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Abstract. This chapter surveys some basic algorithms for analyzingkMachains (MCs) and
Markov decision processes (MDPs), and discusses their uiatipnal complexity. We focus on
discrete-time processes, and we consider both finitestatiels as well as countably infinite-state
models that are finitely-presented. The analyses we witharily focus on are hitting (reachability)
probabilities andv-regular model checking, but we will also discuss variowgarel-based analyses.

Although it may not be evident at first, there are fruitful nentions between automata theory
and stochastic processes. Firstly, and not surprisinglgutomata play a naturally important role
for specifyingw-regular properties of sample paths (trajectories) of&ietic processes. Com-
puting the probability of the event that a random sample pattsfies a givew-regular property
constitutes the (linear-time) model checking problem fababilistic systems.

Secondly, it turns out that there are close relationshipsden classic infinite-state automata-
theoretic models and classic denumerably infinite-staiehsistic processes, even though these
models were developed independently in separate mathtehatimmunities. Roughly speaking,
some classic stochastic processes share their undertgiteginsition systems with corresponding
classic automata-theoretic models. Furthermore, expipthese connections to automata theory
is fruitful for the algorithmic analysis of such stochagtimcesses, and for their controlled MDP
extensions. This holds even when the analyses are muchesiiiggin model checking, such as
computing (optimal) hitting probabilities.

A number of important infinite-state stochastic models emted with automata theory can
be captured as (restricted fragments me@ursive Markov chainand recursive Markov decision
processeswhich are obtained by adding a natural recursion featufimite-state MCs and MDPs.
Key computational problems for analyzing classes of réeer8ICs and MDPs can be reduced
to computing thdeast fixed poin{LFP) solution of corresponding classesmbnotonesystems
of nonlinear equations. The complexity of computing the fBPsuch equations is a intriguing
problem, with connections to several areas of researchenrétical computer science.



2 K. Etessami

1 Introduction

Markov chains are a fundamental mathematical model foesysthat evolve randomly
over time. They thus play a central role in stochastic modgh many fields. In settings
where in addition to stochastic behavior we also altaatrol (or non-determinism), so
that the system state evolves partly randomly and partlgdas decisions by a controller,
the resulting model is called a Markov decision process (MDMDPs give rise to a
variety of stochastic dynamic optimization problems, defieg on what objective the
controller wishes to optimize.

Historically, automata theory developed entirely sepydtom the theory of stochas-
tic processes and stochastic optimal control, with eacbldped by a separate mathemat-
ical community having distinct motives. It turns out, howewhat there are fruitful con-
nections between these fields. In particular, a number gbidnfinite-state automata-
theoretic models, such as one-counter automata, comxigfammars, and pushdown
automata, are in fact closely related to correspondingidasd well-studied countably
infinite-state stochastic processes. Roughly speaking) automata-theoretic models
share the same (or, a closely related) underlying statsitiam system with correspond-
ing classic stochastic processes.

Upon reflection, it should not be entirely surprising thastis the case. After all,
Markov chains are nothing other than probabilistic statagition systems. In order for a
class of infinite-state Markov chains to be considered irgay it should not only model
interesting real-world phenomena, but it should also halpebe “analyzable” in some
sense. Better yet, its analyses should have reasonableutatiopal complexity. But
these same criteria also apply to infinite-state autontetaretic models: their relevance
is at least partly dictated by whether we have efficient aflgors for analyzing them.

Clearly, we can not devise effective algorithms for anaigarbitrary finitely-presented
countably infinite-state transition systems. For examplejng machines are clearly
finitely presented, but we can not decide whether a Turinghinachalts, i.e., whether
we can reach the halting configuration from the start configom. Furthermore, if we
considerprobabilistic Turing machines (PTMs), we easily see that there can not exis
any algorithm that computesy non-trivial approximatiowf the probability that a given
probabilistic Turing machine halts.

