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Abstract

A range of cognitive modalities are involved in everyday tasks,
which raises the questions to which extend these modalities
are coordinated. In this paper, we focus on two particular as-
pects of this coordination: linguistic structure and visual atten-
tion during sentence production, based on the hypothesis that
similar scan patterns are associated with similar sentences. We
tested this hypothesis using a dataset from an eye-tracking ex-
periment in which participants had to describe a photo-realistic
scene. We paired each sentence produced with the correspond-
ing scan pattern, and computed a range of similarity measures
for both modalities. Correlation and mixed model analyses
confirmed that trials involving similar scan patterns also in-
volve similar sentences productions. This was true for all pairs
of linguistic and scan pattern similarity measures we investi-
gated. The result holds both before and during sentence pro-
duction, and for within-scene and between-scene analyses.

Keywords: scan patterns; sentence production; eye-tracking;
sentence similarity.

Introduction
Everyday tasks demand the coordination of a range of cogni-
tive modalities. If the task is to make tea, for example, then
motor actions (e.g., arm-hand movement) and visual atten-
tion (e.g., looking at the pot) have to be coordinated (Land,
2006). This implies that if two different persons perform the
same task, they will do so in a similar way. It follows that the
sequence of scan patterns, i.e., eye fixations across spatial lo-
cations in temporal order (Noton & Stark, 1971) as well as the
sequence of motor actions, will be similar across participants
(Land, 2006).

In this paper, we investigate whether a similar evidence of
cross-modal coordination can be found when vision and lan-
guage have to be coordinated. In particular, we focus on the
similarity between scan patterns and linguistic structures in a
language generation task.

In the visual cognition literature, similarity of scan patterns
has not received much attention, mainly because of the high
variability across participants (Henderson, 2003). There are
some results, however, that point toward a range of visual
factors that can trigger similarity. Often, these factors are re-
lated to the task (Castelhano et al., 2009), and to the degree
of cross-modal interactivity required to perform it.

In tasks with a low level of interactivity, i.e. free viewing,
visual attention is mainly guided by exogenous factors like
saliency (Itti & Koch, 2000): a measure of visual prominence
based on low-level features (color, intensity and orientation).
A free viewing task does not require visual attention to in-
teract with extra-modal knowledge based (top-down) infor-
mation. The low interactivity of free viewing makes the vi-

sual responses being driven by exogenous visual mechanisms
while minimizing the need for cross-modal coordination.

Different patterns of visual attention emerge in other visual
tasks, such as memorization or imagery (Humphrey & Under-
wood, 2008), where participants are asked to memorize im-
ages in preparation for a recall phase. In the recall phase, de-
spite the absence of the original stimuli (preventing bottom-
up effects), scan patterns on a blank screen were more similar
across participants within the same scene than across different
ones (Humphrey & Underwood, 2008). In this case, the task
requires an endogenous control of visual attention through
top-down knowledge: i.e. scene layout, contextual informa-
tion, and even semantic relations between objects (Hwang
et al., 2009). Thus, exogenous bottom-up effects are overrid-
den by endogenous contextual guidance effects.

These results, consistent with similar findings from visual
search studies (Yang & Zelinsky, 2009), suggest that in tasks
requiring endogenous control, categorical and semantic in-
formation is activated. Reasonably, this endogenous access
to categorical information is activated during daily actions
(Land, 2006); where categorical knowledge about the tea pot
(i.e. it has a handle to grasp) is necessary to allow cross-modal
coordination between visual attention and motor-action.

It is important to notice that this information has a direct
link with language processing. Such categorical information,
in fact, is typically expressed verbally, and drives linguistic
tasks such as scene description. It seems likely that the shared
mechanism, based on categorical information, which allows
coordination between motor-action and visual attention might
also underlie the coordination between language processing
and visual attention.

Previous research has looked at the interaction between
vision and language principally using the visual world
paradigm (VWP, Tanenhaus et al. 1995), an eye-tracking
paradigm which has demonstrated clear links between the
processing of certain linguistic constructions and the ac-
cess to visual contextual information (Knoeferle & Crocker,
2006). Research in this field suggests a tightly coupled re-
lation between vision and language, but previous works
has largely focused on specific psycholinguistic phenom-
ena (e.g., attachment ambiguity), rather than uncovering the
shared mechanisms by which this interaction takes place. We
explain this coupled relation assuming a categorical interface
which coordinates the cross-modal, visual and linguistic, in-
teraction.

