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1. Introduction

1.1. Motivation

Cognitive models of sentence processing implement cognitive processing theories. They should 

hence display the same processing difficulties as humans and be able to predict processing ease 

where humans experience processing ease. This is usually not the case for general computational 

natural language processing models, which may behave very differently from humans in general 

in terms of when processing difficulties occur. For instance, a parser may not show difficulties 

for sentences where humans are garden-pathed, or may correctly process center embedding 

constructions which humans find difficult, while having a lot of trouble in recovering the 

intended structure of sentences containing minor ungrammaticalities (which is usually not 

difficult for humans), or having difficulty in dealing with ambiguities which pose little problems 

for humans.

Computational cognitive models are useful for cognitive science because they spell out 

all necessary assumptions of a theory explicitly, and can show effects of complex interactions of 

different aspects of a processing theory. Cognitive models can also be a tool for identifying what 

additional assumptions would have to be made to implement a theory. An implemented model 

makes a theory testable empirically, including not only statements about which construction 

should be easier or more difficult than which other construction, but also providing an estimate 

for the size of an effect. It can also generate quantitative predictions for so-far untested 
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constructions, which can in turn be tested empirically to provide additional support for the model

or contradict the model.

Cognitive models can hence give us insight into cognition, by attempting to give an 

explanation for the phenomena that we observe, or by at least providing an elegant description of

these phenomena. They also have potential application in wide areas of NLP, if systems could get

closer to human-levels of robustness in dealing with noise and ungrammatical input. Further 

applications for which cognitive modeling is highly relevant include readability assessment, and 

dialog systems: more natural language-based human-computer interaction could be achieved if 

dialog systems can accurately model human processing and can thus adapt the utterances 

generated by the system more optimally to human comprehension.

A computational cognitive model typically consists of an architecture which specifies the 

representations used by the computational model (see Section 2.1), a processing algorithm (see 

Section 2.2) and a linking theory (see Section 4). Applied to models of human sentence 

processing, the linking theory specifies how the parsing operations of the algorithm are 

connected to processing difficulty effects such as longer reading times, certain types of ERP 

effects or changes in acceptability.

In this chapter, we will focus on mostly syntactic aspects of sentence processing, an area 

which has received a lot of attention in the human language processing community. Note that a 

comprehensive answer to our modeling challenge would also include phonological and 

morphological processing, semantic inference, discourse processing, and other non-syntactic 

aspects of language processing. Furthermore, established results regarding the interface between 

language processing and non-linguistic cognition (e.g., the sensorimotor system) should 

ultimately be accounted for in a model of human language cognition.
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1.2. Key properties

The central tenet of computational modeling in psycholinguistics is to capture key properties of 

human language processing, as established by psycholinguistic experimentation. A striking 

property of the human language processor is its efficiency and robustness. For the vast majority 

of sentences, it will effortlessly and rapidly deliver the correct analysis, even in the face of noise 

and ungrammaticalities. There is considerable experimental evidence that shallow processing 

strategies are used to achieve this. The processor also achieves broad coverage: it can deal with a

wide variety of syntactic constructions, and is not restricted by the domain, register, or modality 

of the input.

Evidence from psycholinguistic research shows that human language comprehension is 

incremental. Comprehenders do not wait until the end of the sentence before they build a 

syntactic representation for the sentence; rather, they construct a sequence of partial 

representations for sentence prefixes. (A sentence prefix is the subsequence of a sentence from 

the first word to the word currently being processed.) Experimental results indicate that each new

word that is read or heard triggers an update of the representation constructed so far (Konieczny, 

2000; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). There is also evidence for 

connectedness in human language processing (Sturt & Lombardo, 2005). Connectedness means 

that all input words are attached to the same syntactic structure (though connected structures can 

be constructed in parallel); comprehenders build no unconnected tree fragments, even for the 

sentence prefixes that arise during incremental processing.

Furthermore, the processor is able to make predictions about upcoming material on the 

basis of sentence prefixes. Evidence for prediction comes, for example, from the finding that 
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people are able to anticipate the argument of a verb (increased fixations on the argument in a 

visual world paradigm,1 even before this argument is heard, (Kamide, Scheepers, & Altmann, 

2003). Additional evidence for prediction is provided by experiments in which N400 effects are 

observed when the form of the determiner does not match the anticipated noun (Delong, Urbach, 

& Kutas, 2005), or the processing of either . . . or constructions, where the word or and a 

following noun phrase are read faster in contexts that include either (Staub & Clifton, 2006). 

This effect can be explained if we assume that or and the second conjunct are predicted when the

parser reaches either.

Another key property of human language processing is the fact that it operates with 

limited memory, and that structures in memory are subject to decay and interference. In 

particular, the processor is known to incur a distance-based memory cost: combining the head of 

a phrase with its syntactic dependents is more difficult the more dependents have to be integrated

and the further away they are. This integration process is also subject to interference from similar

items that have to be held in memory at the same time.

2. Formalisms and algorithms

2.1. Formalisms

2.1.1. Context-free grammar

In order to build a model of human sentence processing, we have to make assumptions about 

how sentence structure is formalized and processed. Oftentimes, the psycholinguistic literature 

has couched these assumptions in the form of a context-free grammar (CFG). Context-free 

grammars model phrase structure, i.e., the hierarchical relationships that hold between the 

1 In the visual world paradigm, participants see a visual scene while hearing a sentence. Their 
eye-movements on the scene in reaction to the sentence are recorded, providing information 
about the current state of their sentence processing.
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different elements of a sentence. A CFG typically decomposes a sentence into phrasal categories 

(e.g., S for sentence, NP for noun phrase, VP for verb phrase) and lexical categories (parts of 

speech) such as determiner (Det), noun (N), and verb (V). These categories are then combined 

into context-free grammar rules, such as the following:

[Figure 22.1 here]

(1) S → NP VP NP Det → The

NP → Det N N → Kitten

VP → V NP N → Dog

V → Bit

A derivation is the sequence that results from applying a sequence of context-free rules, starting 

from a start symbol (here S). As an example, consider the derivation for the sentence the kitten 

bit the dog relative to the grammar in (1):

(2) S ⇒ NP VP ⇒ NP V NP ⇒ NP V Det N ⇒ NP bit Det N ⇒ NP bit Det dog ⇒ NP bit the 

dog ⇒ Det N bit the dog ⇒ the N bit the dog ⇒ the kitten bit the dog

A derivation assigns a syntax tree to a sentence. The syntax tree notates which rules have been 

applied in the derivation (but not the order in which they have been applied). An example is 

Figure 22.1, which gives the syntax tree for the derivation in (2).
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Crucially, a sentence can have multiple syntax trees, each of which can have a different 

interpretation, a phenomenon called syntactic ambiguity. The following sentences are 

syntactically ambiguous:2

(3) a. She sat on the chair covered in dust.

b. I put the book on the table in the kitchen.

c. Milk drinkers are turning to powder.

d. Old school pillars are replaced by alumni.

In all of these cases, the whole sentence is ambiguous, which is referred to as global ambiguity.

As the human sentence processor builds the syntax tree for the input incrementally (see 

Section 1.2), it can encounter an ambiguity that disappears later when more of the input is read. 

This is referred to as local ambiguity. An example for a local ambiguity is:

(4) The athlete realized his potential . . .

a. . . . at the competition.

b. . . . could make him a world-class sprinter.

[Figure 22.2 here]

The local syntactic trees for (4a) and (4b) are given in Figure 22.2.

Both trees are compatible with the input up until potential; only the next word 

disambiguates; however, the processor commits to a single (wrong) tree early on, and trips up 

2 Examples from http://www.fun-with-words.com/ambiguous_garden_path.html.
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when later input is inconsistent with that tree; presumably, the processor now has to compute a 

new tree that is consistent with the input, which results in longer reading times, reverse eye-

movements, lower comprehension accuracies, etc. (we will come back to this in Section 3.1).

2.1.2. Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG, Joshi, Levy, & Takahashi, 1975) is an extension of context-free 

grammar that assumes that a grammar consists of lexicalized tree fragments rather than context-

free rules. TAG assumes two operations that can combine elementary trees: substitution 

combines an initial tree with a partial tree (this happens at substitution nodes, marked with “↓”); 

adjunction combines an auxiliary tree with a partial tree (this happens at adjunction nodes, 

marked with “∗”). A TAG derivation consists of a sequence of substitution and adjunction 

operations, applied to the initial and auxiliary trees associated with the words in the sentence.

Standard TAG derivations are not incremental, i.e., words are not processed in the left-to-

right order of the input. As we saw in Section 1.2, incrementality is a key property of the human 

sentence processor, which means that TAG needs to be extended in order to be utilized in a 

model of human sentence processing. Such an extension has been proposed in the form of 

Psycholinguistically Motivated Tree-adjoining Grammar (PLTAG, Demberg & Keller, 2008b). 

