1(H).

37

The above counterexample can be easily adapted to many other models that support
interleaved or ‘parallel’ computation, such as K1. Interestingly, however, the regularity
phenomenon extends significantly further in the case of sequential computability models, to
which we now turn our attention.

Definition 51 (i) By a sequential decision tree we shall mean a countably branching tree
in which

• each internal node is labelled with a question ?q where q ∈ N,

• each leaf is labelled with an answer !m where m ∈ N,

• each edge is labelled with a number p, and distinct edges branching from the same
internal node carry distinct labels.

If T is a sequential decision tree and f : N⇀ N is a partial function, then T • f , if defined,
is the unique m such that there is a finite path ?q0, p0, . . . , ?qr−1, pr−1, !m through T with
f(qi) = pi for each i.

(ii) Suppose A satisfies P-Normalizability and Restriction. We say A is sequential if for
every F ∈ A(2), the action of F on normalized elements of A(1) agrees with that of some
∆A-enumerable sequential decision tree TF .

It is easy to convince oneself that this definition covers the term models for intuitively
‘sequential’ languages such as PCF and its extensions with local state, continuations, corou-
tines etc., as well as the known game models for such languages. Another example is the
model SR of sequentially realizable functionals (classically equivalent to the strongly stable
functionals). The ‘prototypical’ sequential model is van Oosten’s combinatory algebra B,
which is explicitly built around the above notion of decision tree. Note in passing that any
sequential model automatically satisfies Continuity.

Theorem 52 If A is sequential, then S2
A is regular at Q,S1(Q) for any Q ⊆ N.

Proof Let R = S1(Q), and suppose F ∈ S2(Q,R). Take F̂ ∈ A(2) a realizer for F , and
let TF̂ be the corresponding ∆-enumerable sequential tree. We may assume without loss of
generality that TF̂ is irredundant, i.e. the same question is never asked twice on any path
through F .

We claim that for every node ?q within TF̂ we have q ∈ Q. Otherwise, take some node
?q of minimal depth within TF̂ such that q 6∈ Q, and let ?q0, p0, . . . , ?qr−1, pr−1 be the path
to this node. Define f : N → N⊥ by: f(qi) = pi for each i; f(q) = ⊥; and f(j) = 0 for
all other j. Clearly f is realizable in A(1). Moreover, f is total on Q, so we ought to have
F (f) = m for some m. However, the only path through TF̂ compatible with f includes the
node ?q, and since f(q) is undefined, the action of TF̂ on f cannot yield m. Thus every
question appearing within TF̂ is within Q after all.

It is now easy to extract an enumerable graph for F : R → N from TF̂ : each path
?q0, p0, . . . , ?qr−1, pr−1, !m gives us a graph element 〈〈〈q0, p0〉, . . . , 〈qr−1, pr−1〉〉,m〉. �

In fact, the above argument can be adapted to work for many other sets R ⊆ S1(Q).
Let us say such an R is ∆-semiseparable if there is a ∆-enumerable set JR of 1-codes such

38

that for any 1-code a with dom a ⊆ Q we have

a ∈ JR iff R ∩ Ua is inhabited.

(In contrast to Definition 33, we do not here require a way of constructing an inhabitant of
R ∩ Ua given a.)

Theorem 53 If A is sequential, Q ⊆ N, and R ⊆ S1(Q) is ∆A-semiseparable, then S2
A is

regular at Q,R.

Proof As before, suppose F ∈ S2(Q,R), take F̂ ∈ A(2) a realizer for F , and let TF̂ be

an irredundant ∆-enumerable sequential tree corresponding to F̂ . If R is semiseparable,
we may filter the nodes of TF̂ to obtain a subtree T ′

F̂
with the property that the path to

any node is matched by some f ∈ R. We now claim that for every node ?q within T ′
F̂

we
have q ∈ Q. Otherwise, take some node ?q of minimal depth such that q 6∈ Q, take f ∈ R
matching the path to this node, and let m = F (f). Then f is realized by some normalized
f ′ ∈ ∆⊥ with f ′ �Q = f . Define f ′′ by f ′′(q) = ⊥ and f ′′(j) = f ′(j) elsewhere; then

f ′′ ∈ ∆⊥ and f ′′ is also a realizer for f , so we ought to have F̂ · f ′′ = m̂. But this gives a
contradiction, since the path through T ′

F̂
determined by f ′′ goes through the node ?q. Thus

every question within T ′
F̂

is in Q, and as before, it is now straightforward to extract a graph

g ∈ ∆ for F from T ′
F̂

. �

Even in sequential models, however, there are limits to the regularity phenomenon. We
give here an artificial example of a pair Q,R at which regularity fails in all effective models.
By the subdomain of a graph g, we shall mean the union of the domains of all 1-codes a
such that some 〈a,m〉 appears in g.

Counterexample 54 Suppose A is any model in which ∆A = NN
eff. Let Q be the comple-

ment of the halting set including 0, and let

R = {f : Q→ N | f computable, f(0) ∈ Q} ,

and define F : R → N by F (f) = f(f(0)). Then F is clearly realized by λ∗f. f(f 0̂).
However, F cannot have a computable graph: if it did, its subdomain would be c.e., whereas
it is clear that this must be the whole of Q which is not c.e..

Finally, we state without proof two results indicating that even when regularity fails at
some Q,S1(Q) (as in the case of PCeff and K1), the 2-spectrum here nevertheless enjoys
some interesting and perhaps surprising properties:

Theorem 55 Suppose A is regular at N,∆. Then for every F ∈ S2(Q,S1(Q)), there is an
enumerable subset Q′ ⊆ Q such that if f0, f1 ∈ S1(Q) and f0 �Q′ = f1 �Q′ , then F (f0) =
F (f1).

Theorem 56 Assume A satisfies Continuity, Enumeration, Restriction and P-Normaliza-
bility. Then for arbitrary Q ⊆ N, any F ∈ S2(Q,S1(Q)) has a graph, not necessarily in ∆A,
with an enumerable subdomain Q′ ⊆ Q.

39

6 Non-deterministic models

We now present some mild generalizations of our main results, principally designed to cover
models of non-deterministic computation, though they also have other incidental benefits.

As a first step, we shall relax our representation of natural numbers within a model to
allow several elements of A(N) to represent the same number n. Even for some deterministic
settings this relaxation is useful: for example, in a time-sensitive programming language,
there may be many ground type terms that all evaluate to the same natural number n
but are nevertheless observationally distinct, and hence need to be represented by different
elements of A.