In this paper, we investigate the extent to which visual and
language processing are synchronized when participants per-
form a task viz., scene description in a visual context, which
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Figure 1: Example of scene and cues used as stimuli for the descrip-
tion task

requires endogenous interaction between linguistic and visual
processing. Our main hypothesis is that scan patterns and sen-
tences are correlated, i.e., if two trials involve similar scan
patterns, then the sentences produced in these two trials will
also be similar.

Experimental Setting
In this section, we discuss how the data was collected and pro-
cessed, and explain how we computed the measures of scan
pattern and linguistic similarity.

Data Collection and Pre-processing
In an eye-tracking language production experiment (Coco
& Keller, 2010), we asked participants to describe photo-
realistic indoor scenes after being prompted with cue words
which referred to visual objects in the scenes. The cue words
were either animate or inanimate (e.g., man or suitcase)
and were ambiguous with respect with the scene (see Fig-
ure 1 for an example trial). Participants’ eye-movements were
recorded using an Eyelink II eye-tracker with at sampling rate
of 500 Hz on a 21” screen (1024 x 768 pixel resolution),
while the speech of the participants was recorded with a lapel
microphone. We collected a total of 576 sentences produced
for 24 scenes1 which were drawn from six different scenarios
(e.g., bedroom, entrance). The sentences were manually tran-
scribed and paired with the scan patterns that participants fol-
lowed when generating the sentences. We removed two pairs
because the sentences were missing.

The data varies across participants and scenes both in terms
of the complexity of the sentences (i.e., one man waits for
another man to fill out the registration form for a hotel vs.
the man is checking in for Figure 1) and in the length of

1Scene refers to the layout location where an event is happening.
Scenario refers to the context classifying the individual scene

the scan patterns produced both in preparation for produc-
tion (min = 800 ms; max = 10205 ms) and during production
(min = 2052 ms; max = 18361 ms). Both types of variabil-
ity have to be taken into account when developing metrics for
sentence and scan pattern similarity.

Similarity Measures
Before quantifying the association between scan patterns
and sentence productions, we measure similarity within each
modality. We defined two similarity (or equivalent, dissimi-
larity) measures for both modalities. Applying more than one
measure makes it less likely that our results will be an artifact
of the type of measure used.

Sentence Measures We define two similarity measures on
sentences: Feature Dissimilarity (FD) and semantic similarity
computed using Latent Semantic Analysis (LSA). We pre-
process the sentences produced by the participants using an
automatic part of speech (POS) tagger (Toutanova & Man-
ning, 2000), whose reported accuracy is 96.8% on the Penn
Treebank. The POS tags make it easy to extract relevant in-
formation from a sentence.

For FD measure, we represent each sentence as a vector,
each element of which represents a feature of the sentence.
We include semantic and syntactic features, as well as contex-
tual information derived from the scenario a scene belongs to.
(In the result section, we also report correlation coefficients
obtained when excluding the contextual features.)

Syntactic features include (1) the length of the utterance,
which is a general indicator of complexity while also reflect-
ing the total number of visual referents, and (2) the presence
of coordination, which reflects disambiguation strategies. As
semantic features we include (1) the verb frame and (2) se-
mantic similarity between verbs. The verb frame encodes the
arguments the verb can take, obtained from WordNet (e.g.,
transitive or intransitive); semantic similarity is computed us-
ing Jiang and Conrath’s (JC) synset path-distance (Budanit-
sky & Hirst, 2006). This distance measure is based on the
number of nodes from one verb to another in the WordNet
database. We calculate pairwise JC distance on all pairs of
unique verbs in our corpus of sentence productions; we then
apply hierarchical clustering to group together similar verbs.
Cluster membership is the feature value included in the FD
vector.

The contextual features include (1) the animacy of the
cue word, useful to discriminate between different descriptive
routines and (2) the scenario in which the sentence was pro-
duced (e.g., bathroom, entrance). Notice that the contextual
features are not scene specific; each scenario is represented
by four different scenes.

After converting each sentence into a vector of features,
we calculate FD between all pairs of sentences by applying
Gower distance (Gower, 1971), which can be used when the
data is both numerical and categorical.

LSA measures the similarity between words based on the
co-occurrence of content words within a collection of docu-
ments (in our case the British National Corpus). It indicates
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Figure 2: Example of how scan patterns are represented and normal-
ized (for VR only); and how measures of scan pattern similarity are
computed

how likely two words are to occur in the same document.
Differently from Hwang et al. (2009) where LSA is calcu-
lated between individual words, we implemented a version of
LSA generalized to compute similarity of sentences (Mitchell
& Lapata, 2009). We compute an LSA vector for each con-
tent word in the sentence (context window of size five; low
frequency words are removed) and then combine these vec-
tors using addition to obtain a sentence vector (an alternative
discussed by Mitchell & Lapata 2009 would be vector mul-
tiplication). Similarity between sentence vectors is measured
using cosine distance.
Scan Pattern Measures We use two measures to com-
pute the similarity between scan patterns: Visual Recurrence
(VR) and Ordered Sequence Similarity (OSS, Gomez & Valls
2009).

