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Disambiguating Visual Verbs
Spandana Gella, Frank Keller, and Mirella Lapata

Abstract—In this article, we introduce a new task, visual sense disambiguation for verbs: given an image and a verb, assign the correct sense of the
verb, i.e., the one that describes the action depicted in the image. Just as textual word sense disambiguation is useful for a wide range of NLP tasks,
visual sense disambiguation can be useful for multimodal tasks such as image retrieval, image description, and text illustration. We introduce a new
dataset, which we call VerSe (short for Verb Sense) that augments existing multimodal datasets (COCO and TUHOI) with verb and sense labels. We
explore supervised and unsupervised models for the sense disambiguation task using textual, visual, and multimodal embeddings. We also consider a
scenario in which we must detect the verb depicted in an image prior to predicting its sense (i.e., there is no verbal information associated with the
image). We find that textual embeddings perform well when gold-standard annotations (object labels and image descriptions) are available, while
multimodal embeddings perform well on unannotated images. VerSe is publicly available at https://github.com/spandanagella/verse.

Index Terms—Computer vision, Distributed representations, Natural Language Processing
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1 INTRODUCTION

A CTION recognition, the task of identifying the actions de-
picted in videos or still images, is a widely studied problem

in computer vision. Several applications stand to benefit from the
ability to recognize actions, such as image description genera-
tion, image/video retrieval, surveillance, and a variety of systems
involving human-computer interaction. The bulk of existing work
has focused on video data, where motion and temporal information
provide cues for recognizing actions. The absence of such cues
renders the task more challenging in still images. Nevertheless,
attempts to recognize actions in images can be broadly grouped
into (a) action classification (AC), which aims to label an image
with a verb phrase, typically a combination of a verb and its
object (e.g., play baseball, ride horse), while assuming that such
labels are mutually exclusive [1], [2], [3], [4], [5]; (b) human
object interaction (HOI) recognition, which aims to identify all
possible interactions between a human and an object in an image;
co-occurring actions (e.g., hold bicycle and ride bicycle) can in
principle be modeled since images receive multiple labels [6], [7],
[8]; and (c) visual semantic role labeling (VSRL), which identifies
the roles actors and objects play in the activity or situation depicted
in the image [9], [10]. Figure 1 illustrates each of these tasks and
how they relate to each other.

However, none of these action recognition tasks considers
the ambiguity that arises when verbs are used as labels. For
example, the verb play has multiple meanings in different contexts:
participate in sport, play musical instrument, or engage in playful
activity (see Figure 2). Moreover, action labels consisting of verb-
object pairs may miss important generalizations, e.g., the fact
that ride horse and ride elephant both evoke the same verb
semantics, namely ride animal. Existing action labels also miss
generalizations across verbs, e.g., the fact that fix bike and repair
bike are semantically equivalent, in spite of the use of different
verbs. These observations strongly suggest that actions should be
analyzed at the level of verb senses, similarly to how they are
studied in natural language processing.

In this article, we therefore propose the new task of visual
verb sense disambiguation (VSD), which aims to label an image
with a verb sense taken from a lexical database (see Figure 1).
We explore two VSD scenarios: (1) given an image and a verb,
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Fig. 1: Categorization of action recognition tasks in images.

Fig. 2: Visual sense ambiguity: three of the senses of the verb
play: play sport, play instrument, children play.

assign the correct sense of the verb, i.e., the one that describes
the action depicted in the image; and (2) given an image, predict a
verb and its corresponding sense to correctly describe the action in
the image. We present VerSe, a new dataset that augments existing
multimodal datasets (COCO and TUHOI) with sense labels. VerSe
contains 3,510 images, each annotated with one of 90 verbs, as
well as the verb sense realized in the image according to the
OntoNotes sense inventory [11].

For our first scenario, we explore both unsupervised and
supervised disambiguation methods. We focus in particular on
how to best represent word senses for visual disambiguation, and
explore the use of textual, visual, and multimodal embeddings.
Textual embeddings for a given image can be constructed over
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Fig. 3: Google Image Search trying to disambiguate sit. All
clusters pertain to the sit down sense, other senses (baby sit,
convene) are not included.

object labels or image descriptions, which are available as gold-
standard in the COCO and TUHOI datasets, or can be computed
automatically using object detectors and image description mod-
els. Our results show that textual embeddings perform best when
gold-standard textual annotations are available, while multimodal
embeddings perform best when automatically generated object
labels are used. Interestingly, we find that automatically generated
image descriptions result in inferior performance. For our second
scenario, we predict the verbs depicted in an image using mul-
tilabel classification algorithms, which can operate on bounding
boxes from an image or on the full image. Our results show that
multiple instance learning (MIL), which takes inputs of positive
and negative bounding boxes for every label, performs better than
a multilabel CNN architecture.

In the remainder of this article, we first present an overview of
related work. We then introduce the VerSe dataset and describe
our annotation procedure. Next, we provide the details of our
disambiguation and verb prediction models. Experimental results
and discussion conclude the article.

2 RELATED WORK

Sense Disambiguation Visual sense disambiguation is related to
word sense disambiguation (WSD), a canonical task in natural
language processing. The aim in WSD is to identify the intended
meaning (sense) of a word in its textual context. Reliable WSD
has been argued to improve a range of NLP applications, including
information retrieval, information extraction, machine translation,
content analysis, and lexicography (see [12] for an overview).

There is an extensive literature on WSD for nouns, verbs,
adjectives, and adverbs. Most of these approaches rely on lex-
ical databases and sense inventories such as WordNet [13] or
OntoNotes [11]. Unsupervised WSD approaches often rely on
distributional representations, computed over the target word and
its context [14], [15], [16]. Most supervised approaches use sense
annotated corpora to extract linguistic features of the target word
(context words, part-of-speech tags, collocation features), which
are then fed into a classifier to disambiguate test data [17]. Re-
cently, features based on sense-specific semantic vectors learned
using large corpora and a sense inventory have been shown to
achieve state-of-the-art results for supervised WSD [18], [19].

In a multimodal setting (e.g., newspaper articles with pho-
tographs), visual context is also available and can be used for
sense disambiguation in multimodal tasks such as image retrieval.
As an example, consider the output of Google Image Search for
the query sit, shown in Figure 3: the search engine recognizes that
the verb has multiple senses and tries to cluster relevant images.
However, the result does not capture the polysemy of the verb
well, and would clearly benefit from visual sense disambiguation.