PLTAG parsing proceeds strictly incrementally; all words in the input are always connected 

under a single syntactic node. This strict incrementality is made possible through a prediction 

mechanism which allows the parser to insert syntactic structure into the unfolding representation 

before its syntactic head has been encountered in the input. For example, when observing the 

noun phrase John at the beginning of a sentence, the parser would predict that this NP might be 

the subject of a sentence and would predict that a verb phrase will be encountered. (In standard 
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TAG by contrast, the verb phrase and role of the NP in the sentence would only be constructed 

once the verb is actually encountered in the input.) Figure 22.3 illustrates how this prediction 

mechanism allows PLTAG to connect the words Peter and often before the verb sleeps is 

encountered. The prediction mechanism makes use of so-called prediction trees, a new type of 

elementary tree that carries indices on each node (which mark their status as predicted and not 

yet grounded in input), as shown in Figure 22.3d. Note that prediction trees (as opposed to 

standard TAG trees) need not contain a lexical anchor.

The prediction mechanism is complemented by a verification mechanism that matches 

predictions against subsequent input, and when matching removes the prediction markers to 

indicate that the previously predicted structure is now grounded in actually observed material 

(the structure that comes with the verb sleeps in our example above).

[Figure 22.3 here]

PLTAG is a fully implemented model that consists of an algorithm for extracting a 

PLTAG grammar from an annotated corpus, a parsing algorithm that processes PLTAG structures

incrementally, and a probability model over PLTAG derivations. We will return to this in Section 

6.3.

2.1.3. Dependency grammar

Traditional context-free grammars capture the configurational structure of sentences, i.e., they 

describe which phrases a sentences is composed of and how these phrases are ordered relative to 

each other, both sequentially and hierarchically. However, this view of syntax has been 
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challenged, as it makes it difficult to analyze languages that allow discontinuous constituents or 

have free or flexible word order.

Dependency grammar is one of the answers to this challenge. It is a formalism that starts 

from the assumption that the grammatical relations between words, rather than their 

configurations, are key to sentence structure. For instance, the important thing about verbs such 

as like is that they license two NPs: an agent, found in subject position or with nominative 

inflection, and a patient, found in object position or with accusative inflection. Which arguments 

are licensed, and which roles they play, depends on the verb. The configuration of these 

arguments is secondary.

Dependency grammar therefore models the grammatical relations that hold between 

words; the claim is that these can be identified even in non-configurational languages. A 

dependency structure consists of dependency relations, which are binary and asymmetric. A 

relation is a tuple of a head h, a dependent d, and a label, which identifies the relation between h 

and d. An example for a dependency structure can be found in Figure 22.4.

[Figure 22.4 here]

[Figure 22.5 here]

Formally, a dependency structure of a sentence is a graph with the words of the sentence 

as its nodes, linked by directed, labeled edges, with the following properties: (a) connectedness: 

every node is related to at least one other node, and (through transitivity) to ROOT; (b) single 
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headedness: every node (except root) has exactly one incoming edge (from its head); (c) 

acyclicity: the graph cannot contain cycles of directed edges.

These conditions ensure that the dependency structure is a tree. We distinguish projective 

and non-projective dependency trees: A dependency tree is projective with respect to a particular 

linear order of its nodes if, for all edges h → d and nodes w, w occurs between h and d in linear 

order only if w is dominated by h (i.e., in the transitive closure of the arc relation). A dependency

tree is non-projective if w can occur between h and d in linear order without being dominated by 

h. This is illustrated in Figure 22.5.

Dependency grammar is the formalism that underlies Dependency Locality Theory, one 

of the key approaches to psycholinguistic modeling, which will be discussed in Section 6.1.

2.2. Parsing algorithms

A parsing algorithm takes a grammar and a sentence and derives a syntax tree for the sentence. A

range of parsing algorithms have been proposed in the literature (for an overview, see Jurafsky &

Martin, 2009). The most basic distinction is between top-down and bottom-up parsing 

algorithms. A top-down parser starts with the start symbol of the grammar, and expands each 

phrasal category until it reaches the leaf nodes (the words of the sentence). We already 

encountered an example for a top-down derivation in (2) for the sentence the kitten bit the dog 

with respect to the grammar in (1). A bottom-up parser starts with the leaf nodes and replaces 

each of them with phrasal categories until it reaches the start symbol. The bottom-up derivation 

for the same sentence and grammar is as follows:
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(5) the kitten bit the dog ⇒ Det kitten bit the dog ⇒ Det N bit the dog ⇒ Det N V the dog ⇒ 

Det N V Det dog ⇒ Det N V Det N ⇒ NP V Det N ⇒ NP V NP ⇒ NP VP ⇒ S

As we saw in Section 2.1.1, a derivation for a sentence using a context-free grammar can be 

ambiguous, i.e., it can assign more than one syntax tree to a given sentence, either locally or 

globally. Ambiguity occurs for every realistically large grammar, which typically has thousands 

of rules. This means that naive top-down and bottom-up parsers have a large search space to 

explore: for example, in (2), there could be many alternative ways of expanding S or NP; in (5), 

there could be multiple ways of expanding bit or dog, each allowing to derive multiple phrasal 

categories.

The standard solution to this problem is to employ a chart, a data structure that stores 

subtrees for each phrase the parser has discovered. These subtrees can then be used in subsequent

analyses that require this phrase, without having to be constructed again, making parsing much 

more efficient. Standard examples for chart parsing algorithms are the CKY algorithm and the 

Earley algorithm (Jurafsky & Martin, 2009). Of particular interest from a psycholinguistic point 

of view is left-corner parsing, a chart-parsing strategy that combines top-down and bottom-up 

information, and has been argued to be cognitively plausible based on its memory requirements 

(Abney & Johnson, 1991). While we cannot give a formal definition of the left-corner algorithm 

here, Figure 22.6 shows an example of a left-corner derivation (again for the kitten bit the dog 

with respect to (1)).

The key idea is that the parser starts bottom up with the, but then makes a top-down 

prediction of a rule whose left corner is Det, i.e., the rule NP → Det N. Next, it completes the NP

bottom up (by parsing kitten), which allows it to make another top-down prediction, as NP is the 
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left corner of the rule S → NP VP. Top-down and bottom-up predictions alternate until the input 

is consumed.

All the parsing algorithms we discussed so far are designed for CFG, but they can be 

adapted for TAG (Joshi & Schabes, 1997). For dependency grammars, a different set of parsing 

algorithms is typically employed, including transition-based parsing (Nivre, 2003) and the 

maximum spanning tree algorithm (McDonald, Pereira, Ribarov, & Hajič, 2005). An early 

implemented broad-coverage incremental probabilistic processing model was suggested by 

Crocker and Brants (2000). Their model did not claim cognitive plausibility based on the 

architecture (cascaded Markov models) but through its broad-coverage incremental parsing 

process.

3. Specific constructions

3.1. Garden paths

Garden path sentences are one of the classic human language processing phenomena. A garden 

path effect refers to a situation where a language processing difficulty becomes so severe that the

reader becomes aware of the difficulty of the sentence. The reader is initially “lured” into a very 

probable interpretation, which later turns out to be incompatible with the end of the sentence. 

The difficulty of reanalyzing the sentences can be so strong that correct analysis cannot be 

recovered, and the sentence is judged to be ungrammatical.

The most famous example is probably the sentence of Bever (1970) shown in (6):

(6) The horse raced past the barn fell.
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The reader initially analyses raced as a simple past form and hence the main verb of the 

sentence. However, this is incompatible with fell. For the correct interpretation of the sentence, 

raced past the barn must be analyzed as a reduced relative clause, and raced hence as a past 

participle.

 

[Figure 22.6 here]  

 

Garden path effects are usually not only caused by difficult syntactic constructions, but 

are also dependent on semantics, i.e., they often consist of syntactically slightly difficult 

structures that in addition are made implausible by the semantics of the sentence.

There is a qualitative difference between a minor processing difficulty which people 

often do not become aware of, and complete processing break-down, where some people are not 

able to recover the correct analysis at all. Parallel models explain this difference by assuming 

that the processor only focuses on a finite number of most probable analyses, and that the correct

analysis has fallen out of the reader’s search beam3 because it was highly unlikely compared to 

alternative analyses. Hence, the sentence must be re-analyzed from scratch, which is only 

successful if enough memory resources can be made available for the larger beam needed to 

process the sentence (Altmann & Steedman, 1988; Gibson, 1991).