We consider scan patterns as temporally ordered sequences
of fixated target objects. Each trial is therefore encoded as a
sequence of discrete time points, each annotated with the ob-
ject fixated at that time, encoded numerically (see Figure 2).
VR is a percentage measure of scan pattern similarity that
counts the frequency of looks to the same objects during the
same time points between two scan patterns relative to its to-
tal length. For example, in Figure 2, we have two matches on
a total of seven time points, i.e., 25.87% agreement between
the scan patterns.

VR can only compare scan patterns equal in length. We
therefore normalize each scan pattern (SPold) by mapping
it onto a normalized time course of fixed length (SPnew).
The length of SPnew is set on the basis of the shortest eye-
movement sequence found across all participants. For each
SPold , we obtain the number of time-points corresponding to

a time unit of SPnew by simply dividing the length of SPold
with the length of SPnew. Over the SPold time-points, we look
for the object which has received the highest number of looks
and map it into the corresponding time-unit of SPnew. The fi-
nal result is a normalized scan-pattern of fixed length contain-
ing the objects most likely to be fixated.

The second method used to compare scan patterns is Or-
dered Sequence Similarity (note that despite its name, OSS
is in fact a dissimilarity measure). Its main advantage is that
it can be used with sequences of different lengths, and has
shown to be more effective than established measures such
as edit distance (Gomez & Valls, 2009). OSS is based on
two aspects of sequential data: the elements the sequence is
composed of, and their positions. When comparing two se-
quences, it takes into account the number of common ele-
ments and their relative order. The first step is to find target
objects that occur in both scan patterns. For example in Fig-
ure 2, four objects are shared by the two scan patterns (man,
plant, statue, suitcase). For each common element, we calcu-
late the distance between the two sequences, e.g., statue of
scan pattern 1 is two units distant from statue in scan pat-
tern 2. Distances are then summed and normalized on the ba-
sis of sequence lengths (for details refer to Gomez & Valls
2009).

All four measures of similarity are computed pairwise, i.e.,
every trial (sentence and scan pattern) is paired with every
other trial. This resulted in a total of 164,164 pairs, for each
region of analysis, i.e., Before and During production.

Analysis
To analyze the correspondence between sentences and scan
patterns, we divide the data into two regions: Before speech
onset, and During production. The Before region provides ev-
idence about the process of utterance planning and visual in-
formation retrieval, whereas During is informative about lin-
guistic encoding and the utilization of visual information dur-
ing this process. We perform two types of analysis: descrip-
tive and inferential.

In the descriptive analysis, we investigate the data at two
levels: (1) globally, i.e., by performing comparisons between
all pairs of trials in the full data set, and (2) locally, i.e., by
comparing only the trials that pertain to a given scene (24
in total). These two forms of analysis make it possible to
test whether the correspondence between sentences and scan
patterns is scene specific. For comparison, we also report a
baseline correlation(Humphrey & Underwood, 2008) that is
obtained by pairing sentences and scan patterns randomly
(rather than pairing the scan patterns with the sentences they
belong to).

We quantify the strength of the correspondence between
similarity measures by computing Spearman’s ρ for all pairs
of measures. We do not report coefficients for the baselines,
as they are not significant across all combined measures:
ρ≈ 0.002; p > 0.1. For the correlation analysis, we also con-
sider a variant of the Feature Dissimilarity measure, for which
we remove the contextual features (FD-C). This makes it pos-
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sible to investigate the contribution of scenario and animacy
of the cue word to the correspondence between scan pattern
and sentence similarity.

The distinction we made between global and local simi-
larity has implications for the nature of correspondence. A
correlation found globally (across all scenes) would imply
that scan patterns are partially independent from the precise
layout of the scene, i.e. position of the objects, etc., as these
factors varied across scenes, but rather dependent on the cat-
egorical structure shared, i.e. the visual referents common
across scenes. A correlation found at the local level would be
consistent with well-known scene-based effects, both bottom-
up and top-down, which guide visual attention (Itti & Koch,
2000; Humphrey & Underwood, 2008).