In the existing literature, VSD has been attempted only for
nouns (e.g., apple can mean fruit or computer1). Sense discrimi-
nation for web images was introduced in Loeff et al. [20], who

1. Throughout this paper we denote senses in sans serif font.

used spectral clustering over multimodal features from images
and web text. Saenko et al. [21] employ sense definitions from
a dictionary to learn a latent LDA space overs senses, which is
then used to construct sense-specific classifiers by exploiting the
text surrounding an image.

In general, VSD for nouns is a relatively straightforward task
that can be solved with the help of an object detector [22], [23].
This is helped by resources such as ImageNet [24], a large image
database containing 1.4 million images for 21,841 noun senses
and organized according to the WordNet hierarchy. However, we
are not aware of any previous work on VSD for verbs, and no
ImageNet for verbs exists. Not only image retrieval would benefit
from VSD, but also other multimodal tasks that have recently
received a lot of interest, such as automatic image description
[25] and visual question answering [26].

Action Recognition As mentioned in the introduction, our work
relates to a variety of action recognition tasks. To elucidate
key aspects of VSD and differences from previous approaches,
we provide an overview of commonly used datasets for action
recognition in Table 1. We observe that the number of verbs
covered in these datasets is often smaller than the number of action
labels reported (see columns #V and #L) and in many cases the
action labels involve an object reference. A few of the first action
recognition datasets (e.g., Ikizler [1] and Willow [27]) were taken
from the sports domain, aiming to capture variation in human
poses for actions such as tennis serve and cricket bowling. As a
result, they contain images exhibiting diversity in camera view
point, background, and resolution. Further datasets were created
based on the intuition that object information helps in modeling
action recognition [34], [35], using mutually exclusive labels such
as ride horse or ride bike.

The limitations of the early datasets (small size, domain
specificity, and the use of ad-hoc labels) have been recently
addressed in a number of broad-coverage resources that are large
scale and use linguistically-motivated labels [7], [10], [32]. Often
these datasets use existing linguistic resources such as VerbNet
[36], WordNet, and FrameNet [37] to classify verbs. This allows
for a more general, semantically motivated treatment of verbs and
verb phrases, and also takes into account the fact that not all verbs
are depictable. For example, abstract verbs such as presume and
acquire are not depictable, while other verbs have both depictable
and non-depictable senses: play is non-depictable in play with
emotions, but depictable in play an instrument and play a sport.
A few datasets have been based on Microsoft Common Objects
in Context (COCO; [38]), a dataset that consists of over 120k
images with extensive annotations, including labels for 91 object
categories and five descriptions per image. Although COCO was
not created with action recognition in mind, it is possible to use
the verbs present in the descriptions to annotate actions and their
semantic roles [9], [32].

It is important to note that verb sense ambiguity is ignored in
almost all existing action recognition datasets (and corresponding
tasks). This misses important generalizations: for instance, the
actions ride horse and ride elephant represent the same sense of
ride and thus share visual, textual, and conceptual features. On the
other hand, play tennis and play guitar share the same verb but
represent different senses. We address this issue by creating VerSe,
a dataset with explicit sense labels. VerSe is built on top of TUHOI
(the Trento Universal Human-Object Interaction dataset; [6]) and
COCO. The former dataset contains 10,805 images covering 2,974
actions. Action categories were crowdsourced, each image was
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Dataset Task #L #V Obj Images Sen Des Cln ML Resource Example Labels
Ikizler [1] AC 6 6 0 467 N N Y N — run, walk
Sports Dataset [2] AC 6 6 4 300 N N Y N — tennis serve, cricket bowling
Willow [27] AC 7 6 5 986 N N Y Y — ride bike, take photograph
PPMI [3] AC 24 2 12 4.8k N N Y N — play guitar, hold violin
Stanford 40 Actions [5] AC 40 33 31 9.5k N N Y N — cut vegetables, ride horse
PASCAL 2012 [28] AC 11 9 6 4.5k N N Y Y — ride bike, ride horse
89 Actions [29] AC 89 36 19 2k N N Y N — ride bike, fix bike
MPII Human Pose [30] AC 410 — 66 40.5k N N Y N — ride car, hair styling
TUHOI [6] HOI 2974 — 189 10.8k N N Y Y — sit on chair, play with dog
BU101 Dataset [31] AC 101 68 — 23.8k N N Y N — horse race, play violin
COCO-a [32] HOI — 140 80 10k N Y Y Y VerbNet walk bike, hold bike
Google Images [33] AC 2880 — — 102k N N N N — riding horse, riding camel
HICO [7] HOI 600 111 80 47k Y N Y Y WordNet ride#v#1 bike; hold#v#2 bike
VCOCO-SRL [9] VSRL — 26 48 10k N Y Y Y — verb: hit; instrument: bat;

object: ball
imSitu [10] VSRL — 504 11k 126k Y N Y N FrameNet

WordNet
verb: ride; agent: girl#n#2
vehicle: bike#n#1;
place: road#n#2

VerSe (Ours) VSD 163 90 — 3.5k Y Y Y N OntoNotes ride.v.01, play.v.02

TABLE 1: Comparison of existing action recognition datasets according to various subtasks (AC stands for action classification, HOI
for human object interaction recognition, VSRL for visual semantic role labeling, and VSD for visual verb sense disambiguation);
#L denotes the number of action labels in the dataset; #V denotes the number of verbs covered in the dataset; Obj indicates the
number of objects annotated; Sen indicates whether sense ambiguity is explicitly handled; Des indicates whether image descriptions
are included; Cln denotes whether the dataset has been manually verified; ML indicates the possibility of multiple labels per image;
Resource indicates whether a linguistic resource was used to label actions.

labeled by multiple annotators with a description in the form of a
verb or a verb-object pair. The main drawback of TUHOI is that
1,576 out of 2,974 action categories occur only once, limiting its
usefulness for VSD. Although COCO contains no explicit action
annotation, verbs and verb phrases can be extracted from the
descriptions. (But note that only about half of the COCO images
depict actions.)

The recently created HICO (Humans Interacting with Com-
mon Objects) dataset is conceptually similar to VerSe. It consists
of 47,774 images annotated with 111 verbs and 600 human-object
interaction categories. Unlike other existing datasets, HICO uses
sense-based distinctions: actions are denoted by sense-object pairs,
rather than by verb-object pairs. HICO does not aim for complete
coverage of senses: it restricts itself to a single sense of a verb
(with the exceptions of a couple of verbs), which means that HICO
is not suitable for verb sense disambiguation.