Technically, in place of a system of numerals 0̂, 1̂, . . ., we now postulate a modest set N
with underlying set N and realizer type N. We shall henceforth write for the realizability
relation of N : thus, for every n there exists some a n, and if a n and a n′ then
n = n′. In place of the conditions of Definition 2, we now require that there are modest set
elements

suc ∈ (N ⇒ N) , rec ∈ (N ⇒ (N ⇒ N ⇒ N)⇒ N ⇒ N) .

satisfying the relevant equations. Likewise, we shall now say our model A has ground-type
iteration if there exists iter : 1→ 1 such that whenever f ∈ A(1) and a n we have

iter · f · a m if f · a inl(m)

iter · f · a = iter · f · b if f · a inr(m) and b = outr · (f · a) ,

where outr is some fixed choice of realizer for the partial function inr(m) 7→ m.
We continue to write ∆A or just ∆ for the set of functions N → N realizable in A(1)

(that is, the set of modest set morphisms N → N). We also write e ⇓ to mean that e
evaluates to a realizer for some n ∈ N , and e ⇑ for ¬ e ⇓.

The formulations of our axioms can now be readily adapted to this setting as follows:
For Continuity, we may work with the sets

⊥ = {α | a j ⇒ α · a 0 }
> = {α | ∃t. (∀j < t, a : N. a j ⇒ α · a 0) ∧ (∀a : N. a t⇒ α · a 1) }

and take as our Continuity Axiom the statement: For any F ∈ A(2), if F · α n for all
α ∈ ⊥, then F · α n for some α ∈ >.

For Enumeration, let us say that f ∈ A(1) strictly realizes a partial function h : N⇀ N
if a n ∈ dom h implies f · a h(n), and a n 6∈ dom h implies f · a ⇑. We may now take
our Enumeration Axiom to be the statement: For every f ∈ A(1) strictly realizing some h,
there exists g ∈ ∆A whose offset range is the set of 〈n,m〉 such that h(n) = m.

T-Normalizability adapts very easily to the new setting: we again say that there is an
element norm : 1 → 1 that transforms any realizer for any f : N → N into a canonical
realizer for f . P-Normalizability can be likewise adapted using the notion of strict realizer,
though we prefer to leave this axiom to one side for now.

For Collection, we now understand the proper range of Φ ∈ A(σ0 → · · · → σr−1 → N) to
be the set of n ∈ N such that Φ · x0 · . . . · xr−1 n for some x0, . . . , xr−1. Our axiom will

40

now say that for any such Φ there exists f ∈ A(1) strictly realizing some h : N→ N whose
range equals the proper range of Φ.

Finally, Restriction adapts very easily: we require that there is an element � such that
a � b ⇓ iff a, b are both realizers for natural numbers, and in this case a � b realizes the same
number as a.

It is now routine to verify that with these adaptations to the axioms, the proofs of
Theorems 36, 38 and 42 go through in this more general setting with only bureaucratic
changes (mostly just replacing each statement e = n̂ by e n). This means that our results
apply to time-sensitive models in which many observably distinct elements may evaluate to
n, and also to Kleene’s K2 if we define our representation of natural numbers by β n iff
β(0) = n: such a representation satisfies (the new version of) Continuity whereas a single-
valued representation via numerals did not. This cures the blindspot regarding K2 that we
mentioned in Section 2.2.

We now come to the more interesting adaptation that allows for the possibility of non-
determinism. We retain the modest set N and the realizability relation as above, but we
also add a new relation �⊆ A(1)×N. Informally, we read a n as ‘a must yield the value
n’, and a � n as ‘a may yield the value n’. For we retain the same conditions before as
regards suc, rec and iter , but for � the only conditions we shall impose are:

1. a n implies a � n,

2. a n and a � m imply m = n.

Of course, these conditions are satisfied if we take �=. In general, however, we may
have a � n and a � m when m 6= n.

We shall continue to work mostly with , which has all the same properties as before:
indeed, the spectrum we wish to analyse will still consist of modest sets constructed from
N by taking exponentials and regular subobjects. We therefore define the sets S1(Q) and
S2(Q,R) as before, where Q ⊆ N and R ⊆ S1(Q), and note that since R consists entirely
of ‘deterministic’ functions, Proposition 29 still goes through as before: if F : R→ N has a
graph in ∆ the F ∈ S2(Q,R).

The chief role played by � will be in a liberalized version of the Continuity Axiom that
holds in typical non-deterministic models. Here we leave unchanged the above definitions
of >,⊥ in terms of the ‘must’ relation , but we replace the usual axiom by:

Definition 57 (May-Continuity) If A is a model with relations and � as above, then
by the May-Continuity Axiom for A we shall mean the statement: For any F ∈ A(2), if
F · α � n for all α ∈ ⊥, then F · α � n for some α ∈ >.

The intuitive justifications for Continuity mentioned in Section 2.2 also carry over to
May-Continuity, in view of the fact that in typical cases we expect � to be a c.e. relation
between ‘programs’ and natural numbers. Examples of models that satisfy May-Continuity
but not ordinary Continuity include lattice models such as Scott’s Pω (where we take a n
iff a = {n}, and a � n iff n ∈ a), and term models for programming languages with non-
deterministic choice (where the ‘must’ and ‘may’ interpretations of and � are applied).
Such models fell outside the scope of our investigation in [14], but we are hopeful that
May-Continuity will now enable us to extend results of [14] to these models at all type
levels.

41

We now see that May-Continuity alone is sufficient to support the classical KLS argument
of Theorem 36. Assuming A to be a model equipped with relations ,� as above, we take
>,⊥ as above, and define t : > ∪ ⊥ → N∞ as usual. We also define the notion of a
∆-separable set as before, with reference only to .

Theorem 58 Assume A satisfies May-Continuity. Suppose R ⊆ ∆ is ∆-separable and
F ∈ S2(N, R). Then F is continuous on R: for any f ∈ R, there exists a 1-code a matching
f such that F (f ′) = F (f) for all f ′ ∈ Ua ∩R.

Proof We explain briefly the necessary changes to the proof of Theorem 36. Again we
take F̂ a realizer for F ; notice that the hypothesis on F refers only to , so that F̂ behaves
deterministically on realizers f̂ for f ∈ R. We also use the notations h, ζ, ζ̂,H as in the
proof of Theorem 36, with the additional stipulation that each ζ̂i is normalized (note that

the functions ζi and their realizers ζ̂i behave deterministically).

As before, for f̂ realizing f ∈ ∆, α ∈ >∪⊥ and m̂ m ∈ N , we define ξ̂f̂ ,α,m̂ to behave
as follows when applied to any c j ∈ N:

• If j < t(α), return a realizer for f(j).

• Otherwise, search for i ∈ H such that ζi(k) = f(k) for all k < t(α) and F (ζi) 6= m.