In the inferential analysis, we apply linear mixed effects
modeling (Baayen et al., 2008) using the R-package lme4. We
use scan pattern similarity as the dependent variable (fitting
a separate model for OSS and VR) and sentence similarity
(FD and LSA) as predictors. The region of analysis (before
or after) is also included as a factor. As random effects, we
included participants and trials.2. All fixed factors were cen-
tered to reduce collinearity. The models are built following a
forward step-wise procedure. We start with an empty model,
then we add the random effects. Once all random effects have
been evaluated, we proceed by adding the predictors. The
parameters are added one at time, and ordered by their log-
likelihood improvement of model fit: the best parameter goes
first. Every time we add a new parameter to the model (fixed
or random), we compare its log-likelihood against the previ-
ous model. We retain the additional predictor if log-likelihood
fit improves significantly (p < 0.05). The final model is there-
fore the one that maximizes fit with the minimal number of
predictors.

Results and Discussions
Figure 3 plots the linguistic similarity measures LSA and FD
against the scan pattern similarity measure OSS3, computed
globally, i.e. across all scenes. We bin the data on the x-axis
and include 95% confidence intervals. The plots also include
the random baseline.

For both linguistic measures, we observe a clear trend be-
tween sentence and scan pattern: when LSA4 similarity in-
creases, scan pattern dissimilarity decreases; when feature
dissimilarity (FD) increases, OSS also increases. This effect
is observed both Before and During region, but not in the ran-
dom baseline.

We also observe a difference in the intercept between the
Before and During region. In the Before region, there is less
dissimilarity between scan-patterns overall. This could indi-
cate a higher degree of coordination between the two modal-
ities during sentence planning, compared to sentence encod-

2Similarity is calculated pairwise. Thus, we need to include as
random variables two participants and two trials for each pair.

3For reason of space, VR is shown only in the LME results.
4The non-linearity of LSA is a property of cosine derived mea-

sures.

Figure 3: Correlation between LSA similarity, Feature dissimilarity
(FD) and Ordered Sequence Similarity (OSS)

ing. During planning, visual attention integrates the categor-
ical information of the scene with the linguistic referents se-
lected as arguments of the sentence. When production starts,
detailed information is sourced from the visual processor to
drive encoding, thus triggering more specialized routines of
visual information retrieval.

Figure 4 plots local similarity values i.e., computed sep-
arately for each scene (OSS against LSA)5. Generally, the
trend previously observed at the global level is confirmed,

5Again, for space limitation, we can show only one pair of com-
bined measures, OSS/LSA. However, we observe a similar trend for
all the others pairs.

Figure 4: Scan pattern dissimilarity (OSS) as a function of the Lin-
guistic Similarity (LSA) across all 24 scenes
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Table 1: Correlations (Spearman ρ) between the different similarity
measures. Before and During aggregated

Measures VR OSS FD LSA
OSS −0.63∗∗∗

FD −0.07∗∗∗ 0.15∗∗∗

LSA 0.15∗∗∗ −0.10∗∗∗ −0.06∗∗∗

FD-C −0.02∗∗ 0.01∗ 0.86∗∗∗ −0.10∗∗∗

Table 2: Minimum and Maximum correlations (Spearman ρ) across
different scenes between the different similarity measures.

Measures VR OSS FD

OSS
min −0.10
max −0.56

FD
min −0.01 −0.02
max −0.55 0.44

LSA
min 0.01 −0.001 −0.52
max 0.33 −0.30 −0.79

both for the Before and the During region, though there is
some variation in the degree of association between scan pat-
tern and linguistic similarity across scenes.

Table 1 lists the correlation coefficients for all pairs of sim-
ilarity measure. There are weak but significant correlations
across all measures. In particular, both VR and OSS are sig-
nificantly correlated with both FD and LSA in the direction
expected, i.e., positively in case of dissimilarity and nega-
tively in the case of similarity. Between the two scan pat-
tern measures (OSS and VR), we observe a strong correlation,
whereas the association between the two linguistic measures
(FD and LSA) is weak. We also observe that FD-C, the mea-
sure obtained by removing contextual information from FD is
highly correlated with FD, but the removal of contextual in-
formation weakens the correlation with the scan pattern mea-
sures. On the other hand, FD-C is somewhat more strongly
correlated with LSA than FD is. It seems that the contextual
information, even if at the level of the scenario, prominently
contribute to the prediction of scan pattern similarity.

In Table 2, we show the minimum and maximum values of
the correlation coefficients for similarity measures observed
locally, i.e. computed trials aggregated by scene. As expected
from the plots in Figure 4, correlation coefficients vary across
scenes for all pairs of measures. The context of the individ-
ual scenes modulates the correspondence between scan pat-
terns and linguistic productions. Compared to the global co-
efficients, the most noticeable difference is a strengthening of
the correlation between the two linguistic measures FD and
LSA. It seems that in a scene context, the semantic informa-
tion expressed by LSA more directly matches the information
in FD, which also includes verb semantics and scenario infor-
mation.