The COCO-a dataset [32] was created by identifying verbs
that are visual and detectable in images.2 This strategy meant
that synonyms or related verbs were not included in the dataset,
and also polysemous uses of verbs were excluded. The authors
cross-checked the verbs they selected against the verbs used in the
COCO image descriptions. This resulted in a total of 140 visual
verbs being covered in COCO-a.

Another recent dataset is imSitu [10], which includes a large
number of images and annotates each image with a verb and
its semantic frames taken from FrameNet [37]. Each semantic
frame includes a frame label (e.g., gardening), the frame elements
(e.g., agent, tool), and the location (e.g., outdoors). The frame
annotation by definition determines the sense of a verb. However,
when imSitu was designed, it was decided not to include poly-
semous verbs, so for example the verb play is not in the dataset.
Because all the verbs in the dataset only have one sense, imSitu
cannot be used for visual sense disambiguation.

2. The selection criteria included that a 6–8 year old child should be able to
distinguish the visual verbs.

3 THE VERSE DATASET

In this section we describe how VerSe was created. As mentioned
earlier, it is based on COCO and TUHOI, covers 90 verbs, and
contains 3,518 images. VerSe serves two main purposes: (1) to
show the feasibility of annotating images with verb senses (rather
than verbs or actions); (2) to function as test bed for evaluating
automatic visual sense disambiguation methods.

Verb Selection Action recognition datasets often use a limited
number of verbs in a given domain (see Table 1). We instead
sampled verbs from COCO descriptions and TUHOI verb phrases
(e.g., sit on chair), which we use in lieu of descriptions. We
extracted all verbs from all descriptions in the two datasets
and selected those with more than one sense in the OntoNotes
dictionary [11]. This procedure resulted in 148 verbs in total (94
from COCO and 133 from TUHOI).

Depictability Annotation A verb can have multiple senses, but
not all of them are depictable, e.g., senses describing cognitive
and perception processes are not depictable. Consider the verb
touch whose make physical contact sense is depictable, whereas
the affect emotionally sense is not depictable. We therefore first
annotated the senses of a verb as depictable or non-depictable.
Amazon Mechanical Turk (AMT) workers were presented with
the definitions of all the senses of a verb, along with examples, as
given by OntoNotes [11]. An example for this annotation is shown
in Figure 4. We used OntoNotes instead of WordNet, as WordNet
senses are very fine-grained and potentially make depictability
and sense annotation harder (see below). Granularity issues with
WordNet for text-based WSD are well documented [12].

OntoNotes lists 921 senses for our 148 target verbs. For
each sense, three AMT workers selected all depictable senses.
The majority label was used as the gold-standard for subsequent
experiments. This resulted in a 504 depictable senses. Inter-
annotator agreement (ITA) as measured by Fleiss’ Kappa
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Verb: touch
2 make physical contact with, possibly with the effect of physically manipu-

lating. They touched their fingertips together and smiled
2 affect someone emotionally The president’s speech touched a chord with

voters.
2 be or come in contact without control They sat so close that their arms

touched.
2 make reference to, involve oneself with They had wide-ranging discussions

that touched on the situation in the Balkans.
2 Achieve a value or quality Nothing can touch cotton for durability.
2 Tinge; repair or improve the appearance of He touched on the paintings,

trying to get the colors right.

Fig. 4: Example item for depictability and sense annotation: sense
definitions and examples (in blue) for the verb touch.

Verb type Examples Verbs Images Senses Depct ITA
Motion run, walk, jump, etc. 39 1812 10.76 5.79 0.680
Non-motion sit, stand, lay, etc. 51 1698 8.27 4.86 0.636

TABLE 2: Overview of VerSe dataset divided into motion and
non-motion verbs; Depct: depictable senses; ITA: inter-annotator
agreement.

was 0.645.

Sense Annotation We then annotated a subset of the images in
COCO and TUHOI with verb senses. An image was assigned the
verb that occurs most frequently in the descriptions for that image
(for TUHOI, the descriptions are verb-object pairs, see above).
Although multiple verbs can be applicable in a given image, we
only annotated the most frequently occurring verb. Perhaps not
surprisingly, we observed that the distribution of verbs and their
corresponding images is Zipfian: there are many verbs represented
by a few images, and a few verbs represented by a large number
of images. For sense annotation, we selected only verbs for which
either COCO or TUHOI contained five or more images, resulting
in a set of 90 verbs (out of the total 148). All images for these
verbs were included, resulting in a dataset of 3,528 images: 2,340
images for 82 verbs from COCO and 1,188 images for 61 verbs
from TUHOI (some verbs occur in both datasets).

These image-verb pairs formed the basis for sense annota-
tion. AMT workers were presented with the image and all the
depictable OntoNotes senses of the associated verb. The workers
had to chose the sense of the verb that was instantiated in the
image (or “none of the above”, in the case of irrelevant images).
Annotators were given sense definitions and examples, as in the
depictability annotation (see Figure 4). For every image-verb pair,
five annotators performed the sense annotation task. A total of
157 annotators participated, reaching an inter-annotator agreement
of 0.659 (Fleiss’ Kappa). Out of 3,528 images, we discarded 18
images annotated with “none of the above”, resulting in a set
of 3,510 images covering 90 verbs and 163 senses. Number of
images per verb sense varied from 1− 100. We present statistics
of our dataset in Table 2; we group the verbs into motion verbs
and non-motion verb using Levin verb classes [39].

4 VISUAL VERB SENSE DISAMBIGUATION

For our disambiguation task, we assume we have a set of images I,
and a set of polysemous verbs V and each image i ∈ I is paired
with a verb v ∈ V . For example, Figure 2 shows different images
paired with the verb play. Every verb v ∈ V , has a set of senses
S(v), described in a dictionary D . Now, given an image i paired
with a verb v, our task is to predict the correct sense ŝ ∈ S(v),
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music

engage in a 
playful 
activity

play Sense Inventory: D

O: person, tennis 
racket, sports ball

C: A woman is 
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Fig. 5: Schematic overview of the visual sense disambiguation
model.

i.e., the sense that is depicted by the associated image. In Figure 2,
the correct sense for the first image is participate in sport, for the
second one it is play an instrument, and so on.