Researchers working on automata theory and on stochastiegses have, over time,
arrived at related classes of “analyzable” infinite-stedmgition systems, and they have
built automata-theoretic structure, or stochastic stm@tupon them to suit their own
purposes. Let us mention a couple of examples. Considerdheation graph of a
context-free grammaiCFG), in which states consist of sequences of terminalsand
terminals and with a simultaneous derivation law definimgsitions between states, so
all non-terminals in a sequence are expanded at once angduiules associated with
those nonterminals. The state transition systems obtameevay are intimately related
to the underlying state transition systemsraflti-type branching process@P), a classic
stochastic process ([33]). Basically, the transition elysfor the BP corresponding to a
CFG is the quotient of the CFG's transition system under thevalence that equates any
two sequences of terminals and nonterminals that contaisetine number of occurrences
of each nonterminal symbolin them (see [28] for a detailguianation).

Likewise, one-counter automatahare essentially the same state transition system
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with quasi-birth-death process€®BDs) (see [21] for the details). QBDs are a class of
stochastic processes heavily studied in queuing theomrewhe counter can basically be
used to keep track of the number of jobs in the queue. A ganatiain of QBDs, referred

to astree-like QBDdn the queuing theory literature, turns out to share itestansition
graphs withpushdown automatgagain, see [21] for the precise correspondence).

The aforementioned stochastic models (in discrete-tirae)d be formulated as sub-
cases, in precise ways, of a model obtained by adding a hatgtasion feature to finite-
state Markov chains, calle@cursive Markov chain§RMCs) [28]. RMCs are also es-
sentially equivalent tprobabilistic pushdown systerjis7] (see [28] for the precise sense
of this equivalence). RMCs and RMDPs constitute naturairabsmodels of the control
flow of probabilistic procedural programs with recursion.

Of course, being analyzable as automata does not autothatiogly that the cor-
responding class of probabilistic transition systems orRdls also analyzable, nor the
other way around. For some classes of transition systerfes;tigé/efficient “analyz-
ability” does coincide in the two settings, whereas for oghie does not. We shall see
examples of both.

This chapter surveys some basic algorithmic results foatteysis of Markov chains
(MCs) and Markov decision processes (MDPs), in both finiatessettings, as well as
in finitely presented countably-infinite state settings. Wit consider a few different
analyses, focusing on computation of hitting (reachapilirobabilities and on model
checking. But we will also discuss important reward-basealyses. We will also em-
phasize computational complexity considerations for #ievant problems. Finally, we
shall very briefly mention the extension from MDPs to stoticagzames and give some
references to the relevant literature.

Algorithmic analyses of MCs and MDPs, including transienslgses, steady state
analyses, optimal reward analyses, and model checking gplamportant role in many
application areas. A sampling of the many application ave@are stochastic modeling
and analysis play a role includes: queueing theory, contipata biology, natural lan-
guage processing, verification, economics, finance, andhtipes research in general.

Automata-theoretic models and methods come into play falyars of stochastic sys-
tems in several ways. To begin with, we can view a Markov cla&ira probabilistic
state transition system (or probabilistic automaton).rRodel checkingf MCs (and, re-
spectively, MDPs), one is interested in determining theigogl) probability with which
a random walk on the MC (respectively, on the MDP using a ahateategy for the
controller) satisfies a given temporal property. The terapproperty may be specified,
for example, as a Linear Temporal Logic (LTL) formula, or aswaautomaton. In the
latter case the connection to automata theory is very ditbetproperties are given by
automata, or formalisms closely related to automata, sonaatia-theoretic methods are
largely unavoidable.

Even for classic analyses of MCs and MDPs, as already iraticdlhere are deeper
connections between the transition graphs of models stuatiginally in automata the-
ory, such as context-free grammars, one-counter automradgpushdown automata, and
classic stochastic models that have been studied exténsgivihe stochastic processes
literature over many decades, such as (multi-type) brawgghiocesses and (quasi-)birth-
death processes.

Recently, these connections have been exploited to deedligcent algorithms for
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analyzing such stochastic models, and to obtain resultstalve computational complex-
ity of such analyses. We will survey some of this work. Therkiture on analysis of such
Markov chains and MDP's is large and growing, even when oésttito aspects involv-
ing automata-theoretic connections. Thus, in this briefey | can only hope to cover a
very limited selection of the many models and algorithms. Wilerestrict our attention
entirely to finite or countable-state discrete-time Markbains (MCs) and MDPs.