 

3.2. Center embedding

A well-known construction is center embedding, where several (of the same type of) structures 

nested inside one another make sentences increasingly difficult to process (e.g., Eady & Fodor, 

3 The analyses in the search beam are the ones that the processor is actively pursuing. Typically 
a probability threshold is used to determine which analyses are removed from the beam (pruned).
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1981; Chomsky, 1957; Miller & Isard, 1964). Consider the sentences from Gibson (1998) in 

example (7):

(7) a. The intern [who the nurse supervised] had bothered the administrator [who lost the 

medical reports].

b. The administrator [who the intern [who the nurse supervised] had bothered] lost the 

medical reports.

Sentence (7b) has been shown to be considerably more difficult to process than (7a) based on 

complexity ratings. The difficulty with such sentences is usually modeled via memory access, 

i.e., as arising from having to keep a large number of similar open structures accessible in 

memory (Gibson, 1998; Warren & Gibson, 2002), or more specific constraints on the number of 

clauses that can be parsed at the same time (Kimball, 1973; Lewis, 1996; Stabler, 1994).

3.3. Locality and anti-locality

The term locality effects is used to refer to increased processing difficulty (measured typically in 

terms of increased reading times) for the second element of a long distance dependency. Longer 

processing times are usually observed for longer distance dependencies, and are essentially a 

more general notion of center embedding. Locality effects are one possible explanation for the 

subject relative clause vs. object relative clause asymmetry (i.e., the fact that object relative 

clauses are harder to process than subject relative clauses). While subject and object relative 

clauses have the same number of embeddings, an object relative clause has longer dependencies.
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Anti-locality effects have been shown for a number of languages, including German (Konieczny, 

2000; Konieczny & Döring, 2003) and Hindi (Vasishth & Lewis, 2006). Anti-locality effects 

refer to the finding that reading times can be shorter at the head when intervening material is 

inserted between the head and its arguments. Examples for anti-locality effects in German 

include results presented by Konieczny (2000) and Konieczny and Döring (2003). The 

experiment reported by Konieczny (2000) found that the verb in verb-final constructions in 

German is read faster when more material (just one argument, vs. an additional PP vs. a longer, 

modified PP) occurred before the verb. This finding is contrary to the locality effect found in 

English center embedding and the subject/object relative clause asymmetry. A similar experiment

was conducted by Konieczny and Döring (2003), who also controlled for length of the 

intervening material between conditions. An example of their materials is shown in (8).

(8) a. Die Einsicht, dass [NP-NOM der Freund] [NP-DAT dem Kunden] [NP-ACC das Auto 

aus Plastik] verkaufte . . .

the insight, that the friend the client the car from plastic sold, . . .

“The insight that the friend sold the client the plastic car . . . ”

b. Die Einsicht, dass [NP-NOM der Freund [NP-GEN des Kunden]] [NP-ACC das Auto 

aus Plastik] verkaufte, . . .

the insight, that the friend of the client the car from plastic sold, . . .

“The insight that the friend of the client sold the plastic car . . . ”

 

In materials following the example in (8), reading times on the verb verkaufte are shorter in (8a) 

than in (8b), even though the length of interfering elements is exactly identical. Such anti-locality

effects can be accounted for in terms of entropy or surprisal, see Section 4.
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3.4. Local coherence

It has been observed that processing difficulty can sometimes occur in sentences that are neither 

ambiguous nor particularly complex (Tabor, Galantucci, & Richardson, 2004). An example for 

this is the sentence in (9a), which has the same syntactic complexity as (9c).

(9) a. The coach smiled at the player tossed a frisbee by . . .

b. The coach smiled at the player who was tossed a frisbee by . . .

c. The coach smiled at the player thrown a frisbee by . . .

d. The coach smiled at the player who was thrown a frisbee by . . .

The important difference between the sentences is that in (9a) the word sequence the player 

tossed a frisbee is a coherent string of words where the player would be the subject of a main 

verb tossed, while the player thrown a frisbee cannot be interpreted as such. While (9a) can be 

expected to be the most difficult sentence among the sentences in (9), because reduced relative 

clauses are more difficult than non-reduced relative clauses, and ambiguous verb forms are more 

difficult than unambiguous verb forms, the observed difficulty effect was stronger than would be 

expected by adding the verb ambiguity and reduced relative clause effects.

A common explanation for the effect is that the locally coherent interpretation of the 

player tossed a frisbee interferes with the globally coherent analysis of the sentence, and has 

therefore been argued to provide evidence against a view of strictly incremental processing, as 

the locally coherent analysis should not be calculated in the first place, because the player 

already has a different function in the sentence, and cannot possibly be the subject of tossed, and 
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tossed cannot be the main verb of the sentence, as there is already a main verb, smiled. 

Alternatively, this type of effect could be explained by a noisy-channel model, where readers 

maintain uncertainty about what they have processed so far (under this account, readers take into 

consideration that they may have misheard or misread, or that the speaker may have 

mispronounced / misspelled). The reader would then generate hypotheses compatible with 

plausible input that differs from the actually perceived input (Levy, Bicknell, Slattery, & Rayner, 

2009). This kind of explanation would still be compatible with rational incremental language 

processing.

3.5. Competition

Competition effects are used to refer to the observation that ambiguous words or structures cause 

higher processing difficulty than unambiguous words or structures. Such effects were initially 

observed for lexical ambiguities, in experiments that compared reading times on words that were

unambiguous, ambiguous with one predominant meaning or ambiguous with two meanings 

being similarly prominent. Experimental results showed that fixation times on words with two 

similarly prevalent meanings were longer than on the other two classes (Duffy, Morris, & 

Rayner, 1988), which was then explained as both analyses “competing” with one another and 

hence taking longer to be processed. MacDonald, Pearlmutter, and Seidenberg (1994) suggested 

that syntactic ambiguities might show similar effects, with supporting evidence provided by 

experiments on prepositional phrase attachment ambiguities (Spivey-Knowlton & Sedivy, 1995).

 

3.6. Facilitating Ambiguity

In the so-called facilitating ambiguity effect (Traxler, Pickering, & Clifton, 1998), reading times 

can be faster (as opposed to slower, which would be in line with competition effects) under some
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circumstances in an ambiguous region compared to an unambiguous region. Consider example 

(10): the reflexive pronoun herself/himself in (10a) and (10b) is unambiguous in that it can only 

refer to the daughter/colonel respectively. In sentence (10c) however, himself is ambiguous as to 

whether it refers to the son or the colonel.

(10) a. The daughteri of the colonelj who shot herselfi/∗ j on the balcony had been very 

depressed.

b. The daughteri of the colonelj who shot himself∗i/j on the balcony had been very 

depressed.

c. The soni of the colonelj who shot himselfi/j on the balcony had been very depressed.

Reading times were found to be faster on the himself/herself and immediately following region in

the ambiguous case (1c). This finding is difficult to explain for models who assume competition. 

Models that can account for facilitating ambiguity effects model the effect by avoiding to fully 

disambiguate these sentences until necessary.

3.7. Commitment and digging-in

Digging-in effects refer to the finding that a wrong syntactic analysis becomes harder and harder 

to reanalyze the longer the ambiguous region is. As an example, consider the sentences in (11). 

Sentences (11a) and (11b) are initially ambiguous at the NP the book with respect to whether the 

NP is an argument of the verb write or the subject of the main phrase, while sentences (11c) and 

(11d) are not (because the verb already has an argument, the essay). Subjects initially interpret 
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the book as an object of write because it is a semantically very likely object of write and because 

write is more often seen as a transitive verb than as an intransitive one.

(11) a. As the author wrote the book grew. (ambiguous, short)

b. As the author wrote the book describing Babylon grew. (ambiguous, long)

c. As the author wrote the essay the book grew. (unambiguous, short)

d. As the author wrote the essay the book describing Babylon grew. (unambiguous, long)

It has been shown using acceptability judgments (Ferreira & Henderson, 1991) and reading times

(Tabor & Hutchins, 2004), that (11b) is much more difficult than (11a) and the control condition 

(11d). One would expect (11b) to be the most difficult condition anyway, as it is more complex 

than (11b) and more ambiguous than (11d). However, Tabor and Hutchins found a difficulty 

effect on the last word of (11b) (an interaction between length and ambiguity before 

encountering grew) that goes beyond the main effects of ambiguity and complexity. This effect 

may be related to the even stronger garden path effects where recovery of the correct analysis 

may fail completely, or to effects related to the strength of context constraint.

Context constraint has been shown to facilitate processing of an expected word. 

However, there are also effects indicating that there may be additional effects related to the 

overall level of constraint of a context on processing. Federmeier, Wlotko, De Ochoa-Dewald, 

and Kutas (2007) show in an ERP study that while the N400 related to predictability is the same 

in weakly and strongly constraining contexts, strongly constraining contexts show a larger late 

positivity.
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4. Linking theories

We have now seen a range of different grammar formalisms that can describe syntactic structure, 

as well as different parsing algorithms that describe how to use a grammar to construct the 

syntactic representation for linguistic input. The function of a so-called “linking theory” or 

“linking hypothesis” is to suggest what aspects of the parsing process are effortful and hence lead

to observable processing difficulty. The linking theory, together with a grammar and a parsing 

algorithm constitutes a processing model (see Section 6), which we can then test as to whether it 

can account for the data, i.e., both broad-coverage processing and experimental data as outlined 

above (see Section 3).