The disambiguation task can be performed in a supervised
manner, using samples of images, verbs, and their manually anno-
tated senses. In this case, a classifier is used to assign each verb
its appropriate sense based on evidence from contextual features
extracted from the accompanying image or any textual information
available. While this approach often achieves high accuracy, ade-
quately large sense labeled data sets are difficult to obtain across
languages and sense inventories. We therefore also explore an
unsupervised approach which requires no sense annotated training
data (we use the sense annotations in the VerSe dataset only for
evaluation). For unsupervised sense disambiguation, we propose
a new variant of the Lesk algorithm [40], a well-known approach
to text-based WSD, which relies on the calculation of the word
overlap between the sense definitions and the context in which a
word occurs. The algorithm uses the following scoring function to
disambiguate the sense of a verb v:

ŝ = argmax
s∈S(v)

Φ(s,v,D) = |context(v)∩definition(s,D)| (1)

Here, context(v) is the set of words that occur close to the target
word v and definition(s,D) is the set of words in the definition of
sense s in dictionary D .

In our case, context(v) is the image i associated with v. We
create a representation for a given image (the vector i), which
can be text-based (using the object labels and descriptions for i),
visual, or multimodal. Similarly, we create text-based, visual, and
multimodal representations (the vector s) for every sense s of a
verb. Based on the representations i and s (detailed below), we
score senses as:3

ŝ = argmax
s∈S(v)

Φ(s,v, i,D) = i · s (2)

An overview of our method is given in Figure 5. The various
image representations (visual, textual, and multimodal) also serve
as features in the supervised setting. In that setting, there is no
need to represent senses; the sense are simply labels the classifier

3. Taking the dot product of two normalized vectors is equivalent to using
cosine as similarity measure. We experimented with other similarity measures,
but cosine performed best.
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learns to predict. In the following, we will describe in more detail
how we obtain image and sense representations.

4.1 Image Representations

Visual Modality Creating a visual representation ic of an image i
is straightforward. We used the VGG 16-layer architecture (VG-
GNet) trained on 1.2M images of the 1,000 class ILSVRC 2012
object classification dataset, a subset of ImageNet [41]. This CNN
model has a top-5 classification error of 7.4% on ILSVRC 2012.
We used the publicly available reference model implemented using
CAFFE [42] to extract the output of the fc7 layer, i.e., a 4,096
dimensional vector ci, for every image i. We use this vector as our
image representation.

Textual Modality We also explore the possibility of representing
the image indirectly, viz., through text associated with it in the
form of object labels (O) or image descriptions (C), as shown
in Figure 5. We experiment with two different forms of textual
annotation: gold-standard (GOLD) annotation, where object labels
and descriptions are provided by human annotators, and predicted
(PRED) annotation, where state-of-the-art object recognition and
image description generation systems are applied to the image.

GOLD object annotations are provided with the two datasets
we use. Images sampled from COCO are annotated with one or
more of 91 object categories. Images from TUHOI are annotated
with one more of 189 object categories. PRED object annotations
were generated using the same VGG 16-layer CNN object recog-
nition model that was used to compute visual representations. Only
object labels with an object detection threshold t > 0.2 were used.

To obtain GOLD image descriptions, we used the used human-
generated descriptions that come with COCO. For TUHOI images,
we generated descriptions of the form subject-verb-object tuples,
where the subject is always person, and the verb-object pairs
are the action labels that come with TUHOI. To obtain PRED
descriptions, we generated three descriptions for every image
using the state-of-the-art image description system of Vinyals et
al. [43].4

We create a textual representation it of image i using word2vec
[44], a widely used model of word embeddings. Specifically, we
obtain a vector for each object label and word in the image de-
scriptions. An overall representation of the image is then computed
by averaging these vectors over all labels, all content words in the
description, or both. For our experiments we used the pre-trained
300 dimensional vectors available with the word2vec package
(trained on part of the Google News dataset, about 100 billion
words).

Modality Combination Apart from experimenting with separate
textual and visual representations of images, it also makes sense
to combine the two modalities into a multimodal representation.
The simplest approach is a concatenation model which appends
textual and visual features. More complex multimodal vectors can
be created using methods such as Canonical Correlation Analysis
(CCA; [45]) and Deep Canonical Correlation Analysis (DCCA;
[46], [47]). CCA allows us to find a latent space in which the linear
projections of text and image vectors are maximally correlated
[48], [49]. DCCA can be seen as a non-linear version of CCA and
has been successfully applied to the image description task [50],
outperforming previous approaches, including kernel-based CCA.

4. We used Karpathy’s implementation, publicly available at https://github.
com/karpathy/neuraltalk.
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We use both CCA and DCCA to map the vectors it and ic
(which have different dimensions) into a joint latent space of n =
300 dimensions. We represent the projected vectors of textual and
visual features for image i as it′ and ic′ and combine them to obtain
a multimodal representation im as follows:

im = λit′+(1−λ)ic′ (3)

where λ is a parameter representing the relative importance of the
textual and visual modalities.

4.2 Sense Representations

For unsupervised disambiguation, we must also obtain representa-
tions for verb senses (see Equation (2)). Analogously to image
representations, we create a visual sense representation sc, a
text-based sense representation st, and one that combines both
modalities.

Visual Modality Sense dictionaries typically provide sense defi-
nitions and example sentences, but no visual examples or images.
For nouns, this is remedied by ImageNet [24], which provides
a large number of example images for a subset of the senses in
the WordNet noun hierarchy. However, no comparable resource is
available for verbs (see Section 2).

In order to obtain visual sense representation sc, we therefore
collected sense-specific images for the verbs in our dataset. For
each verb sense s, three trained annotators were presented with the
definition and examples from OntoNotes, and had to formulate a
query Q (s) that would retrieve images depicting the verb sense
when submitted to a search engine. For every query q we retrieved
images I (q) using the Bing image search engine (for examples,
see Figure 6). We used the top 50 images returned by Bing per
query.

Images were converted into feature representations, using the
output of the fc7 layer of VGGNet (same setup as in Section 4.1).
To generate a visual representation for an individual sense sc, we
perform mean pooling over the images obtained using the sense
specific queries:

sc =
1
n ∑

q j∈Q (s)
∑

i∈I (q j)

ci (4)

where n is the total number of images retrieved per sense s.
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Fig. 7: Multi-label verb prediction classifiers.

Text-based Sense Representation We create a vector st for every
sense s ∈ S(v) of a verb v from its definition and the example
usages provided in the OntoNotes dictionary D . Again, we apply
word2vec [44] to obtain a vector for every content word in the
definition and examples of the sense and take the average of these
vectors to compute an overall representation of the verb sense.