After providing some basic background, in Section 2.1 wéddgfine formally a num-
ber of important analysis problems for MCs and MDPs, andudiscarefully the different
computation and decision problems that they give rise td,vee give some examples of
analyses on finite-state MCs and MDPs in section 2.2, to heilld the intuition of the
reader. We then proceed in subsequent sections to disga#tains for and complex-
ity of these analyses, beginning in section 3, then prooegidi section 4 to finite-state
MDPs. We then defineecursive Markov chainandrecursive MDPsn section 5. As
already discussed, these recursive models subsume a noifngtechastic models and
MDPs which have tight automata-theoretic connections. Neém triefly discuss algo-
rithms and complexity of analyzing RMCs and RMDPs, and giewpointers to the by
now large relevant literature.

One of the themes that will emerge in this survey is that for &ealyses of both
finite-state MCs and MDPs, as well as for analysing classeasfifite-state recursive
MCs and MDPs, a basic ingredient in their algorithms will befind a solution to a
corresponding system of equations. In the case of MDPsgtbgaations correspond
to the appropriat®ellman optimality equationfr the classes of MDPs involved. In
particular, in several settings we will need to find thast fixed poinfleast non-negative)
solution to anonotonesystem of equations. As the models become richer, thesensyst
of equations become richer and more involved, e.g., goiog finear to non-linear and
requiring richer sets of algebraic operators (e.g., goiomfoperator§+} to {+, max},
or to {+, x}, and then to{+, x, max}, etc.). The computational complexity of finding
solutions to such systems of equations, which turn out todrg intriguing problems
with interesting connections to several areas of researetthus intimately connected to
the computational complexity of basic analysis problemstxh stochastic models.

Finally, although we do not have room to discuss it in thispteg let us briefly men-
tion that one can also study the complexity of analysis mgnoisl for the extension of
MDPs tostochastic gamesn particular, in a two-player zero-sum stochastic gaimexe
is not just one controller, but also andversary whose objective is the opposite of that of
the controller. Irnturn-basedtochastic games, also referred tsmsple stochastic games
(SSGs), and first studied by Condon [10], the two playersrobdifferent states. Condon
[10] showed that deciding whether the valuesid /2 for a given SSG with the objectives
of maximizing and minimizing the probability of hitting artget state for the two adver-
sarial players is in NPco-NP, and it is a major open problem whether this problem can
be decided in P-time. (The problem is well known to be at laadtard as solvingarity
gamesandmean payoff gamesee e.g. [46].) Although we shall not have room to dis-
cuss it this survey, we note that, again, key computationaestions for stochastic games
boil down to finding a solution for certain equation systears] again, these equations
become richer as the class of stochastic game models becizimers for example, going
from {4, max, min} to {4+, *, max, min}, and to{+, Val} and to{+, %, Val}, whereVal
is thevalueoperatoVal(M) that gives the minimax value of a 2-player zero-sum matrix
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game with matrixA/. Note thatVal clearly generalizes botthax andmin. Equations
over{+, Val} were already used by Shapley [39] to characterize the vdlhis @riginal
2-player zero-sum stochastic games (which, in the parlased in this paper, constituted
stochastic games with a discounted total payoff objecti8})apley’s discounted equa-
tions for these defined @ontractionmapping whose Banach fixed point gives the value
of the stochastic game starting at each state. In othengs{t.g., in (concurrent) stochas-
tic reachability (hitting) games, the equations defima@otonemapping whose Tarski
least fixed pointlefines the value vector (note thétl). These games further generalize to
infinite-state recursive settings and require monotonatoys over +, *, Val} for their
value [25]. The reader interested in learning more aboustbehastic game extensions
of some of the models we discuss in this chapter can consyle[B 22, 18].