4.1. Early approaches

Early attempts at accounting for the occurrence of processing difficulty (with a specific focus on 

garden path sentences) suggested that language processing may be subject to a range of 

constraints or preferences that are used to rank alternative parses for a sentence, such that some 

structures would be predicted to be preferred over others. Processing difficulty would be related 

to cases where a dispreferred analysis would turn out to be the only viable one. Very strongly 

dispreferred structures are pruned, which provides a mechanism to account for garden path 

sentences (cases of extreme processing difficulty). The most important constraints were based on

locality preferences (e.g., Right Association, Kimball, 1973; Local Association, Fodor & Frazier, 

1978; Late Closure, Frazier, 1979; Final Arguments, Ford, Bresnan, & Kaplan, 1982; Attach Low

and Parallel, Hobbs & Bear, 1990; and the Recency Preference, Gibson, 1991). These hypotheses

were only descriptive and not very generalizable, and have since been replaced by linking 

hypotheses that can apply to a larger range of structures and phenomena.

20



4.2. Memory decay and interference

Based on the observed processing difficulty that humans encounter in sentences with center 

embeddings or long dependencies (locality effects), several linking theories have been suggested 

which attribute processing difficulty to retrieving material that has already been processed from 

memory to integrate it with new upcoming information. Variants of these ideas also take into 

account whether there are strong competitors, i.e., the degree to which other entities in memory 

may lead to interference effects when retrieving the relevant entities. The most well-known 

linking theory that describes this aspect is the integration cost component of Dependency 

Locality Theory (DLT; Gibson, 1998, 2000). Processing difficulty is suggested to be related to 

the distance between a dependent and its head: in order to semantically integrate the two 

concepts, the dependent needs to be retrieved from memory. Different ways of quantifying the 

distance have been suggested in the literature, and include counting the number of new discourse

referents that have been encoded since processing the dependent (Gibson, 1998, p. 12f; Warren 

& Gibson, 2002), simply counting intervening words (Demberg, Keller, & Koller, 2013; 

Temperley, 2007), or counting the number of intervening syntactic heads (Alexopoulou & Keller,

2007). Note that processing difficulty estimates for locality costs depend on the grammar 

formalism used to describe the linguistic structure.

 

4.3. Short term memory load

A related idea is that processing may slow down under high memory load – if there are many 

open dependencies, these may have to be maintained in working memory, and the process of 

maintaining entities in working memory may overall slow down processing. This idea is 

formalized as part of the storage cost component of DLT (Gibson, 1998, 2000). Earlier proposals 
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suggested that processing difficulty may be related to the depth of embedding of the current 

word, and this idea has also been taken up and tested in later proposals, e.g., (Pynte, New, & 

Kennedy, 2008; Schuler, AbdelRahman, Miller, & Schwartz, 2010), where processing difficulty 

is hypothesized to occur when a new dependency needs to be added to the memory, or a stored 

dependent needs to be retrieved from memory for integration. In DLT (see Section 6.1), a 

combination of integration cost and storage costs is used to also explain how ambiguous input is 

resolved (preference for structures with lower memory requirements). Storage cost depend on the

grammar formalism over which it operates, as different grammar formalisms may suggest flatter 

vs. deeper structures or may posit a different number of open dependencies (e.g., differences in 

subcategorization frames affect the number of expected open dependencies) for a given linguistic

input.

4.4. Frequency-based linking

Frequencies have early on been found to significantly correlate with processing difficulty and 

reading times (slower reading on infrequent words). Frequency-based linking hypotheses hold 

that frequency effects may not only occur for lexical access but also for syntactic structures 

(more frequent structures are processed faster than infrequent ones). Underlyingly, this could for 

instance be due to faster memory retrieval for words and structures that are used more often and 

may thus be easier to activate, or to the retrieval of larger structures, so that less online 

integration is necessary. Jurafsky (1996) first proposed to use probabilistic context free 

grammars (PCFGs)4 to estimate probabilities of alternative analyses and used the probabilities to

explain garden path sentences: Only the most probable parses (according to the PCFG) would be 

kept in memory. The improbable ones were pruned using beam search, which discards highly 
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improbable analyses. For interpretations that were pruned, the parser would have to backtrack, 

which explains the processing difficulty for garden path sentences.

Frequency estimates for linguistic structures obviously very strongly depend on the form 

and size of linguistic structures that are assumed by the grammar formalism. Furthermore, 

frequency estimates also depend on the corpus from which they are estimated.

4.5. Conflict

A question that arises in the construction of probability-based models is whether probabilities 

from different sources (n-grams, parsing, valency) are needed, and how to combine them. 

Narayanan and Jurafsky (2002) use a belief network with probabilities from a range of different 

sources. A belief network is more powerful than a PCFG4 but it is harder to justify the 

contributing factors and their relationship to one another.

Padó, Crocker, and Keller (2009) suggest a linking hypothesis according to which 

processing difficulty ensues if probabilities from two different processing components (e.g., 

syntactic structure and semantics) do not agree with each other, i.e., when they bias the 

interpretation towards different analyses. This linking hypothesis potentially has some points of 

overlap with the competition models, except that for the conflict hypothesis, the source of the 

competition between alternative analyses stems from potentially different processes within 

comprehension (syntax vs. semantics). This linking hypothesis hence requires an architecture in 

which syntax and semantics (or whatever domains from which costly conflicts can arise) are 

different processes.

4 A PCFG is a context-free grammar in which each grammar rule is associated with a 
probability. The overall probability of a parse tree is defined as the product of the probabilities of
all grammar rules that are applied when generating the tree.
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4.6. Information content and surprisal

A measure that has received a lot of attention in the sentence processing literature is surprisal 

(Hale, 2001; Levy, 2008a). Surprisal quantifies the amount of new information conveyed by a 

word in context, and the surprisal at word wi is formalized as −log P(wi|w1 . . . wi−1), i.e., as the 

probability of observing word wi given that words w1 . . . wi−1 have already been processed. The 

linking hypothesis for surprisal is hence that processing difficulty is proportional to the amount 

of new information that needs to be processed. Surprisal as such is agnostic with respect to the 

grammar formalism that is used to as a processing mechanism to derive the predictability 

estimates, but just like for frequencies, actual surprisal values depend both on the grammar 

formalism and the data used to estimate the model. Using surprisal as a linking hypothesis also 

puts constraints on the processing algorithm, which needs to be incremental in order to properly 

estimate the probability of a word given previous content. An extension of the concept of 

surprisal is the noisy channel hypothesis (Levy, 2008b), which proposes that language 

comprehenders always maintain some uncertainty about the linguistic input. This overall 

uncertainty about the input may be due to uncertainty in visual perception during reading, 

uncertainty about auditory processing due to noise or uncertainty due to own cognitive processes 

(e.g., imperfect encoding or short term memory). With a noisy channel extension to the model, 

the identity of word wi and earlier words that the model conditions on are not certain, but can 

themselves be described using a probability distribution. However, no broad-coverage noisy 

channel model exists, as it is unclear to date how to adequately estimate the probabilities of the 

input observations. 
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4.7. Uncertainty and competing analyses

Another family of linking hypotheses is related to the idea that ambiguity in the linguistic input 

may cause processing difficulty: The competition hypothesis suggests that it may be difficult if 

two or more alternative linguistic analyses have a similar likelihood. These analyses may then 

compete against one another till one of the alternatives reaches criterion. The same basic concept

is also reflected in using entropy as a measure for processing difficulty: processing difficulty at a 

word is suggested to be correlated to the amount of entropy at that word. There are different 

notions however regarding what entropy is meant: entropy with respect to alternative analyses up

to the current word (this is most similar to the competition models), entropy about the upcoming 

next word (Roark, Bachrach, Cardenas, & Pallier, 2009; Willems, Frank, Nijhof, Hagoort, & Van

den Bosch, 2016), or entropy about the rest of the sentence (Linzen & Jaeger, 2016).

4.8. Entropy reduction

The entropy reduction (ER) hypothesis (Hale, 2003, 2006) suggests that processing difficulty 

may be related to changing from a state of high uncertainty about the rest of the sentence to a 

state of lower uncertainty about the rest of the sentence during parsing. There are however some 

conceptual difficulties with this notion (e.g., uncertainty can also increase when processing a 

sentence, which is not related to any cost or benefit), as discussed by Linzen (2015) and Linzen 

and Jaeger (2016). Additionally, there is the practical difficulty that entropy with respect to the 

complete rest of the sentence is extremely difficult to estimate. A number of authors have 

empirically evaluated the entropy reduction hypothesis (S. L. Frank, 2013; Linzen & Jaeger, 

2016; Roark et al., 2009); note however that these implementations are based on different 

parsers, and use different amounts of look-ahead (entropy reduction with respect to the next 
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word, next four words or whole sentence). Linzen and Jaeger (2016) show that the amount of 

look-ahead massively affects ER estimates.