Modality Combination Visual and textual modalities for senses
were combined as explained previously for images. We obtain a
multimodal representation for sense s as follows:

sm = λst′+(1−λ)sc′ (5)

where vectors st′ and sc′ are projections of the visual and textual
representations of sense s onto a joint latent space.

We use vectors (it, st), (ic, sc), and (im, sm) as described in
Equation (2) to perform sense disambiguation.

5 VERB PREDICTION

So far we have focused on disambiguating verbs co-occurring
with an image. In cases where images are not associated with
textual information, it would be natural to first predict a verb
representing the action depicted and then predict the verb sense
(using the methods introduced in the previous sections). In the
following, we describe two methods for predicting verbs given an
image: (1) a multilabel CNN-based classification approach which
simultaneously predicts all verbs associated with an image; and
(2) a multiple instance learning approach which considers bags
of positive and negative bounding boxes to decide which verb is
compatible with the image.

5.1 Multilabel Classification

We trained a multilabel CNN to simultaneously predict all verbs
depictable in a novel test image. Our vocabulary V consists of
the 250 most common verbs (including the 90 verbs in VerSe) in
the descriptions of TUHOI, Flickr30k, and COCO datasets. We
included Flickr30k as it has a more diverse distribution of verbs
compared to COCO and the descriptions are action oriented [51].

We used a sigmoid cross entropy loss and optimized the
ResNet 152-layer CNN architecture. We initialized the network
weights with the publicly available CNN pretrained on ImageNet5

and finetuned it with our own verb labels. We used stochastic
gradient descent with momentum set to 0.99 and a learning rate
of 1e−5, i.e., lower than the original network to account for the
sparsity of the labels in the training set. The network was trained
with a batch size of one for three epochs. The CNN architecture
for multilabel classification (MLC) is shown in Figure 7a.

5. https://github.com/KaimingHe/deep-residual-networks#models

5.2 Multiple Instance Learning

In addition to multilabel classification, we experimented with a
weakly supervised model based on multiple instance learning
(MIL; [52]) which has shown promising results in a variety
of computer vision tasks including object detection [53], image
description generation [54], scene classification [55], and action
recognition [56], [57].

For each verb v ∈ V , MIL samples sets of “positive” and
“negative” bags of bounding boxes, where each bag corresponds
to one image i. A bag bi is positive if verb v is in image i’s
description, and negative otherwise. During training, instances
within the positive bags are iteratively selected and the model is
retrained using the updated positive labels. Compared to multilabel
classification, which makes predictions considering the image as
a whole, MIL is intuitively more appropriate for our task, since
different parts of an image could represent different verbs.

We predict pv
i j, the probability that a region j in image i

corresponds to verb v, using a multi-layered convolutional neural
network architecture which computes a logistic function on top of
the last hidden layer (fc7; see [54] for more details):

pv
i j =

1
1+ exp(−(wvφ(bi j)+wbv))

(6)

where φ(bi j) is the fc7 representation for image region j in image i,
and wv, wbv are the weights and bias associated with verb v. We
then use a noisy-OR version of MIL, where the probability of
bag bi depicting verb v is calculated from the probabilities of the
individual instances in the bag:

pv
i = 1−∏

j∈bi

(
1− pv

i j

)
(7)

Following previous work [54], we upsample images to 565 pixels
and use a sliding window of 224× 224 with a stride of 32.
The noisy-OR version of MIL (Equation (7)) is implemented on
top of 144 intermediate predictions pv

i j (corresponding to each
bounding box region bi j) to compute a single probability pv

i for
each v ∈ V . We use cross-entropy loss and optimize ResNet-
152 (initialized with a CNN network pretrained on ImageNet)
end-to-end with stochastic gradient descent. We use the same
hyperparameter settings as in multilabel classification for three
epochs. At test time, a novel image i is upsampled to 565 pixels
to obtain the probability pv

i for each verb v ∈ V . The MIL
architecture is shown in Figure 7b.

6 EXPERIMENTS

In the following, we report results for two sets of experiments. We
first focus on visual sense disambiguation when the input to the
system is an image and a verb associated with it and then move
on to the more challenging task of detecting the verbs that are
depicted in the image prior to predicting their senses.
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6.1 Verb Sense Disambiguation

Table 3 summarizes the results of the unsupervised disambiguation
method introduced in Section 4. We present results separately
for motion and non-motion verbs in our gold-standard (GOLD)
and predicted (PRED) settings. As explained earlier, we represent
images and their senses by individual modalities (textual or visual)
or their combination. To train the CCA and DCCA models, we
use the text representations learned from image descriptions in the
COCO and Flickr30k datasets as one view and the VGG-16 fea-
tures from the respective images as the second view. We divide the
data into train, test and development samples (using an 80/10/10
split). We use the trained models to generate the projected rep-
resentations of text and visual features for the images in VerSe.
Once the textual and visual features are projected, we merge them
to get the multimodal representation. We experimented with two
ways of combining visual and textual features projected via CCA
or DCCA, namely interpolation (see Equations (3) and (5)) and
concatenation.

To evaluate our proposed method, we compare against the first
sense heuristic (FS), which defaults to the sense listed first in the
dictionary (where senses are typically ordered by frequency). This
is a strong baseline which is known to outperform more complex
models in traditional text-based WSD. In VerSe we observe skew
in the distribution of the senses and the first sense heuristic is
as strong as it is on text. We further report the performance of
the most frequent sense heuristic (MFS), which assigns the most
frequently annotated sense for a given verb in VerSe. Note that
MFS is supervised (as it requires sense annotated data to obtain
the frequencies), so it should be regarded as an upper limit on the
performance of the unsupervised methods we propose (as is also
the case in unsupervised WSD for text [12]).

In the GOLD setting we find that for both types of verbs,
textual representations based on image descriptions (C) outper-
form visual representations (CNN features). The text-based results
compare favorably to the original Lesk algorithm (as described in
Equation (1)), which performs at 30.7 for motion verbs and 36.2
for non-motion verbs in the GOLD setting. This improvement is
clearly due to the use of word2vec embeddings.6 Note that CNN-
based visual features alone perform better than gold-standard
object labels alone in the case of motion verbs.