• If such an i is found, return a realizer for ζi(j).

Note that ξ̂f̂ ,α,m̂ is A-computable uniformly in f̂ , α, m̂.

We now say that (f̂ , α, m̂) passes the may-test if α ∈ > and F̂ · ξ̂f̂ ,α,m̂
� m. As before,

〈a,m〉 is a suitable graph element if F (f) = m for all f ∈ Ua ∩R.

Claim 1: If f̂ realizes f ∈ R and (f̂ , α, m̂) passes the may-test, then 〈a,m〉 is a suitable
graph element, where a = a(f, α).

Proof: First, suppose for contradiction that ζi ∈ Ua ∩ R and F (ζi) m′ 6= m (noting

that F (ζi) has a deterministic value in N). Then the search in the definition of ξ̂f̂ ,α,m̂ must

succeed in discovering some ζi′ with F (ζi′) m′′ 6= m, and then ξ̂f̂ ,α,m̂ must represent ζi′ ,

so that F̂ · ξ̂f̂ ,α,m̂ m
′′, contradicting F̂ · ξ̂ � m. So F (ζi) m after all.

Next, consider a general f ′ ∈ Ua ∩R, and suppose F (f ′) m′ 6= m. Define f ′β as usual

for β ∈ > ∪ ⊥, and let f̂ ′β be a realizer for f ′β computed uniformly from β and a realizer

for f ′. Then for β ∈ ⊥ we have f ′β = f ′, whence F̂ · f̂ ′β m′ and so F̂ · f̂ ′β � m′. So

by May-Continuity, we have F̂ · f̂ ′β � m′ for some β ∈ >. But for each β ∈ > we have
f ′β ∈ R so that F (f ′β) has a determinate value; hence F (f ′β) = m′, where f ′β = ζi for some
i, contrary to what we showed above. This establishes Claim 1.

Claim 2: For any f̂ realizing f ∈ R and any m̂ m = F (f), there’s some α ∈ > such

that (f̂ , α, m̂) passes the may-test.

Proof: For any α ∈ ⊥ we have that ξ̂f̂ ,α,m̂ represents f where F (f) = m, so F̂ ·
ξ̂f̂ ,α,m̂

� m. It follows immediately by May-Continuity that there is some α ∈ > such that

F̂ · ξ̂f̂ ,α,m̂
� m, i.e. (f̂ , α, m̂) passes the may-test.

42

The theorem itself now follows immediately from Claims 1 and 2 as before. �

The argument of Section 4.2 now continues by invoking Collection to gather together
the graph elements generated from all possible choices of f̂ ∈ A(1) and α ∈ A(1), using
Restriction to filter out the unsuitable choices. In the non-deterministic setting there is
a problem with this strategy: amongst all possible candidates for f̂ , α ∈ A(1) will be

some that behave non-deterministically, and in this case the behaviour of ξ̂f̂ ,α,m̂ will be
quite unpredictable. Moreover, there is no general way to filter out these non-deterministic
values by means of Restriction tests. We are therefore unable to obtain the counterpart of
Theorem 38 in the non-deterministic setting.

However, we are able to make further progress in the presence of T-Normalizability.
Even here, a problem arises if we try to adapt the proof of Theorem 42 directly: there we
made use of a realizer F̂ whose proper domain is some set R+ ⊆ R, but there is now the
possibility that F̂ may behave non-deterministically on R+ − R, which will again lead to
unpredictable behaviour for the ξ̂f̂ ,α,m̂. We therefore restrict attention to separable domains
R in order that our functions ζi may all be taken to lie within the original domain R of F .

A further point is that our construction only gives us computations that may yield
suitable graph elements. We therefore need a version of Enumeration suitable for use with
possibly non-deterministic functions:

Definition 59 (May-Enumeration) By the May-Enumeration Axiom for A we shall
mean the statement: For every f ∈ A(1) there exists g ∈ ∆A whose offset range is the
set of 〈n,m〉 such that for some a n we have f · a � m.

This stronger form of Enumeration is indeed valid for the kinds of non-deterministic
models we have in mind, as the set of all possible values returned by a computation will
typically be computably enumerable.

With these refinements in place, we may now obtain a regularity theorem in the T-
Normalizable but non-deterministic setting. Here, as in Section 4.3, it is convenient to
work with a cut-down version of the sets >,⊥: that is, we consider ⊥1 = {α∞} and
>1 = {αn | n ∈ N}, where for each n ∈ N∞, αn ∈ A(1) is the unique normalized element

such that if î i then αn · î 0 if i < n and αn · î 0 if i ≥ n. Again as in Section 4.3,
it is easy to see that the May-Continuity Axiom of Definition 57 implies the corresponding
property for ⊥1,>1, and that this property suffices for the proof of Theorem 58.

It is also useful to note that in the presence of T-Normalizability we may obtain a
normalizer norm ′ for -realizers of natural numbers:

norm ′ = λa.norm (λb.a) a .

When m is a natural number, we shall henceforth write m̂ for the unique normalized realizer
of m.

Theorem 60 Suppose A satisfies May-Continuity, T-Normalizability and May-Enumeration.
Then A is regular at N, R for all ∆-separable R ⊆ ∆.

Proof Suppose F ∈ S2(N, R). Then the hypotheses of Theorem 58 are satisfied, and the
proof of Theorem 58 goes through with >1,⊥1 in place of >,⊥. We now continue from
where this proof left off, adapting the argument from the proof of Theorem 42.

43

Claim: For any f ∈ R where F (f) = m, there exist ζi ∈ R and α ∈ >1 such that

(ζ̂i, α, m̂) passes the may-test, where f ∈ Ua for a = a(ζi, α).

Proof: Given f,m as above and f̂ a normalized realizer for f , by Claim 2 in the proof
of Theorem 58 we may take α ∈ >1 so that (f̂ , α, m̂) passes the may-test and f ∈ Ua(f,α).
Again as in the proof of Theorem 36, we may construct fβ for each β ∈ >1 ∪ ⊥1 such that
fβ = f when β ∈ ⊥1, fβ is one of the ζi when β ∈ >1, and fβ ∈ Ua(f,α) for all β. Then

(f̂β , α, m̂) passes the may-test for all β ∈ ⊥1, so by May-Continuity there exists β ∈ >1 such

that (f̂β , α, m̂) passes the may-test. Taking i such that ζi = fβ , we also have ζ̂i = f̂β since

both are normalized; thus (ζ̂i, α, m̂) passes the may-test. Furthermore, since fβ ∈ Ua(f,α),
we have a(fβ , α) = a(f, α), so f ∈ Ua(ζi,α) as required. This proves the claim.