[Table 22.1 here]

5. Data sets and evaluation

5.1. Test sets

A key challenge that needs to be addressed in order to develop cognitively plausible models of 

human language processing concerns test data and model evaluation. Here, the state of the art in 

psycholinguistic modeling lags significantly behind standards in computational linguistics. Most 

of the models that will be discussed in Section 6 have not been evaluated rigorously. The authors 

typically describe their performance on a small set of hand-picked examples; often, no attempt is 

made to test on a range of items from the experimental literature and to evaluate directly against 

experimentally obtained measures of human language processing (e.g., reading times). This 

makes it very hard to obtain a realistic estimate of how well the models achieve their aim of 

capturing human language processing.

More recent work in psycholinguistic modeling has started to use standardized test sets 

for model evaluation, similar to what is commonplace for tasks in computational linguistics. In 

computational linguistics, parsers are evaluated against the Penn Treebank, word sense 

disambiguation systems against the SemEval data sets, co-reference systems against the Tipster 

or ACE corpora, etc. In psycholinguistic modeling, evaluation is more complicated: two types of 

test data are required. The first type of test data consists of a collection of representative 

experimental results. Such datasets should contain the actual experimental materials (sentences 
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or discourse fragments) used in the experiments, together with the experimental measurements 

obtained (reading times, eye-movement records, ERP data, etc.). The experiments included in 

this test set should be chosen to cover a wide range of experimental phenomena, e.g., garden 

paths, syntactic complexity, memory effects (see Section 3). Such test sets enable the 

standardized evaluation of psycholinguistic models by comparing the model predictions 

(rankings, surprisal values, memory costs, etc.) against experimental measures on a large set of 

items. This way both the coverage of a model (how many phenomena can it account for) and its 

accuracy (how well does it fit the experimental data) can be assessed.

Experimental test sets should be complemented by test sets based on corpus data. In order

to assess the efficiency, robustness, and broad coverage of a model, a corpus of unrestricted, 

naturally occurring text is required. The use of contextualized language data makes it possible to 

assess not only syntactic models, but also models that capture discourse effects. These corpora 

need to be annotated with experimental measures, e.g., eye-tracking or reading time data. Some 

relevant corpora have already been constructed, see the overview in Table 1, and various authors 

have used them for model evaluation (Demberg & Keller, 2008a; Ferrara Boston, Hale, Kliegl, 

Patil, & Vasishth, 2008; S. L. Frank, 2009; J. Mitchell, Lapata, Demberg, & Keller, 2010; Patil, 

Vasishth, & Kliegl, 2009; Pynte et al., 2008; Roark et al., 2009).

5.2. Behavioral and neural data

As outlined in the previous section, a number of authors have evaluated psycholinguistic models 

against eye-tracking or reading time corpora. Part of the data and evaluation challenge is to 

extend this evaluation to neural data as provided by event-related potential (ERP) or brain 

imaging studies (e.g., using functional magnetic resonance imaging, fMRI). Neural data sets are 
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considerably more complex than behavioral ones, and modeling them is an important new task 

that the community is only beginning to address. Some recent work has evaluated models of 

word semantics against ERP (S. Frank, Otten, Galli, & Vigliocco, 2015; Murphy, Baroni, & 

Poesio, 2009) or fMRI or MEG data (Hale, Lutz, Luh, & Brennan, 2015; T. M. Mitchell et al., 

2008; van Schijndel, Murphy, & Schuler, 2015; Wehbe, Ashish, Knight, & Mitchell, 2015; 

Willems et al., 2016). This is a very promising direction, and the challenge is to extend this 

approach to the sentence and discourse level (see Bachrach, 2008). Again, it will be necessary to 

develop standardized test sets of both experimental data and corpus data.

5.3. Evaluation measures

We also anticipate that the availability of new test data sets will facilitate the development of 

new evaluation measures that specifically test the validity of psycholinguistic models. 

Established evaluation measures from computational linguistics such as Parseval are of limited 

use, as they can only test the linguistic, but not the behavioral or neural predictions of a model.

So far, many authors have relied on qualitative evaluation: if a model predicts a difference in (for

instance) reading time between two types of sentences where such a difference was also found 

experimentally, then that counts as a successful test. In most cases, no quantitative evaluation is 

performed, as this would require modeling the reading times for individual items and individual 

participants. Suitable procedures for performing such tests do not currently exist, though linear 

mixed effects models (Baayen, Davidson, & Bates, 2008) provide a way of dealing with item and

participant variation.

Further issues arise from the fact that we often want to compare model fit for multiple 

experiments (ideally without reparametrizing the models), and that various mutually dependent 
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measures are used for evaluation, e.g., processing effort at the sentence, word, and character 

level. An important open challenge in this area is to develop evaluation measures and associated 

statistical procedures that can deal with these problems.

6. Models

The earliest approaches were ranking-based models, which make psycholinguistic predictions 

based on the ranking of the syntactic analyses produced by a probabilistic parser. Jurafsky (1996)

assumes that processing difficulty is triggered if the correct analysis falls below a certain 

probability threshold (i.e., is pruned by the parser). Similarly, Crocker and Brants (2000) assume 

that processing difficulty ensues if the highest-ranked analysis changes from one word to the 

next. Both approaches have been shown to successfully model garden path effects. Being based 

on probabilistic parsing techniques, ranking-based models generally achieve a broad coverage, 

but their efficiency and robustness has not been evaluated. Also, they are not designed to capture 

syntactic prediction or memory effects (other than search with a narrow beam in Brants & 

Crocker, 2000).

The ranking-based approach has been generalized by surprisal models, which predict 

processing difficulty based on the change in the probability distribution over possible analyses 

from one word to the next (Demberg & Keller, 2008a; Ferrara Boston et al., 2008; Hale, 2001; 

Levy, 2008a; Roark et al., 2009). These models have been successful in accounting for a range of

experimental data, and they achieve broad coverage. They also instantiate a limited form of 

prediction, viz., they build up expectations about the next word in the input. On the other hand, 

the efficiency and robustness of these models has largely not been evaluated, and memory costs 

are not modeled (again except for restrictions in beam size).
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Prediction-based models explicitly predict syntactic structure for upcoming words 

(Demberg & Keller, 2008b, 2009), thus accounting for experimental results on predictive 

language processing. This approach implements a strict form of incrementality by building fully 

connected trees. Memory costs are modeled directly as a distance-based penalty that is incurred 

when a prediction has to be verified later in the sentence. 

The stack-based model (Schuler et al., 2010) imposes explicit, cognitively motivated 

memory constraints on the parser, in effect limiting the stack size available to the parser. This 

delivers robustness, efficiency, and broad coverage, but does not model syntactic prediction. A 

series of psycholinguistic evaluation studies that build on this model have recently been carried 

out (van Schijndel, Exley, & Schuler, 2013; van Schijndel et al., 2013; van Schijndel et al., 

2015).

6.1. Dependency Locality Theory

Dependency Locality Theory (DLT), suggested by Gibson (1998), operates on top of a 

dependency analysis. Processing difficulty according to DLT is related to the use of the 

computational resources consumed by the processor. Two distinct cost components can be 

distinguished: (i) integration cost associated with encoding new referents and with integrating 

referents into the structures already built at a given stage in the computation, and (ii) storage cost

involved in the storage of parts of the input that may be used in parsing later parts of an input.

Integration costs and storage cost interact through the concepts of energy units, memory 

units and time units. According to the model, there is only a limited number of energy units 

available at each point in time, so working memory resources can be used up by having to 

remember many dependencies (thus using up lots of memory units), in which case there will be 
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less resources for actual integrations (as measured using integration cost), in turn causing them to

take more time. The relationship between energy units, memory units and time units was 

formalized as EU = MU × TU. In the case of ambiguity, analyses that require fewer energy units 

are preferred.

DLT has been shown to account for a range of linguistic effects including the 

subject/object relative clause asymmetry, difficulty of center embeddings, garden paths, filler-

gap dependencies, heavy NP shift, and extraposition (Gibson, 1998, 2000; Warren & Gibson, 

2002; Roark et al., 2009). Broad coverage implementations exist only of the DLT integration cost

component (which Gibson, 1998, suggests is the more important component), based on the 

MiniPar parser (Demberg & Keller, 2008a). A later reimplementation calculates integration cost 

on top of Stanford dependencies, which achieves better performance (see Demberg, 2013). The 

broad coverage evaluations showed that there is scant evidence for an effect of integration cost 

on reading times in general texts (see Demberg & Keller, 2008a, for a detailed analysis, as well 

as confirmatory evidence from van Schijndel & Schuler, 2013).