We also observed that adding visual features to textual fea-
tures improves performance in some cases: multimodal features
perform better than textual features alone both for object labels
(CNN+O) and for image descriptions (CNN+C). However, adding
CNN features to textual features based on both object labels
and descriptions (CNN+O+C) results in a small decrease in
performance. Furthermore, we note that CCA models outperform
simple vector concatenation in case of GOLD setting for motion
verbs, and overall DCCA performs considerably worse than con-
catenation. For CCA and DCCA we report the best performing
scores achieved using weighted interpolation of textual and visual
features with λ = 0.5.

When comparing to our baseline and upper limit, we find that
all GOLD models which use descriptions-based representations
(except DCCA) outperform the first sense heuristic for motion-
verbs (accuracy 70.8), but not for non-motion verbs (accuracy
80.6). As expected, both motion and non-motion verbs perform
significantly below the most frequent sense heuristic (accuracy

6. We also experimented with Glove vectors [58] but observed that word2vec
representations consistently achieved better results that Glove vectors.

86.2 and 90.7 respectively), which provides an upper limit for
unsupervised approaches.

We now turn to results obtained using object labels and
image descriptions predicted by state-of-the-art automatic systems
(PRED configuration). This is arguably a more realistic scenario,
as it only requires images as input, rather than human-generated
object labels and image descriptions (though object detection and
image description systems are required instead). In the PRED
setting, we find that textual features based on object labels (O)
outperform both first sense heuristic and textual features based on
image descriptions (C) in the case of motion verbs. Combining
textual and visual features via concatenation improves perfor-
mance for both motion and non-motion verbs. The overall best
performance of 72.6 is obtained by combining CNN features and
embeddings based on object labels and outperforms the first sense
heuristic in case of motion verbs (accuracy 70.8). In the PRED
setting for both classes of verbs the simpler concatenation model
performs better than the more complex CCA and DCCA models.
Note that for CCA and DCCA we report the best performing
scores achieved using weighted interpolation of textual and visual
features with λ = 0.3. Overall, our findings are consistent with
the intuition that motion verbs are easier to disambiguate than
non-motion verbs, as they are more depictable and likely to
involve objects. This is also reflected in the higher inter-annotator
agreement for motion verbs (see Table 2).

In order to better understand where the proposed unsupervised
algorithm fails, we analyzed images that were disambiguated
incorrectly. In the PRED setting, we observed that automatically
generated image descriptions obtained lower scores compared
to predicted object labels. The main reason for this is that the
generated descriptions are often unrelated to the action depicted,
whereas the object labels predicted by the CNN model are mostly
topical and related to the image. This highlights that current
image description systems still have clear limitations, despite high
evaluation scores reported in the literature [43], [54]. Examples
of images which were assigned incorrect senses are shown in
Table 4 together with automatically generated descriptions and
object labels.

We also investigated disambiguation performance in a super-
vised setting. Specifically, we trained logistic regression classifiers
for sense prediction by dividing the images in VerSe into training
and testing. To train the classifiers (one per verb), we selected
verbs which have at least 20 images and at least two senses in
VerSe.7 This resulted in 19 motion verbs and 19 non-motion verbs.
The classifiers used textual (O, C) and visual (CNN) features,
either in isolation or combined. Our results are summarized
in Table 5; for comparison, we also report the scores of our
unsupervised algorithm on the same set of verbs (in both GOLD
and PRED settings).

We observe that supervised classifiers perform better than the
first sense baseline (for both motion and non-motion verbs). In
most cases multimodal features (CNN+C+O) outperform textual
or visual features alone especially in the PRED setting, which
is arguably the more realistic scenario. The features from PRED
image descriptions show better results for non-motion verbs for
both supervised and unsupervised approaches, whereas PRED
object features show better results for motion verbs. We also find
that supervised classifiers outperform the most frequent sense for

7. Few verbs such as board, hang only had one sense annotated in VerSe.
Few other verbs have very skewed distribution of senses resulting in 5 or less
number of images per sense. We ignore all such verbs.
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Using GOLD annotations for objects and captions
Images FS MFS Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C
Motion 1812 70.8 86.2 54.6 73.3 75.6 58.3 66.6 74.7 73.8 50.5 75.4 74.0 52.4 66.3 68.3
Non-Motion 1698 80.6 90.7 57.0 72.7 72.6 56.1 66.0 72.2 71.3 53.6 71.6 70.2 57.3 59.8 55.1

Using PRED annotations for objects and captions
Images FS MFS Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C
Motion 1812 70.8 86.2 65.1 54.9 61.6 58.3 72.6 63.6 66.5 54.0 56.6 56.2 57.1 56.5 56.2
Non-Motion 1698 80.6 90.7 59.0 64.3 64.0 56.1 63.8 66.3 66.1 50.7 55.3 54.8 49.5 50.0 50.0

TABLE 3: Sense disambiguation scores for gold-standard verbs: accuracy scores for motion and non-motion verbs using different
types of sense and image representations (O: object labels, C: image descriptions, CNN: image features, FS: first sense heuristic, MFS:
most frequent sense heuristic). Model configurations that performed the best are shown in bold.

Image Descriptions Objects

A man holding a nintendo wii game controller.
A man and a woman playing a video game.
A man and a woman are playing a video game.

person,
bassoon,
violin fiddle,
oboe, hautboy

play: perform or transmit music, engage in competition
A woman standing next to a fire hydrant.
A woman walking down a street holding an
umbrella.
A woman standing on a sidewalk holding an
umbrella.

person,
horizontal
bar, high bar,
pole

swing: move in a curve or arc, hang freely

A couple of cows standing next to each other.
A cow that is standing in the dirt.
A close up of a horse in a stable

arabian camel,
dromedary, per-
son

feed: give food, eat, be sustained on

TABLE 4: Images assigned an incorrect sense (shown in red) in
the PRED setting. Gold-standard senses are shown in blue.