This shows that the graph elements 〈a(ζi, α),m〉 arising from triples (ζ̂i, α, m̂) that
pass the may-test are sufficient to constitute a set graph for F . We now need to col-
lect these together to form an actual graph in ∆. Construct within A an enumeration
(i0, α0,m0), (i1, α1,m1), . . . of all triples (i, α,m) with α ∈ >1∪⊥1 and ζi ∈ R, and use this
to construct an element h ∈ A(1) such that for any bj j we have

h · bj � m′ iff F̂ · ξ̂ζi,αi,m̂i where (i, α,m) = (ij , αj ,mj) .

Applying May-Enumeration to this h, we obtain g ∈ ∆ whose offset range consists of the
pairs 〈j,m′〉 satisfying the above condition. By easy programming within A, and again
using the enumeration j 7→ (ij , αj ,mj), we may transform this into g′ ∈ ∆ whose offset

range is the set of 〈a(ζi, α),m〉 such that (ζ̂i, αi, m̂) passes the may-test, and hence into an
enumerated graph g′′ ∈ ∆ for F . �

The above theorem applies to all non-deterministic models of interest satisfying T-
Normalizability, including Scott’s Pω, a range of non-deterministic game models, and term
models for languages with non-deterministic choice. Of course, the T-Normalizability con-
dition still excludes highly intensional models, so that (for instance) a term model for a
language with both non-determinism and time-sensitivity would still not be covered by our
treatment.

We do not know whether adopting P-Normalizability leads to any further results of
interest in the non-deterministic setting.

7 The envelope of a spectrum

We have been working so far with the notion of a spectrum as a class of types generated from
N via just two operations: taking (regular) subobjects, and forming function types − ⇒ N.
However, the intention behind the concept is that these may be taken to be representative of
a wider class of types, built up from N via the formation of general function spaces, subob-
jects and quotients. In this section we justify this point of view by showing how a category
of types with these closure properties may be reconstructed from an (abstract) spectrum,
much as (under mild conditions) the whole of a simply-typed λ-algebra is recoverable from
its pure type part (see [16, Section 4.2]). This will allow regularity results obtained for parts
of the spectrum to be extended to a wider repertoire of types better suited to the needs of
mathematical practice.

44

We have so far been dealing with spectra arising from TPCAs, but for our present
purpose we need the notion of a spectrum in the abstract, of which the spectra of TPCAs
furnish the leading examples. The formulation of the relevant closure conditions for an
abstract spectrum requires a little effort:

Definition 61 (i) An (abstract) pre-spectrum S is a tree whose nodes are labelled with sets
(also known as types) such that:

• the root node is labelled with the set S() = N;

• if a node X is labelled with a set S = S(Q0, . . . , Qk−1), then for each subset Qj ⊆ S
there is a branch from X to a node labelled with some set S(Q0, . . . , Qk−1, Qk) of
functions from Qk to N, also written as Qk ⇒ N.

The sets that label nodes are termed the proper types of the spectrum, while the subsets of
these (which label the edges) are called its subtypes. If σ is a subtype, we write Π(σ) for
the proper type from which σ arises as a subset.

A proper type S appearing in the spectrum as S(Q0, . . . , Qk−1) is said to be of level k,
as are any subtypes R ⊆ S.

(ii) The internal language of a pre-spectrum S is defined by the following typing rules,
where σ, τ range over subtypes of S, and Γ ranges over environments x0 : σ0, . . . , xr−1 : σr−1

where the xi are distinct variables:

Γ ` x : σ
x : σ ∈ Γ

Γ, x : τ ` A : N

Γ ` λxτ .A : τ → N
Γ ` A : τ ⇒ N Γ ` B : τ

Γ ` AB : N

Γ ` A : σ

Γ ` |A| : π
π = Π(σ)

Γ ` A : π

Γ ` (A � σ) : σ
π = Π(σ)

Γ ` A : N
Γ ` inl A : N

Γ ` A : N
Γ ` inr A : N

Γ ` A : N Γ, z : N ` B : ρ Γ, z : N ` C : ρ

Γ ` (A ? inl z → B | inr z → C) : ρ

Γ ` A : N
Γ ` fst A : N

Γ ` A : N
Γ ` snd A : N

Γ ` A : N Γ ` B : N
Γ ` 〈A,B〉 : N Γ ` n : N

n ∈ N

(iii) A valuation ν for a type environment Γ is a function mapping each variable x : σ
in Γ to an element ν(x) of the set σ. If Γ ` A : σ and ν is a valuation for Γ, we have a
(possibly undefined) interpretation [[A]]ν ∈ σ defined by induction on typing derivations as
follows:

• [[x]]ν = ν(x)

• If [[A]]ν,x 7→a is defined for all a ∈ τ , and the function Λa. [[A]]ν,x 7→a is present in τ → N,
then [[λxτ .A]]ν = Λa. [[A]]ν,x 7→a.

• If [[A]]ν ∈ τ ⇒ N and [[B]]ν ∈ τ are both defined, then [[AB]]ν = [[A]]ν([[B]]ν) ∈ N.

• If [[A]]ν ∈ σ is defined and π = Π(σ), then [[|A|]]ν = [[A]]ν ∈ π.

45

• If [[A]]ν ∈ π is defined, π = Π(σ) and moreover [[A]]ν ∈ σ, then [[(A � σ)]]ν = [[A]]ν .

• If [[A]]ν ∈ N is defined then [[inl A]]ν = inl([[A]]ν) where inl is some standard left
injection N→ N. Likewise for inr, fst, snd and pairing.

• If [[A]]ν = inl(n) and [[B]]ν,z 7→n = x ∈ σ, then [[(A ? inl z → B | inr z → C)]]ν = x;
similarly for inr and C.

• [[n]]ν = n.

(iv) A pre-spectrum S is an (abstract) spectrum if whenever Γ, x : τ ` A : N, ν is a
valuation for Γ and [[A]]ν,x 7→a ∈ N is defined for all a ∈ τ , we have that [[λxτ .A]]ν is defined
(that is, the function Λa. [[A]]ν,x 7→a is present in τ → N).

As regards the choice of injections inl , inr : N → N, we shall for convenience assume
inl(0) = 0 and inr(0) = 1. We shall also assume the chosen pairing operation N × N → N
is bijective.

We now show how one may build a respectable category from an abstract spectrum.
The idea is that the morphisms between types are precisely the functions definable in the
internal language, possibly relative to other elements in the spectrum:

Definition 62 If σ, τ are subtypes within a spectrum S, a function f : σ → τ is called an
S-morphism if there are a term Γ, x : σ ` A : τ and a valuation ν for Γ such that for every
a ∈ σ we have that [[A]]ν,x 7→a ∈ τ is defined and equals f(a).