6.2. Information-theoretic models

Information-theoretic measures (surprisal, entropy, entropy reduction, see Section 4.6) can be 

calculated based on incremental generative language models. A first implemented (toy) model, 

based on a PCFG, was suggested by Hale (2001). As surprisal as an information-theoretic 

measure is in principle agnostic with respect to the underlying way of estimating information 

content (i.e., based on word sequences, syntactic structures, semantic expectancies, see also 

Levy, 2008a), various alternative model implementations have been proposed, including top-

down PCFG parsing (Roark, 2001; Roark et al., 2009), dependency-parser based surprisal model 
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(Ferrara Boston et al., 2008), tree-adjoining grammar based (Demberg et al., 2013), generalized 

categorial grammars (van Schijndel & Schuler, 2013) as well as sequence model working on 

POS tag sequences (S. L. Frank & Bod, 2011) (see also chapter 21 by Frank, Monaghan and 

Tsoukala in this volume, who introduce this and related models in more detail). Most current 

models include representations of hierarchical syntactic structure for surprisal prediction, as this 

has been shown to more accurately fit human data (for more detail on a controversy of the 

empirical usefulness of representing hierarchical structure in information theoretic models, see S.

L. Frank & Bod, 2011, and Fossum & Levy, 2012).

Of course there is no specific reason why surprisal estimates should only model lexical 

information and syntax. Suggestions for how to include semantic information into surprisal 

models have been proposed (Blacoe & Lapata, 2012; J. Mitchell et al., 2010; Sayeed, Fischer, & 

Demberg, 2015).

In order to determine surprisal accurately, full parallel search would be necessary. Due to 

performance reasons, however, all widely used parsers use beam search, i.e., they do not 

compute all possible analyses to determine surprisal. Some of these models (Roark et al., 2009; 

S. L. Frank & Bod, 2011) have also been used to calculate related information-theoretic 

measures such as entropy and entropy reduction. A particular challenge for good estimates of 

entropy or entropy reduction is that one would need to estimate the entropy of the whole rest of 

the sentence, i.e., we would need to calculate a probability distribution over the unseen rest of the

sentence at each word. As this is very hard and compute-intensive to estimate, most 

implementations only regard a limited context of next word or next few words, see also Linzen 

& Jaeger (2016).
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 Surprisal models have been shown to explain a wide range of psycholinguistic 

phenomena (see Levy, 2008a, for a more detailed discussion), and furthermore perform well on 

broad-coverage modeling on eye-tracking corpora (Demberg & Keller, 2008a; Ferrara Boston et 

al., 2008; Roark et al., 2009; van Schijndel & Schuler, 2013). S. Frank et al. (2015) furthermore 

showed that surprisal estimates are predictive of the size of the ERP component N400.

6.3. Psycholinguistically motivated tree-adjoining grammar

Psycholinguistically Motivated Tree-adjoining Grammar (PLTAG) is a computational model that 

explicitly accounts for prediction effects in human parsing. It is psycholinguistically motivated in

that it simulates strict incrementality and incorporates an explicit prediction and verification 

process, as well as memory decay (see Section 1.2 for a discussion of these key properties of 

human sentence processing). The PLTAG model consists of a grammar formalism, also called 

PLTAG (Demberg & Keller, 2008b, see Section 2.1.2), together with a parser and a probability 

model for this formalism (Demberg et al., 2013), and a linking theory that relates PLTAG to 

behavioral data (Demberg & Keller, 2009).

PLTAG has two mechanisms that account for processing difficulty. First, surprisal is used

to quantify difficulty in terms of updates to the parser’s probability distribution over possible 

analyses as the sentence unfolds. Surprisal can be calculated straightforwardly from the 

probabilities of the (always fully connected) prefix trees of a sentence (a prefix tree is a partial 

tree that spans a prefix of a sentence). Second, difficulty can arise at verification time, when 

previously predicted structures are checked against what is actually encountered in the input. By 

hypothesis, the amount of difficulty generated by verification depends on (a) how difficult the 

prediction was: the less probable the predicted structure, the higher the verification difficulty; 
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and (b) how recently the prediction was made: the more the prediction has decayed, the higher 

the verification difficulty.

In order to model memory decay, the processor needs to keep track of when each 

syntactic node was predicted. Technically, this is realized by assuming that a predicted node 

carries a timestamp that is initialized when the node is committed to memory. Based on the time-

stamp, the duration between initial prediction and verification can be quantified. The verification 

process thus attributes difficulty to the memory retrieval process that happens when newly 

encountered evidence is matched against structure whose representation has decayed since it was

last activated.

It is instructive to compare PLTAG verification cost to DLT integration cost. While both 

are distance-based costs, they differ in how distance is calculated. In DLT, distance is a linear 

function of the number of discourse referents between an argument and its head; verification cost

on the other hand is computed using an exponential decay function based on the number of 

words intervening between the point at which the prediction was made and the point at which it 

is verified. Furthermore, verification cost not only depends on distance, but also on the difficulty 

of the prediction. This is modeled in terms of the probability of the predicted structure: the lower 

the probability of the predicted structure, the higher the cost of verifying it (see Demberg et al., 

2013, for a formalization of this intuition).

PLTAG and DLT therefore differ in their assumptions about what causes processing 

difficulty: DLT integration cost attributes difficulty to integrating the head and its dependents. In 

PLTAG, the relevant syntactic structure has already been predicted at the point of verification, 

hence verification cost is not about integrating structure (which we assume to be accounted for 
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by surprisal), but about retrieving previously predicted structure and making sure that only 

analyses that are consistent with that predicted structure are built.

From the perspective of the comprehension system, the purpose of the verification 

operation is to check if the predicted input matches the actually observed input, and hence to 

ensure the consistency of the overall analysis. Verification is an additional operation that a non-

predictive parser does not require; it therefore makes sense that verification carries a cost, and 

that this cost depends on the difficulty of the memory access required. Note that this cost can be 

safely assumed to be lower than the cost of accidentally constructing inconsistent analyses based 

on unobserved input, which are then never verified (perhaps until the end of the sentence). It 

turns out that DLT integration cost and PLTAG verification cost often assign difficulty at the 

same points in a sentence: in PLTAG, a head is predicted when its dependent (or a dependent of 

its dependent, as needed to maintaining connectedness) is encountered. This prediction is then 

verified when the argument is encountered, which is exactly the point at which the integration is 

assumed to take place in DLT.

PLTAG hence provides a way of combining surprisal-based processing cost with 

distance-based processing cost. It assumes that the overall processing cost of a word is the sum 

of the surprisal and the verification cost incurred at that word. Given that surprisal and distance-

based cost have been argued to be complementary (Demberg & Keller, 2008a; Staub, 2010), 

PLTAG can be expected to provide a more complete account than either surprisal or DLT, i.e., it 

should be able to capture a wider range of experimental results. At the same time, PLTAG 

provides a unified theoretical framework that explains both types of processing cost: verification 

cost is a natural consequence of assuming a prediction-based parser, and a prediction-based 

parser is in turn a consequence of assuming that human sentence processing is incremental and 
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builds fully connected structures. Furthermore, PLTAG allows the two types of cost to be 

computed over the same representations (tree-adjoining grammar structures): surprisal is 

associated with the forward-looking, predictive aspect of TAG parsing, while verification is the 

backward-looking, integrative aspect of TAG parsing. An alternative would be an additive 

combination of surprisal and DLT (for example); however, such an approach fails to provide a 

single theoretical framework (it has no way of explaining why the two types of cost arise and 

how they are related) and requires two separate representations (a phrase structure representation

for surprisal and a dependency representation for DLT integration cost).