Motion verbs: 19, MFS: 76.1
Features GOLD PRED

Sup Unsup Sup Unsup
FS 60.0 60.0 60.0 60.0
O 82.3 35.3 80.0 43.8
C 78.4 53.8 69.2 41.5
O+C 80.0 55.3 70.7 45.3
CNN 82.3 58.4 82.3 58.4
CNN+O 83.0 48.4 83.0 60.0
CNN+C 82.3 66.9 82.3 53.0
CNN+O+C 83.0 58.4 83.0 55.3

Non-Motion Verbs: 19, MFS: 80.0
Features GOLD PRED

Sup Unsup Sup Unsup
FS 71.3 71.3 71.3 71.3
O 79.1 48.6 78.2 46.0
C 79.1 53.9 77.3 61.7
O+C 79.1 66.0 77.3 55.6
CNN 80.0 55.6 80.0 55.6
CNN+O 80.0 56.5 80.0 52.1
CNN+C 80.0 56.5 80.3 60.0
CNN+O+C 80.0 59.1 80.0 55.6

TABLE 5: Accuracy scores for motion and non-motion verbs for
supervised and unsupervised approaches using different types of
sense and image representation features (O: object labels, C: image
descriptions, CNN: image features, FS: first sense heuristic, MFS:
most frequent sense heuristic). Configurations that perform the
best are shown in bold

motion verbs, whereas for non-motion verbs our scores match the
most frequent sense heuristic.

6.2 Verb Prediction and Sense Disambiguation

We measure verb prediction performance using both accuracy and
mean average precision (mAP). If a verb is used in at least one of
the gold-standard image descriptions, it is included as a positive
instance; as a result, an image can have multiple gold-standard
verb labels. Both MLC and MIL systems output a distribution of
verbs given an image. We consider verbs with probability higher
than a threshold τ = 0.2 as positive predictions.

Verb type Verbs Images Accuracy mAP
MLC MIL MLC MIL

Motion 39 1,812 46.96 50.60 35.81 41.47
Non-motion 51 1,698 34.82 37.47 31.12 35.27

TABLE 6: Verb prediction accuracy and mAP on VerSe; MIL:
Multiple Instance Learning; MLC: Multi-label classification.

(a) play instrument

(b) play sport

(c) children play video games

Fig. 8: Localizations for different senses of the verb play.

Table 6 summarizes the performance of MLC and MIL. As can
be seen, MIL performs best both in terms of accuracy and mAP,
across motion and non-motion verbs. Among motion verbs, the
most accurately predicted ones were drive, fly, ride, play; for non-
motion verbs sit and hold were most accurate. Figure 9 shows
visualizations of different verbs detected in images, while Fig-
ure 10 shows examples of verbs predicted by the MIL and MLC
models for three different images. In Figure 8 we also show the
visualizations of different senses of the verb play, which indicate
that depending on the sense of verb being depicted our models are
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Using GOLD annotations for objects and captions
Images FS MFS Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C
Motion 918 68.4 87.3 58.3 78.7 82.7 65.1 73.5 79.4 79.6 54.0 75.9 75.8 56.4 72.0 75.9
Non-Motion 637 83.8 92.3 63.7 78.1 80.5 58.7 73.3 76.9 76.7 59.6 73.4 70.1 61.9 63.1 61.2

Using PRED annotations for objects and captions
Images FS MFS Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C
Motion 918 68.4 87.3 72.3 65.1 71.6 65.1 79.4 74.0 75.8 49.3 60.3 57.8 64.0 66.4 64.8
Non-Motion 637 83.8 92.3 65.7 77.3 76.2 58.7 70.0 74.4 74.2 49.6 59.1 59.1 54.0 53.0 54.6

TABLE 7: Sense disambiguation scores for predicted verbs: accuracy scores for motion and non-motion verbs using different types
of sense and image representations (O: object labels, C: image descriptions, CNN: image features, FS: first sense heuristic, MFS: most
frequent sense heuristic). Model configurations that performed the best are shown in bold.

ride fly feed

Fig. 9: Localizations for predicted verbs ride, fly and feed.

play, hit, serve
hold, play, hit

play, perform, sing
play, perform, sing

sit, play, hold
sit, play, hold

Fig. 10: Example verb predictions of MIL and MLC classifiers

localizing different aspects of the image. Finally, Table 8 provides
examples of the best and worst performing verbs for MLC and
MIL using average precision (AP). Although informative, AP is
a pessimistic evaluation metric because we can not exhaustively
annotate all possible verbs depicted in an image. Consider the
case where our model predicts the verbs stand, hold, [play] for
an image depicting a person playing tennis. The predictions are
all correct, but AP would penalize us if those verbs are not in our
gold-standard annotation.

To study in more detail the quality of the verb predictions,
we conducted a human evaluation study. We presented the top
10 verbs predicted by the MIL classifier for a given image to
Amazon Mechanical Turk workers and asked them to select those
that apply. For this study, we sampled 640 images from VerSe
across verbs and senses with 2–5 images per unique verb sense.
For every image, we collected annotations from three workers.
Overall, 54 workers took part in the study, with pair-wise inter-
annotator agreement of 0.741.

Table 9 presents mean accuracy scores across all 640 images
using human selected verbs as gold-standard labels. Specifically,
we compute accuracy for every image based on (a) majority labels,

Verb Count MLC MIL Verb Count MLC MIL
shoot 339 0.14 0.16 draw 985 50.37 63.27
drill 128 0.26 0.27 hit 6459 68.98 68.53
break 794 2.26 1.63 kick 1780 75.00 79.27
lift 980 3.89 3.98 paddle 1027 76.41 83.76
chase 745 4.35 5.05 fly 13395 80.90 85.19

TABLE 8: Average precision scores for individual verbs. Count
refers to number of positive training instances. Verbs with the
lowest and highest performance are shown.

τ = 0.05 τ = 0.1 τ = 0.15 τ = 0.2 τ = 0.25 τ = 0.3
Majority 48.5 57.6 63.5 66.6 66.9 64.6
All 68.2 74.8 78.5 80.6 80.3 76.0

TABLE 9: Human evaluation accuracy scores for verb prediction
labels. τ is the confidence threshold of verb predictions.

i.e., if at least two out of three annotators agreed that a particular
verb is depicted in the image; and (b) all labels, i.e., if at least one
annotator thought a particular verb is depicted in the image. The
average number of verbs selected per image is 4.17 for majority
labels and 6.18 for all labels. In Table 9 we present the accuracy
scores against the gold-standard from the human annotation whilst
we vary τ, the prediction confidence threshold. As can be seen, the
best accuracies are achieved at τ = 0.2 and τ = 0.25. Overall, most
verb predictions are considered appropriate by humans, even under
the stricter majority label criterion.