It is now just a matter of some lengthy calculations to show that this definition yields a
category with good structure.

Proposition 63 Let S be an abstract spectrum. The subtypes of S and S-morphisms between
them form a concrete category, which we shall call the pre-envelope D(S) of S.

Proof The identity function on any σ is defined by the term-in-context x : σ ` x : σ. If
f : ρ → σ and g : σ → τ are defined by terms Γ, x : ρ ` A : σ and ∆, y : σ ` B : τ in
conjunction with valuations ν and µ respectively, where we may assume Γ, x and ∆, y are
disjoint, then it is easy to check that Γ,∆, x : ρ ` B[y 7→ A] : τ is a well-typed term which
in conjunction with ν;µ defines the composition g ◦ f . The unit and associativity laws are
inherited from those for ordinary sets and functions. �

Proposition 64 D(S) has binary sums. They coincide with ordinary set-theoretic sums,
and the level of a sum σ + σ′ is the maximum of the levels of σ and σ′.

Proof We use the notation A � σ to abbreviate the type coercion (|A| � σ).
The following inductive steps suffice for constructing all sums σ + σ′. As part of the

induction hypothesis, we include that fact that whenever f : σ → ρ and g : σ′ → ρ are
definable by terms Γ, z : σ ` A[z] : ρ and ∆, z : σ ` B[z] : ρ in conjunction with valuations
ν for Γ and µ for ∆, the resulting map [f, g]σ,σ′ : σ + σ′ → ρ is definable by a term of the
form

Γ,∆, x : σ + σ′ ` (C[x] ? inl y → A[D[x, y]] | inr y → B[E[x, y]]) : ρ

46

in conjunction with ν;µ, where

x : σ + σ′ ` C[x] : N
Γ, x : σ + σ′, y : N ` D[x, y] : σ

∆, x : σ + σ′, y : N ` E[x, y] : σ′

are all independent of f, g, A,B. We furthermore stipulate some semantic conditions on
these contexts. Namely, if b = inlσ,σ′(a) then [[C[x]]]x7→b = inl(c) for some c ∈ N, and
[[D[x, y]]]x7→b,y 7→c = a; likewise for inr and E[x, y].

• The sum N + N is N, with injections inlN,N, inrN,N defined by x : N ` inl x : N
and x : N ` inr x : N. For any pair of morphisms f, g : N → ρ defined by Γ, z :
N ` A : ρ and ∆, z : N ` B : ρ, the map [f, g]N,N : N + N → ρ is defined by
Γ,∆, x : N ` (x ? inl z → A | inr z → B) : ρ. (Here and below, we suppress mention of
the supporting valuations ν, µ.)

• If τ + τ ′ has been defined where τ, τ ′ are proper types, then for any subtypes σ ⊆ τ ,
σ′ ⊆ τ ′ we may take σ + σ′ to be the evident subset of τ + τ ′:

σ + σ′ = {inlτ,τ ′(x) | x ∈ σ} ∪ {inrτ,τ ′(x) | x ∈ σ′}.

If inlτ,τ ′ is definable by Γ, x : τ ` A[x] : τ + τ ′, then inlσ,σ′ is definable by

Γ, y : σ ` A[x � τ] � σ + σ′ : σ + σ ,

and similarly for inrσ,σ′ . Given any pair of morphisms f : σ → ρ, g : σ′ → ρ defined
by Γ, z : σ ` A[z] : ρ and ∆, z : σ′ ` B[z] : ρ, take contexts C[], D[], E[] appropriate
for defining maps [f ′, g′]τ,τ ′ as in the induction hypothesis; then the desired map
[f, g]σ,σ′ : σ + σ′ → ρ may be defined by

Γ,∆, x : σ + σ′ ` (C[x � τ + τ ′] ? inl y → A[D[x � τ + τ ′, y] � σ]

| inr y → B[E[x � τ + τ ′, y] � σ′]) : ρ ,

Moreover, this term is itself clearly of the required form.

• Suppose σ is a subtype for which we have already constructed N+σ, and τ = σ ⇒ N.
Then we may take N + τ to be a certain subtype of (N + σ) ⇒ N, namely the set of
e ∈ (N + σ)⇒ N such that either

– e(inlN,σ(inlN,N(n)) = 0 for all n ∈ N,

– there exists m ∈ N such that e(inlN,σ(inrN,N(n)) = m for all n ∈ N,

– e(inrN,σ(x)) = 0 for all x ∈ σ,

or

– e(inlN,σ(inlN,N(n)) = 1 for all n ∈ N,

– e(inlN,σ(inrN,N(n)) = 0 for all n ∈ N.

47

The injection inlN,τ takes m ∈ N to the function e of the first kind for this m, while
inrN,τ takes d : σ → N to the function e of the second kind that behaves as d on
its right component (we omit the tedious construction of the required formal terms).
Furthermore, given morphisms f : N → ρ and g : σ → ρ defined respectively by
Γ, z : N ` A[z] : ρ and ∆, z : σ ` B[z] : ρ, the desired map [f, g]N,τ may clearly be
defined by

Γ,∆, x : N + τ ` (|x| (inlN,σ(0)) ? inl − → A[|x| (inlN,σ(1))]

| inr − → B[λyσ. |x| (inrN,σ(y))]) : ρ

and this is of the required form.

Note that the three induction cases treated so far are enough to define N+σ for all σ.

• Finally, suppose that we have already constructed σ + σ′, and that τ = σ ⇒ N,
τ ′ = σ′ ⇒ N. We construct τ + τ ′ as a subtype of (N+ (σ+ σ′))⇒ N, namely the set
of e of this type such that either

– e(inlN,σ+σ′(n) = 0 for all n ∈ N,

– e(inrN,σ+σ′(inrσ,σ′(x))) = 0 for all x ∈ σ′,

or

– e(inlN,σ+σ′(n) = 1 for all n ∈ N,

– e(inrN,σ+σ′(inlσ,σ′(x))) = 0 for all x ∈ σ.

The injection inlτ,τ ′ takes a function d : σ → N to a function e of the first kind that
behaves as d on the σ component; likewise for inrτ,τ ′ (we omit the formal details).
Given f : σ → ρ and g : σ′ → ρ defined respectively by Γ, z : σ ` A[z] : ρ and
∆, z : σ′ ` B[z] : ρ, the desired map [f, g]τ,τ ′ may be defined by

Γ,∆, x : N + τ ` (|x| (inlN,σ(0)) ? inl − → A[λyσ. |x| (inrN,σ(inlσ,σ′(y)))]

| inr − → B[λyσ
′
. |x| (inrN,σ(inrσ,σ′(y)))]) : ρ

which is of the required form.