There is also independent experimental evidence that points towards an integrated model 

of surprisal-based and distance-based processing cost. For instance, Vasishth and Drenhaus 

(2011), using a number of experimental paradigms (self-paced reading, eye-tracking, and event-

related potentials), investigate relative clause processing in German and find standard distance-

based effects at the relative clause verb (as predicted by DLT). However, they also report a 

surprisal-based effect in first-pass regression probabilities in their eye-tracking study (increased 

distance between the verb and its argument, i.e., higher predictability, corresponds to fewer 

regressions), concluding that a complete theory needs to integrate both types of effects. This is 

corroborated by recent findings by Levy and Keller (2013), who report eye-tracking data for 

ditransitive sentences in German which indicate not only a decrease in processing difficulty at 

the verb with an increasing number of verb arguments (as predicted by surprisal), but also an 

increase in processing difficulty with an increasing distance between the arguments and the verb 

(as predicted by DLT integration cost). These results strongly suggest that a complete theory 

needs to combine both types of mechanisms.
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6.4. Similarity-based interference

Lewis and Vasishth (2005) propose a model of sentence processing that uses the cognitive 

architecture ACT-R (Anderson, 1996). ACT-R implements cognitively plausible mechanisms, 

such as a working memory architecture. ACT-R has also been used to model a large range of 

other cognitive processes. The memory and activation model attempts to explain processing 

phenomena through memory retrieval effects. The underlying mechanisms of memory retrieval 

are rehearsal, spreading activation and decay. The model grammar is a PCFG, and it uses left-

corner parsing as a processing algorithm to determine top-down predictions about what types of 

words or structures are needed to build a sentence, simultaneously with bottom-up evidence for 

what words are encountered in the input. When a word is retrieved from memory, its activation is

boosted (this explains e.g., lexical frequency effects: items that are retrieved very often have 

higher activation). The model also implements a steady activation decay according to the power 

law of forgetting, which is applied to all of the items in memory.

The model accounts for locality effects (like the subject/object relative clause asymmetry 

and center embedding) through decay and resulting lower activation of words that need to be 

retrieved for integration after seeing a lot of intervening material. It can also account for some 

anti-locality effects through activation of the head through intervening arguments. Furthermore, 

the theory can explain interference effects (retrieval is hindered by activation of similar items) 

and storage load effects (if more items need to be stored, there are also more interference effects 

at retrieval).

6.5. Other models
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Another incremental broad-coverage model is the hierarchical sequential model using categorial 

grammar, also known as the ModelBlocks parser (Wu, Bachrach, Cardenas, & Schuler, 2010; 

van Schijndel & Schuler, 2013; van Schijndel et al., 2013). A difficulty for incremental parsing is

that linguistic structure (in English) is predominantly right-branching. With a right-branching 

structure, one cannot build a fully connected structure for partial sentences read from the left. 

The ModelBlocks parser deals with this challenge by performing a right-corner transform, i.e., it 

rewrites syntax trees such that all right branching structures are turned into left branching 

structures. Parsing with this model is then a hierarchical sequence process that keeps track of the 

parsing states and can increase or decrease the size of the stack (the size of the stack reflects the 

number of open dependencies). Processing difficulty from this model is related to whether stack 

depth is increased or decreased, with the empirical finding that increasing stack depth leads to 

increased difficulty and decreased stack depth leads to a facilitation, which is the opposite of the 

prediction in locality theory (Wu et al., 2010; van Schijndel & Schuler, 2013).

A linking theory has also been proposed for top-down parsing with minimalist grammars 

(Kobele, Gerth, & Hale, 2013): the amount of time (i.e., the number of steps during parsing) that 

a derivation tree node spends on the parser’s stack before being popped is related to increased 

processing difficulty in the form of higher memory demands.

More details on different incarnations of competition models are provided by McRae, 

Spivey-Knowlton, and Tanenhaus (1998), Tabor, Juliano, and Tanenhaus (1997), and Tabor and 

Tanenhaus (2001), but see van Gompel, Pickering, Pearson, and Liversedge (2005) who provide 

an overview of competition models and argue against them. Recently, Lau, Clark, and Lappin 

(2017) proposed a bottom-up probabilistic parser as a model of gradient grammaticality 

judgments.
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6.6. Summary

To summarize, the challenge is to develop a computational model that captures the key properties

of human language processing (see Section 1.2). Table 2 lists these key properties, along with 

some representative references to experimental work demonstrating these key properties. The 

table also given a qualitative evaluation of four main model types (ranking, surprisal, prediction, 

and stack-based models) with respect to the properties.

 [Table 22.2 here]

7. Discussion

In this article, we discussed the outlined the state of the art in computational modeling of human 

sentence processing. Developing computational models is of scientific importance in so far as 

models are implemented theories: models of language processing allow us to test scientific 

hypothesis about the cognitive processes that underpin language processing. We argued that this 

type of precise, formalized hypothesis testing is only possible if standardized data sets and 

uniform evaluation procedures are available. Ultimately, this approach enables qualitative and 

quantitative comparisons between theories, and thus enhances our understanding of a key aspect 

of human cognition, language processing.

In this article, we have focused on syntactic processing. However, there is strong 

evidence that human language processing is driven by an interaction of syntactic, semantic, and 

discourse processes. There is considerable experimental evidence that verb senses, selectional 

restrictions, and thematic roles interact with syntactic ambiguity resolution. Another large body 
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of research has elucidated the interaction of discourse processing and syntactic processing. A key

challenge in computational psycholinguistics is therefore the development of language 

processing models that combine syntactic processing with semantic and discourse processing. So

far, this challenge is largely unmet: there are some examples of models that integrate semantic 

processes such as thematic role assignment into a parsing model (Narayanan & Jurafsky, 2002; 

Padó et al., 2009; Konstas & Keller, 2015), but models that combine syntactic and discourse are 

virtually non-existent.

A second challenge for the field is to bring together modeling work in language 

processing and language development. The human language processor is the product of an 

acquisition process that does not require explicit training and has access to only limited data: 

children aged 12–36 months are exposed to between 10 and 35 million words of input (Hart & 

Risley, 1995). The challenge therefore is to develop a model of language acquisition that works 

with such small data sets, while also giving rise to a language processor that meets the key 

criteria in Table 2.

Finally, it remains to note that there is also an applied side to the modeling enterprise. 

Once computational models of human language processing are available, they can be used to 

predict the difficulty that humans experience when processing text or speech. This is useful for a 

number applications: for instance, natural language generation would benefit from being able to 

assess whether machine-generated text or speech is easy to process. For text simplification (e.g., 

for children or impaired readers), such a model is even more essential. It could also be used to 

assess the readability of text, which is of interest in educational applications (e.g., essay scoring).

In machine translation, evaluating the fluency of system output is crucial, and a model that 
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predicts processing difficulty could be used for this, or to guide the choice between alternative 

translations, and maybe even to inform human post-editing.
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Figure captions

Figure 22.1

Example for a syntax tree.

Figure 22.2

Example of local ambiguity.

Figure 22.3

Subfigures (a)–(d) show an example for a PLTAG grammar, containing initial and auxiliary trees 

(shared with standard tree-adjoining grammar) and an example for a prediction tree (which is 

specific to PLTAG). Subfigure (e) shows an incremental derivation in PLTAG using the trees 

(a)–(d). Figures taken from Demberg, Keller, and Koller (2013).

Figure 22.4

An example for a dependency graph. The arc labels are grammatical relations (subject, object, 

modifier, etc.), the targets of the arrows are part-of-speech labels (JJ for adjective, NN for noun, 

VBD for verb, etc.).

Figure 22.5

An example for (a) projective and (b) non-projective dependency trees.

Figure 22.6
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Figure 1. Example for a syntax tree

(1) S → NP VP
NP → Det N
VP → V NP

Det → the
N → kitten
N → dog
V → bit

A derivation is the sequence that results from applying a sequence of context-free rules, starting
from a start symbol (here S). As an example, consider the derivation for the sentence the kitten bit
the dog relative to the grammar in (1):

(2) S⇒ NP VP⇒ NP V NP⇒ NP V Det N⇒ NP bit Det N⇒ NP bit Det dog⇒ NP bit the
dog⇒ Det N bit the dog⇒ the N bit the dog⇒ the kitten bit the dog

A derivations assigns a syntax trees to a sentence. The syntax tree notates which rules have been
applied in the derivation (but not the order in which they have been applied). An example is Figure 1,
which gives the syntax tree for the derivation in (2).

Crucially, a sentence can have multiple syntax trees, each of which can have a different in-
terpretation, a phenomenon called syntactic ambiguity. The following sentences are syntactically
ambiguous:2

(3) a. She sat on the chair covered in dust.
b. I put the book on the table in the kitchen.
c. Kids make nutritious snacks.
d. Milk drinkers are turning to powder.
e. Old school pillars are replaced by alumni.

In all of these cases, the whole sentence is ambiguous, which is referred to as global ambiguity.
As the human sentence processor builds the syntax tree for the input incrementally (see Sec-

tion 1.2), it can encounter an ambiguity that disappears later when more of the input is read. This is
referred to as local ambiguity. An example for a local ambiguity is:

(4) The athlete realized his potential . . .
a. . . . at the competition.
b. . . . could make him a world-class sprinter.

2Examples from http://www.fun-with-words.com/ambiguous_garden_path.html.
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Figure 2. Example of local ambiguity

The local syntactic trees for (4-a) and (4-b) are given in Figure 2.
Both trees are compatible with the input up until potential; only the next word disambiguates;

however, the processor commits to a single (wrong) tree early on, and trips up when later input is in-
consistent with that tree; presumably, the processor now has to compute a new tree that is consistent
with the input, which results in longer reading times, reverse eye-movements, lower comprehension
accuracies, etc. (we will come back to this in Section 3.1).