Turning now to the inferential analysis, Figure 5 plots LME
predicted values calculated globally for all pairs of measures.

Figure 5: Predicted values of the linear mixed effects model: linguis-
tic similarity predicted by scan pattern similarity

Table 3: LME coefficients. The dependent measures are: OSS and
VR. The predictors are: Region (contrast coding: Before = −0.5;
During = 0.5) and the Linguistic Measures (LM) FD or LSA. Each
column shows which linguistic/scan pattern similarity measure is
compared

Predictor FD/OSS FD /VR LSA/OSS LSA/VR
Intercept 0.0879∗∗∗18.95∗∗∗ 0.639∗∗∗ 18.97∗∗∗

Region 0.062∗∗∗ −0.907∗∗∗ 0.062∗∗∗ −0.906∗∗∗

LM 0.087∗∗∗ −6.151∗∗∗ −0.104∗∗∗ 5.953∗∗∗

LM:Region −0.083∗∗∗ 4.866∗∗∗ n.sig. −2.687∗∗∗

The models closely follow the empirical patterns in Figure 3.
Table 3 lists the coefficients of the mixed models; we find a
significant main effect of scan pattern similarity for both FD
and LSA, for both the OSS and the VR model. Moreover, we
observe a main effect of region across all combined measure:
for the Before region, sentence similarity is more strongly re-
lated to scan pattern similarity, compared to the During re-
gion.

Furthermore, we observe an interaction of region of analy-
sis and linguistic similarity: for Before region, the similarity
between sentence and scan pattern has a steeper change, com-
pared to During. In linguistically driven visual planning, we
retrieve the referents going to be encoded. Thus, if two sen-
tences are going to be very different, the set of referents cho-
sen during visual planning is also going to be very different.
During encoding instead, the visual system is already sourc-
ing detailed information sentence specific, thus the magnitude
of change is relatively smaller compared to planning.

General Discussion
A range of cognitive modalities are involved in everyday
tasks, which raises the questions to which extend these
modalities are coordinated. In this paper, we focused on two
particular aspects of this coordination: linguistic structure and
visual attention during sentence production. Our main hy-
pothesis was that similarity of scan patterns predict the simi-
larity of sentences.
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We tested this hypothesis using a dataset from an eye-
tracking experiment in which participants had to describe
a photo-realistic scenes. We paired each sentence produced
with the corresponding scan pattern, and computed similarity
measures for both modalities. We used Visual Recurrence and
Ordered Sequence Similarity to compare scan patterns, while
for sentences we used a semantic similarity measure based on
LSA and a feature dissimilarity measure that combines syn-
tactic, semantics, and contextual information.

Both descriptive and inferential analysis confirmed our hy-
pothesis: if two trials involve similar scan patterns, then the
sentences produced in these two trials are also similar. This
was true for all pairs of linguistic and scan pattern similar-
ity measures. Furthermore, we subjected the data to a global
analysis (i.e., we computed similarity across different scenes)
and a local analysis (i.e., we only compared scan patterns
and sentences within the same scene). Significant correla-
tions were found in both cases, which suggests that the cor-
respondence between sentences and scan patterns cannot be
explained as a simple mapping between individual scene con-
tent and the objects mentioned in the corresponding sentence.
This conclusion is confirmed at the level of individual scenes,
where the variability observed suggests the presence of dif-
ferent visual and linguistic factors modulating the strength of
the correspondence.

An important point emerged during our analysis regard-
ing the role of contextual information in predicting similarity.
When contextual features were removed from the linguistic
measure, the strength of the correlation was reduced (but was
still significant). Even though our contextual features were
not scene specific, but rather pertained to more general sce-
narios, they were still helpful in predicting scan patterns.

Within the broader context of cognition, in tasks demand-
ing the interaction vision and language, where endogenous
control plays an essential role, they synchronize processing
through coordination over a shared categorical interface.

Ongoing work is currently investigating the sequential and
temporal aspect of the correspondence using alignment tech-
niques borrowed from bio-informatics. We find alignment
techniques more pertinent than Markovian approaches, where
it is not easy to directly compare similarity between instances
of sentence and scan pattern without losing the temporal in-
formation. Preliminary results show that the inclusion of tem-
poral information together with a more stringent analysis of
sequential data increase our findings of correlation between
sentences and scan patterns.

Finally, in future work we plan to investigate a range of lin-
guistic features separately, thus enabling us to establish which
aspects of scan patterns predict syntactic, semantic, or con-
textual aspects of sentence production.
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