By inspection of these constructions, we may also see by induction that our sums are
isomorphic to ordinary disjoint unions, and that the level condition is satisfied. �

Proposition 65 D(S) has finite products. They coincide with ordinary set-theoretic prod-
ucts, and the level of a product σ × σ′ is the maximum of the levels of σ and σ′.

Proof It is easy to check that the subtype {0} of N serves as a terminal object.
The following inductive steps suffice for constructing all products σ × σ′. We here omit

syntactic details which are similar in flavour to those in the proof above.

• The product N×N is N, with projections defined using the fst and snd term construc-
tors, and the pairing of two morphisms f, g : ρ→ N constructed using 〈−,−〉.

48

• We take the product N × (σ ⇒ N) to be a subtype of (N + σ) → N, namely the set
of e ∈ (N + σ) → N such that e(inlN,σ(n)) = e(inlN,σ(n′)) for all n, n′ ∈ N. The
first projection gives the value of such an e on inlN,σ(0); the second projection gives
the behaviour of e on the σ component. The pairing of morphisms f : ρ → N and
g : ρ→ (σ ⇒ N) is an easy exercise.

• We may take the product (σ ⇒ N) × (σ′ ⇒ N) to be exactly the type (σ + σ′) ⇒ N,
with the evident structure maps.

• Suppose τ, τ ′ are proper types and σ ⊆ τ , σ′ ⊆ τ ′ are subtypes of them. Having
defined τ × τ ′, we may define σ × σ′ to be the evident subset

{p ∈ τ × τ ′ | fstτ,τ ′(p) ∈ σ, sndτ,τ ′(p) ∈ σ′} .

Projection and pairing for σ × σ′ are now defined from those for τ × τ ′ with the help
of type coercion, much as in the second induction case of the previous proof.

It is again clear by inspection that our products coincide with set-theoretic ones and that
the level condition is satisfied. �

Proposition 66 D(S) has exponentials σ ⇒ σ′. Elements of σ ⇒ σ′ are in canonical
bijection with morphisms σ → σ′; moreover, the exponentials σ ⇒ N coincide with the types
previously denoted by σ ⇒ N.

Proof The following inductive steps suffice for constructing all exponentials:

• For any subtype σ of S, we take the exponential σ ⇒ N to be the type σ ⇒ N in the
sense of Definition 61. There is then an evaluation morphism (σ ⇒ N)×σ → N defined
by p : (σ ⇒ N)× σ ` (Fst [p])(Snd [p]), where Fst [p] and Snd [p] are terms defining the
projections for (σ ⇒ N) × N. Given f : ρ × σ → N defined by Γ, p : ρ × σ ` A[p] : N,

the transpose f̃ : ρ → (σ ⇒ N) is defined by Γ, x : ρ ` λyσ. A[Pairρ,σ[x, y]], where
Pairρ,σ[] is a term denoting pairing of elements for ρ× σ.

• For any σ and σ′, we take σ ⇒ (σ′ ⇒ N) to be exactly the type (σ × σ′) ⇒ N. The
definitions of evaluation and transposition are straightforward in this case.

• Suppose σ ⇒ τ has been defined where τ is a proper type, and let ev denote its
evaluation morphism. If σ′ ⊆ τ , let σ ⇒ σ′ be the subtype of σ ⇒ τ consisting of all
e such that ev(〈e, x〉σ⇒τ,σ) ∈ σ′ for all x ∈ σ. It is then easy to see how a term for ev
yields one for evaluation at σ ⇒ σ′ with the help of some type coercion, and that the
appropriate transpose construction goes through.

Finally, elements of σ ⇒ σ′ clearly correspond to morphisms 1 → (σ ⇒ σ′), since for any
f ∈ σ ⇒ σ′ the term z : σ ⇒ σ, x : 1 ` z : σ ⇒ σ′ in conjunction with the valuation z 7→ f
clearly defines Λ ∗ .f . But the latter correspond to morphisms σ → σ′ for general abstract
reasons. �

Note that D(S) has all the subset types one could wish for, but not yet all quotient
types. Indeed, this remark can be made precise via the following general definition.

49

Definition 67 Suppose C is a category equipped with a functor I : C→ Set.
(i) We say (C, I) has subobjects if for every X ∈ C, every subset inclusion ι : S → I(X)

can be lifted to a morphism ι : Y → X with I(ι) = ι, such that for any morphism f : Z → X,
if I(f) factors through ι then f factors through ι′.

(ii) Dually, we say (C, I) has quotients if for every X ∈ C, every quotient map δ :
I(X)→ T can be lifted to some δ : X → Y with I(δ) = δ, such that for any f : X → Z, if
I(f) factors through δ then f factors through δ′.

We may now summarize the findings of the last few propositions as follows:

Theorem 68 The category D(S) is cartesian closed and has binary sums, and the forgetful
functor I : D(S) → Set preserves finite products and sums. Furthermore, (D(S), I) has
subobjects. �

The next step is to extend D(S) to a category with both subobjects and quotients. This
is accomplished easily as follows:

Definition 69 Given D(S) as above, define a category E(S) as follows:

• Objects are sets σ/∼, where σ is an object of D(S), ∼ is a (total) equivalence relation
on the set σ, and σ/∼ is the set of equivalence classes.

• Morphisms σ/∼→ σ′/∼′ are ordinary functions σ/∼→ σ′/∼′ that are represented
by some morphism σ → σ′ in D(S).

We write J : E(S)→ Set for the evident forgetful functor.

Theorem 70 E(S) is a cartesian closed category which (with its forgetful functor J) has
subobjects and quotients.

Proof That E(S) is a category is straightforward. The terminal object is obvious, and
the binary product (σ/ ∼) × (σ′/ ∼) is simply (σ × σ′)/(∼ × ∼′). For the exponential
(σ/∼) ⇒ (σ′/∼′), we let τ be the subtype of σ ⇒ σ′ consisting of all f such that x ∼ y
implies f(x) ∼′ f(y), and define an equivalence relation ≈ on τ by: f ≈ g iff for all x, y ∈ σ,
x ∼ y implies f(x) ∼′ g(y). It is routine to check that (τ/≈) serves as the required
exponential.

It is also easy to see that E(S) has subobjects and quotients: a subobject of a quotient
of σ is just a quotient of a certain subobject of σ, and a quotient of a quotient of σ is again
a quotient of σ. We leave the details to the reader. �

We shall refer to E(S) as the envelope of S: it unfolds what is implicit in S to yield
a more generous realm of types suited to the demands of mathematical practice. It now
remains to verify how this abstract story plays out in the concrete case of the spectrum
derived from a computability model A.