Sense accuracy scores for predicted verbs are shown in Ta-
ble 7. Again, scores are shown for motion and non-motion verbs
separately. We report results for unsupervised methods, using the
multiple instance learning approach to obtain verb predictions.
Here, we only consider images for which the MIL system pre-
dicted the same verbs as in VerSe. These are 918 images compared
to 1,812 in the full dataset. For this reason, we do not report
supervised experiments in the predicted verb setting: there are
not enough image-verb instances to train a supervised classifier.
Also notice that even though several of the verbs predicted by
the MIL system may be appropriate for VerSe images, we do not
have sense annotations for them to perform either evaluation or
training. Overall, sense disambiguation results for predicted verbs
follow the same pattern as those obtained from observed verbs:
motion verbs are easier to disambiguate than non-motion ones; in
the GOLD setting best model performance is achieved with object
labels and image descriptions combined, whereas in the PRED
setting concatenation of CNN features with object labels yields
best results.
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7 CONCLUSIONS

In this article, we introduced the new task of visual verb sense
disambiguation: given an image and a verb, identify the verb
sense depicted in the image. We developed VerSe, a new dataset
with verb sense annotation based on the COCO and TUHOI
datasets. We evaluated supervised and unsupervised visual sense
disambiguation models and demonstrated that both textual and
visual information associated with an image can contribute to
sense disambiguation. In an in-depth analysis of various image
representations we showed that object labels and visual features
extracted using state-of-the-art convolutional neural networks re-
sult in good disambiguation performance, while automatically
generated image descriptions were shown to be less useful.

We also explored a second scenario for visual sense disam-
biguation, where we assumed that only the image is given, and
both the verb and its sense need to be predicted. We concep-
tualized this as a two-stage process: First, we predicted verb
labels using multi-instance learning or multilabel classification.
Then, we disambiguated the predicted verbs using our sense
disambiguation approach combining visual and textual features.
We showed that the verbs predicted by this method agree well
with human intuitions, and we also obtained good sense accuracy
scores. Note that the second scenario differs from our first scenario
in a crucial respect: we are able to predict multiple verbs per
image, and each of these verbs can be associated with a different
image region (if the multi-instance learning model is used). While
a lot of images in our dataset only depict a single action, this is not
always the case (e.g., the child in the rightmost image in Figure 10
is both sitting in the sand and holding a toy).

In this work, we explored visual sense disambiguation as a
standalone task. We did not yet show that applications benefit from
VSD; this is an important project for future work. An obvious
example would be image search: recall Figure 3, which depicts
a search result obtained with the verb sit as query. If the search
engine had access to verb sense disambiguation for images, then
it would be able to cluster the search results based on verb senses,
rather than forming groups based on image or query similarity.

Other language/vision task that are also likely to benefit in-
clude image description and visual question answering. An image
description system that has access to verb prediction and sense
disambiguation can make sure that it outputs only descriptions
that are compatible with the verb senses that are attested in the
image it tries to describe. A simple re-ranking architecture could
be used to implement this: We take an existing image description
system, use it to generate a set of candidate descriptions for a
given image, and then re-rank the descriptions based on the output
of our verb prediction and VSD models. In a similar fashion, VSD
could be used to re-rank the output of a visual question answering
system (or the VSD scores could simply serve as a feature).

Another important area for future research is the connection
between verb sense ambiguity and translation ambiguity. This
rests on the observation that sense ambiguity in one language can
manifest itself as ambiguity in lexical choice in another language.
The English verb ride, for instance, can have the senses (1) sit on
and control a vehicle (as in ride bicycle), or (2) sit and travel on
the back of animal (as in ride hose). These two senses corresponds
to two different lexical choices in German, viz., the verbs fahren
(for sense 1) and reiten (for sense 2). In other words, we need
to sense disambiguate the verb in order to translate it correctly.
This observation is of practical importance, as machine translation
systems often suffer from disambiguation errors such as this [59].

If the ambiguous verb occurs in a visual context, then we
can apply the VSD methods developed in this article to the
resolution of translation ambiguities as they occur in multilingual
image description or crosslingual image retrieval. Again, this is
something we would like to explore in future work (preliminary
results for multilingual image description are presented in [60]).
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[52] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance
learning,” in Advances in Neural Information Processing Systems 10,
M. I. Jordan, M. J. Kearns, and S. A. Solla, Eds., 1997.

[53] C. Zhang, J. C. Platt, and P. A. Viola, “Multiple instance boosting for
object detection,” in Advances in neural information processing systems,
2005, pp. 1417–1424.

[54] H. Fang, S. Gupta, F. N. Iandola, R. K. Srivastava, L. Deng, P. Dollár,
J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig,
“From captions to visual concepts and back,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, 2015, pp. 1473–1482. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2015.7298754

[55] O. Maron and A. L. Ratan, “Multiple-instance learning for natural scene
classification,” in Proceedings of the Fifteenth International Conference
on Machine Learning (ICML 1998), Madison, Wisconsin, USA, July 24-
27, 1998, 1998, pp. 341–349.

[56] F. Sener, C. Bas, and N. Ikizler-Cinbis, “On recognizing actions in still
images via multiple features,” in European Conference on Computer
Vision. Springer, 2012, pp. 263–272.

[57] A. Mallya and S. Lazebnik, “Learning models for actions and person-
object interactions with transfer to question answering,” in European
Conference on Computer Vision. Springer, 2016, pp. 414–428.

[58] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, 2014, pp. 1532–1543. [Online]. Available:
http://aclweb.org/anthology/D/D14/D14-1162.pdf

[59] D. Vilar, J. Xu, L. F. d’Haro, and H. Ney, “Error analysis of statistical
machine translation output,” in Proceedings of LREC, 2006, pp. 697–702.

[60] S. Gella, R. Sennrich, F. Keller, and M. Lapata, “Image pivoting for
learning multilingual multimodal representations,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing:
Short Papers, Copenhagen, 2017, pp. 2829–2835.

Spandana Gella is a PhD candidate at the School
of Informatics, University of Edinburgh. Her research
interests include weakly supervised learning of action
recognition, scene understanding, multilingual multi-
modal learning, and image description.

Frank Keller is professor in the School of Informat-
ics, University of Edinburgh. His background includes
an undergraduate degree from Stuttgart University, a
PhD from Edinburgh, and postdoctoral and visiting
positions at Saarland University and MIT. His research
focuses on how people solve complex tasks such as
understanding language or processing visual informa-
tion. His work uses experimental techniques and com-
putational modeling to investigate reading, sentence
comprehension, translation, and language generation,
both in isolation and in a multimodal context.

Mirella Lapata is a professor in the School of Infor-
matics, University of Edinburgh. Her research inter-
ests include machine learning techniques for natural
language understanding, generation, and grounded
language acquisition.