2.1.2 Tree-adjoining Grammar. Tree-Adjoining Grammar (TAG, Joshi, Levy, & Taka-
hashi, 1975) is an extension of context-free grammar that assumes that a grammar consists of lexi-
calized tree fragments rather than context-free rules. TAG assumes two operations that can combine
elementary trees: substitution combines an initial tree with a partial tree (this happens at substitution
nodes, marked with “↓”); adjunction combines an auxiliary tree with a partial tree (this happens at
adjunction nodes, marked with “∗”). A TAG derivation consists of a sequence of substitution and
adjunction operations, applied to the initial and auxiliary trees associated with the words in the
sentence.

Standard TAG derivations are not incremental, i.e., words are not processed in the left-to-
right order of the input. As we saw in Section 1.2, incrementality is a key property of the human
sentence processor, which means that TAG needs to be extended in order to be utilized in a model
of human sentence processing. Such an extension has been proposed in the form of Psycholinguis-
tically Motivated Tree-adjoining Grammar (PLTAG, Demberg & Keller, 2008b). PLTAG parsing
proceeds strictly incrementally; all words in the input are always connected under a single syntactic
node. This strict incrementality is made possible through a prediction mechanism which allows the
parser to insert syntactic structure into the unfolding representation before its syntactic head has
been encountered in the input. For example, when observing the noun phrase John at the beginning
of a sentence, the parser would predict that this NP might be the subject of a sentence and would
predict that a verb phrase will be encountered. (In standard TAG by contrast, the verb phrase and
role of the NP in the sentence would only be constructed once the verb is actually encountered in the
input.) Figure 3 illustrates how this prediction mechanism allows PLTAG to connect the words Peter
and often before the verb sleeps is encountered. The prediction mechanism makes use of so-called
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Figure 3. Subfigures (a)–(d) show an example for a PLTAG grammar, containing initial and auxiliary
trees (shared with standard tree-adjoining grammar) and an example for a prediction tree (which is
specific to PLTAG). Subfigure (e) shows an incremental derivation in PLTAG using the trees (a)–(d).
Figures taken from Demberg, Keller, and Koller (2013).

prediction trees, a new type of elementary tree that carries indices on each node (which mark their
status as predicted and not yet grounded in input), as shown in Figure 3d. Note that prediction trees
(as opposed to standard TAG trees) need not contain a lexical anchor.

The prediction mechanism is complemented by a verification mechanism that matches pre-
dictions against subsequent input, and when matching removes the prediction markers to indicate
that the previously predicted structure is now grounded in actually observed material (the structure
that comes with the verb sleeps in our example above).

PLTAG is a fully implemented model that consists of an algorithm for extracting a PLTAG
grammar from an annotated corpus, a parsing algorithm that processes PLTAG structures incremen-
tally, and a probability model over PLTAG derivations. We will return to this in Section 6.3.

2.1.3 Dependency Grammar. Traditional context-free grammars capture the configura-
tional structure of sentences, i.e., they describe which phrases a sentences is composed of and how
these phrases are ordered relative to each other, both sequentially and hierarchically. However, this
view of syntax has been challenged, as it makes it difficult to analyze languages that allow discon-
tinous constituents or have free or flexible word order.

Dependency grammar is one of the answers to this challenge. It is a formalism that starts
from the assumption that the grammatical relations between words, rather than their configurations,
are key to sentence structure. For instance, the important thing about verbs such as like is that they
license two NPs: an agent, found in subject position or with nominative inflection, and a patient,
found in object position or with accusative inflection. Which arguments are licensed, and which
roles they play, depends on the verb. The configuration of these arguments is secondary.

Dependency grammar therefore models the grammatical relations that hold between words;
the claim is that these can be identified even in non-configurational languages. A dependency struc-
ture consists of dependency relations, which are binary and asymmetric. A relation is a tuple of a
head h, a dependent d, and a label, which identifies the relation between h and d. An example for a
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Figure 4. An example for a dependency graph. The arc labels are grammatical relations (subject,
object, modifier, etc.), the targets of the arrows are part-of-speech labels (JJ for adjective, NN for
noun, VBD for verb, etc.).

a.

I heard Cecilia teach the horses to sing

b.

that I  Cecilia the horses heard teach sing

"That I heard Cecilia teach the horses to sing"

dat ik Cecilia de paarden hoord leren zingen

Figure 5. An example for (a) projective and (b) non-projective dependency trees.

dependency structure can be found in Figure 4.
Formally, a dependency structure of a sentence is a graph with the words of the sentence as

its nodes, linked by directed, labeled edges, with the following properties: (a) connectedness: every
node is related to at least one other node, and (through transitivity) to ROOT; (b) single headedness:
every node (except root) has exactly one incoming edge (from its head); (c) acyclicity: the graph
cannot contain cycles of directed edges.

These conditions ensure that the dependency structure is a tree. We distinguish projective and
non-projective dependency trees: A dependency tree is projective with respect to a particular linear
order of its nodes if, for all edges h→ d and nodes w, w occurs between h and d in linear order
only if w is dominated by h (i.e., in the transitive closure of the arc relation). A dependency tree is
non-projective if w can occur between h and d in linear order without being dominated by h. This is
illustrated in Figure 5.

Dependency grammar is the formalism that underlies Dependency Locality Theory, one of
the key approaches to psycholinguistic modeling, which will be discussed in Section 6.1.

2.2 Parsing Algorithms

A parsing algorithm takes a grammar and a sentence and derives a syntax tree for the sentence.
A range of parsing algorithms have been proposed in the literature (for an overview, see Jurafsky &
Martin, 2009). The most basic distinction is between top-down and bottom-up parsing algorithms.
A top-down parser starts with the start symbol of the grammar, and expands each phrasal category
until it reaches the leaf nodes (the words of the sentence). We already encountered an example for a
top-down derivation in (2) for the sentence the kitten bit the dog with respect to the grammar in (1).

A bottom-up parser starts with the leaf nodes and replaces each of them with phrasal cate-
gories until it reaches the start symbol. The bottom-up derivation for the same sentence and grammar
is as follows:
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dependency structure can be found in Figure 4.
Formally, a dependency structure of a sentence is a graph with the words of the sentence as

its nodes, linked by directed, labeled edges, with the following properties: (a) connectedness: every
node is related to at least one other node, and (through transitivity) to ROOT; (b) single headedness:
every node (except root) has exactly one incoming edge (from its head); (c) acyclicity: the graph
cannot contain cycles of directed edges.

These conditions ensure that the dependency structure is a tree. We distinguish projective and
non-projective dependency trees: A dependency tree is projective with respect to a particular linear
order of its nodes if, for all edges h→ d and nodes w, w occurs between h and d in linear order
only if w is dominated by h (i.e., in the transitive closure of the arc relation). A dependency tree is
non-projective if w can occur between h and d in linear order without being dominated by h. This is
illustrated in Figure 5.

Dependency grammar is the formalism that underlies Dependency Locality Theory, one of
the key approaches to psycholinguistic modeling, which will be discussed in Section 6.1.

2.2 Parsing Algorithms

A parsing algorithm takes a grammar and a sentence and derives a syntax tree for the sentence.
A range of parsing algorithms have been proposed in the literature (for an overview, see Jurafsky &
Martin, 2009). The most basic distinction is between top-down and bottom-up parsing algorithms.
A top-down parser starts with the start symbol of the grammar, and expands each phrasal category
until it reaches the leaf nodes (the words of the sentence). We already encountered an example for a
top-down derivation in (2) for the sentence the kitten bit the dog with respect to the grammar in (1).

A bottom-up parser starts with the leaf nodes and replaces each of them with phrasal cate-
gories until it reaches the start symbol. The bottom-up derivation for the same sentence and grammar
is as follows:
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Figure 6. Example for a left-corner derivation

Garden path effects are usually not only caused by difficult syntactic constructions, but are
also dependent on semantics, i.e., they often consist of syntactically slightly difficult structures that
in addition are made implausible by the semantics of the sentence.

There is a qualitative difference between a minor processing difficulty which people often
do not become aware of, and complete processing break-down, where some people are not able
to recover the correct analysis at all. Parallel models explain this difference by assuming that the
processor only focuses on a finite number of most probable analyses, and that the correct analysis
has fallen out of the reader’s search beam3 because it was highly unlikely compared to alterna-
tive analyses. Hence, the sentence must be re-analyzed from scratch, which is only successful if
enough memory resources can be made available for the larger beam needed to process the sentence
(Altmann & Steedman, 1988; Gibson, 1991).

3The analyses in the search beam are the ones that the processor is actively pursuing. Typically a probability threshold
is used to determine which analyses are removed from the beam (pruned).