Theorem 71 Suppose A is any TPCA with weak numerals.
(i) The spectrum SA of A, constructed as in Definition 28, is an abstract spectrum in

the sense of Definition 61.
(ii) In this case, E(SA) is equivalent (over Set) to the full subcategory of Mod(A) gen-

erated from the modest set N of natural numbers via products, exponentials, subobjects and
quotients.

50

(Part (ii) of the theorem makes sense because Mod(A) is also a concrete category pos-
sessing subobjects and quotients in the sense of Definition 67).

Proof (i) That SA is a pre-spectrum is obvious. To verify the required closure property,
we show that each typing judgement Γ ` C : τ , where Γ = x0 : σ0, . . . , xr−1 : σr−1, gives
rise to an element [C]Γ ∈ A(σ0 → · · · → σr−1 → τ), with the property that [C]Γ ·ν(x0) · . . . ·
ν(xr−1) = [[C]]ν ∈ τ whenever the right-hand side is defined. Indeed, the definition of [C]Γ is
straightforward by induction on the derivation of Γ ` C : τ , using combinatory completeness
for the case of λ-abstraction. Note also that we take [|C|]Γ = [C]Γ and [(C � σ)]Γ = [C]Γ,
so that type coercions are ignored by [C]Γ. This suffices to show that if [[C]]ν,x7→a is defined
for all a ∈ τ then Λa. [[C]]ν,x 7→a is present in the type τ → N, since the latter by definition
consists of all modest set morphisms τ → N that are realizable in A.

(ii) Every subtype σ within SA actually arises as the underlying set of some modest set
within RA, so we may identify σ with this modest set. The translation [C]Γ above shows that
every SA-morphism σ → σ′ is also a morphism of modest sets. Moreover, by inspecting
in turn the above constructions for sums, products and exponentials within D(SA), one
may verify that these correspond to sums, products and exponentials within Mod(A), e.g.
by showing that they are isomorphic to standard presentations of these constructions on
modest sets. Since, in Mod(A), elements of X ⇒ Y correspond exactly to morphisms
X → Y , we may also read off from Proposition 66 that the modest set morphisms σ → σ′

are precisely the SA-morphisms. This amounts to showing that D(SA) is equivalent to a
certain full subcategory ofMod(A), all of whose objects may be generated from N by taking
exponentials and subobjects.

Since also Mod(A) has quotients, it follows easily that the whole of E(SA) is equivalent
to a full subcategory E ′(A) of Mod(A), all of whose objects may be generated from N
by exponentials, subobjects and quotients. Finally, since E(SA) is closed under products,
exponentials, subobjects and quotients, and the constructions of these agree with those in
Mod(A), we conclude that E ′(A) is precisely the full subcategory generated from N by these
constructions. �

7.1 An application to computable analysis

Of course, our goal in establishing all of this is to be able to extend results about portions of
SA to other parts of the envelope. For example, if the spectra of two computability models
A,B agree on some class C of types (for instance, on S(N, R) for all effectively separable R),
thenMod(A),Mod(B) will also agree on all types that can be presented as subquotients of
types in C in a uniform way. Rather than formulating a general theorem to this effect, we
shall illustrate the idea with a typical example.

Let D be a subset of Rn for some n. We ask to what extent the set of A-computable
functions D → R is robust with respect to the choice of A. To make this precise, we may
consider the (Cauchy) real number object R within Mod(A), and the regular subobject
D ⊆ Rn determined by D ∪ |Rn|; we are interested in the modest set morphisms D → R.

It is easy to see that R is isomorphic withinMod(A) to a quotient of NN by an equivalence
relation that can be defined purely set-theoretically, without reference to A. It follows easily,
either by our general results above or by a simple bespoke construction, that Rn is also
isomorphic to a certain quotient of NN, and hence that D is isomorphic to a quotient of a

51

subobject of NN, defined with reference to D but without reference to A. Thus, D in effect
appears as a subtype of level 1 within the spectrum of A, and D ⇒ N as a proper type of
level 2.

It follows that if A satisfies the hypotheses of Section 4.2 (Continuity, Iterated Restric-
tion, Collection, Enumeration) and D ⊆ Rn is ∆A-separable (in an evident sense coherent
with Definition 33), then the morphisms D → N are precisely those that have ‘graphs’
within ∆A; the set of such morphisms is thus determined solely by ∆A. (As noted in Sec-
tion 4.1, the class of separable sets is quite extensive and includes all enumerable unions
of basic open or closed sets, along with less benign examples such as the set of rational
points or its complement.) Likewise, if A satisfies the hypotheses of Section 4.3 (Continuity,
T-Normalizability, Enumeration), the same is true without any condition on D. Thus, for
example, even for arbitrary D, we obtain (for example) a fairly robust class of effectively
computable functions D ∩ Rneff → Reff, where Reff is the usual set of computable reals.

This relatively simple example serves to illustrate the envisioned use of E(SA) as a realm
of types that supporting typical constructions from ordinary mathematics. We expect more
far-reaching examples of this kind to be forthcoming once we have extended our regularity
theorems to level 3 and above.

8 Prospects for extensions and further work

8.1 Extensions to higher types

We now comment briefly on what will be involved in extending our results to type 3 and
above, as we intend to do in Part II.

First, let us consider the task of recovering the results of [14] in our setting — that is,
of analysing the contents of the pure types, with no subset types involved. As in Section 4,
our task at each type level will be to show that the class of functionals with a graph in ∆
provides both a lower and an upper bound for the set of functionals present. At type 2,
the lower bound was relatively trivial, and the main work was to use the KLS machinery
to establish the upper bound. At type 3, by contrast, the upper bound appears to flow
rather easily from the work we have done already (much as the proof of the higher-type
version of KLS follows relatively cheaply from the type 2 version), and it is the lower
bound that causes the difficulty. That is to say, programming an operation that ‘applies’
a type 3 graph to a given type 2 functional is non-trivial, and it is here that the ingenious
construction of Normann [18] comes in. Nevertheless, we fully expect that at least in the
T-Normalizable setting, a relatively straightforward adaptation of this construction (and its
elaboration in [14]) will suffice to complete the analysis at all pure types: the result will be
that the total functionals in A are the ‘Kleene-Kreisel functionals relativized to ∆A’ (cf. [16,
Section 9.5]). Note, however, that at this point the setting of a TPCA with iteration is no
longer adequate: we need to assume the presence of a recursion operator (as we did in [14])
in order to implement the Normann programs in A. (That this is essential is shown by the
left-bounded sequential procedure model, which does not yield the full class of continuous
functionals at type 3.)

The situation is less clear in the non-normalizable case. The hope is that we can adapt
the arguments from [14] for the effective case, which were designed to get round the absence

52

of normalizability. However these arguments were in some places quite subtle, and their
translation to the axiomatic setting is not completely evident. A particular challenge will
be to find a counterpart for Proposition 8.10 of [14] which involved a delicate diagonal
construction. It is this challenge that our Dependent Collection Axiom (Definition 10) is
designed to meet, although whether this suffices remains to be seen.

There is also the question of how far into the rest of the spectrum our results can be
extended, once subset types are allowed. The situation here potentially becomes increas-
ingly complex as we pass to higher types: for instance, in order to characterize some type
S3(Q,R, S), it may be that conditions on any or all of Q,R, S are necessary. Although our
expectation is that we will be able to account for enough of the spectrum to cover many
types of interest for computable analysis, exactly how much to expect here is not yet clear.

8.2 Other questions

There are of course many further questions clamouring for attention. We mention here a
selection:

• To complete the reconstruction of results of [14] in our setting, one should also consider
relative realizability interpretations of types (which are presumably straightforward)
as well as modified realizability (which could present a more substantial challenge).

• Our analysis of subtypes has so far been confined to regular subobjects: those sub-
objects Y ⊆ X such that the realizability structure on Y is simply the restriction to
Y of the one on X. Can anything of interest be said for more general subobjects? A
typical example for consideration here is the subtype of (N ⇒ 2) ⇒ 2 (interpreted
over K1) consisting of the uniformly continuous functionals: the fan functional will be
computable on this subtype if the latter is taken to be a suitably defined non-regular
subobject, but not if it is crudely interpreted as the corresponding regular subobject.

• Our work has suggested an extension of the Kleene-Kreisel functionals with subtypes
and quotients, but we have so far completely neglected the topological side to the
story. For example, can our extended category be naturally described in terms of
limit spaces or other quasi-topological structure? It would also seem natural to revisit
the work of Escardó [6] on questions of searchability and exhaustibility for predicates
on subsets of simple types σ. Does the picture change if such predicates no longer
have to be presented by total functions on the whole of σ?

• Once the appropriate higher-type extensions of our results have been worked out, we
would like to look more deeply at what exactly this implies for computability on various
spaces arising in analysis. For instance, we would expect the implications for examples
3 and 4 from Section 1.2 to be fairly clear: there should be robust computability
notions at the relevant types, and indeed the operations in question should admit
implementations in PCF that behave correctly even on inputs implemented in much
richer languages. But we are also eager to explore what other phenomena arise in
more advanced areas of analysis: the extensive body of existing work on computable
analysis (e.g. [19, 21]) is likely to be relevant here. The relationship to existing work
on higher types over the reals should also be clarified (see [20] and the references
therein).

53

• Finally, we would also like to know what other portions of higher-type computability
theory can be developed on the basis of the axioms we have given, or others like
them. A particular candidate for attention is the general theory of models of PCF
and their equational theories — the rudiments of an axiomatic treatment (drawing on
experience from synthetic domain theory) were presented in [16, Section 7.1], but we
believe there is scope for a more systematic development.

We would regard the distillation of a simple set of axioms on TPCAs with rich and
far-reaching consequences spanning several aspects of the theory as a very positive
development for the subject as a whole.

References

[1] Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U.
(eds.), Computational Logic: Proceedings of the 1997 Marktoberdorf Summer School,
pp. 1–56, Springer, Heidelberg (1999)

[2] Bauer, A.: First steps in synthetic computability theory. Electronic Notes in Theoretical
Computer Science 155, 5–31 (2006)

[3] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not enough points is enough. In: Duparc,
J., Henzinger, T.A. (eds.), CSL07: Proceedings of 16th Computer Science Logic, pp.
298–312, Springer (2007)

[4] Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2), 56–68 (1940)

[5] Cockett, R., Hofstra, P.: Introduction to Turing categories. Annals of Pure and Applied
Logic 156(2-3), 183–209 (2008)

[6] Escardó, M.H.: Exhaustible sets in higher-type computation. Logical Methods in Com-
puter Science 4(3), 37 pages (2008)

[7] Feferman, S.: Theories of finite type related to mathematical practice. In: Barwise, J.
(ed.), Handbook of Mathematical Logic, pp. 913–941, Elsevier, Amsterdam (1977)

[8] Fenstad, J.E.: General Recursion Theory. Springer, Berlin (1980)

[9] Friedberg, R.M.: Un contre-exemple relatif aux fonctionelles récursives. Comptes Ren-
dus de l’Académie des Sciences, Paris 247, 852–854 (1958)

[10] The HOL system logic, Version 11 (2017). Available from https://hol-theorem-
prover.org/

[11] Hyland, J.M.E.: First steps in synthetic domain theory. In: Carboni, A., Pedicchio,
M.C., Rosolini, G. (eds.), Category Theory: Proceedings of the International Conference
in Como, 1990, pp. 131–156. Springer, Berlin (1991)

54

[12] Kreisel, G.: Some reasons for generalizing recursion theory. In: Gandy, R.O., Yates,
C.M.E. (eds.), Logic Colloquium 69: Proceedings of the Summer School and Colloquium
in Mathematical Logic, Manchester, pp. 139–198. North-Holland, Amsterdam (1971)

[13] Kreisel G., Lacombe, D., Shoenfield, J.R.: Partial recursive functionals and effective
operations. In: Heyting, A. (ed.), Constructivity in Mathematics: Proceedings of the
Colloquium held in Amsterdam, 1957, pp. 290–297. North-Holland, Amsterdam (1959)

[14] Longley, J.: On the ubiquity of certain total type structures. Mathematical Structures
in Computer Science 17(5), 841–953 (2007)

[15] Longley, J.: Computability structures, simulations and realizability. Mathematical
Structures in Computer Science 24(2), 49 pages (2014)

[16] Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications of
Computability, Springer (2015)

[17] Moschovakis, Y.N.: Axioms for computation theories — first draft. In: Gandy, R.O.,
Yates, C.M.E. (eds.), Logic Colloquium 69: Proceedings of the Summer School and Col-
loquium in Mathematical Logic, Manchester, pp. 199–255. North-Holland, Amsterdam
(1971)

[18] Normann, D.: Computability over the partial continuous functionals. Journal of Sym-
bolic Logic 65(3), 1133–1142 (2000)

[19] Pour-El, M.B., Richards, I.: Computability in Analysis and Physics. Springer, Berlin
(1989)

[20] Schröder, M.: NNN
does not satisfy Normann’s condition. ACM Computing Research

Repository abs/1010.2396 (2010)

[21] Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

55