Warning: This chapter iscertainly nota comprehensive survey of algorithms for
analysis and verification of Markov chains and MDPs and tbemections to automata
theory. These are vast and rapidly growing subjects, withgelexisting theoretical and
practical literature. No comprehensive survey is feasiblg, and it is not our intention to
attempt one. This chapter only highlights a few basic tggiesed largely on the author’s
own research interests, focusing on some connections brtwmbabilistic processes
and automata theory, and on recent research on algorithmentdyzing infinite-state
recursive probabilistic systems. We do not mention manyoirtgmt related subjects. For
example, we do not discuss existing software tools for aslgnd model checking of
probabilistic systems. There are many; see, e.g. [34].,Alsme software already exists
for analysing recursive probabilistic systems; see, éd]. We also do not mention
verification of probabilistic models againstanching-timetemporal logics like PCTL
(see, e.g., Chapter 10 of [2] for one treatment of this in db@ek). We also do not
discuss probabilistic (bi)simulation and related top@agdin, see Chapter 10 of [2] for a
brief treatment of this). There are many other topics relatdoth algorithms for analysis
of probabilistic processes and to automata theory that &k isbt mention at all.

2 Definitions and Background

Although we will endeavour to provide most of the formal ditfoms needed for our
purposes, our subject is vast and we will need to assume samidiarity with basic
notions and facts from probability theory, the theory of ktar chains, and the theory
of Markov decision processes. For background on theseddipécreader is referred, for
example, to the following excellent textbooks [9, 36, 38].

Recall that ar-algebraover a sef) is a setF C 2 of subsets of?, such thaf € F,
and such thaf is closed under countable union and under complementaitbrrespect
to Q. Recall that grobability space (2, F,P), consists of a set afutcomes (i.e.,
the sample spade a o-algebraF C 2% of eventsover 2, and aprobability measurge
P: F — [0,1]. For a real-valued random variable (r\4),: Q — R, over a probability
space(Q, F,P), theexpected valuef X, when it exists, is denotel(X) = [, X dP.
Note that, wherE(X) is definedE(X) € R = [~oo, +0cc]. We will sometimes need
to considerextended-reavalued r.v.'s,X : Q — R, and their expectation. The theory
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for these r.v.'s is readily available (see, e.g., [9]), andgists of natural extensions to the
definitions for real-valued r.v.'s and their expectation.pbability distributionover a
finite or countably-infinite set/, is a function” : U — [0, 1] suchthad _, _;; F(u) = 1.
Thesupportof the distributionF’ is the sesupport(F') := {u € U | F(u) > 0}.

Markov chains. We view a (denumerable, discrete-time, time homogenddasikov
chain (MC) as being given by a paismt = (S, P), consisting of a countable (or finite)
set of statesS, and a probabilistic transition functiaf : S x S — [0, 1], such that for
alls € S8,) ,,.4P(s,8) = 1. Pis also referred to as theansition probability matrix
of M, and fors,s’ € S we often use the notatioR, ,, as an alternative t@(s, s').
When |S| = n is finite, we will indeed find it convenient to view as an(n x n)
matrix, and we will often find it convenient to view the coupii (or finite) state set
S as consisting of (an initial segment of) the positive intedé, = {1,2,...}. P s
thus, by definition, atochastic matrixmeaning it is non-negative and all its rows sum
to 1. We useA C S x S to denote the underlyingansition relationof the Markov
chain M, defined byA = {(s,s’) | P(s,s’) > 0}. The state sef together with
A defines theunderlying directed graphG = (S, A), of the Markov chainM. For
everys € S, definesuccessors(s) = {s' | (s,8’) € A}. Clearly, for alls € S,
successors(s) # (), so all states have at least one successdy.iWe use the notation
s — s’ as an alternative t6s, s') € A, and we use ~> s’ to denote thats, s) is in the
transitive closure\* of A, i.e., that there is a (possibly empty) directed patt¥ifrom s

to s’. We uses & s (respectivelys X s') to denote there is a directed path of positive
length (respectively, of length) from s to s’. The Markov chain is calledreducibleif

for all statess, s’ € S, s ~ s’ holds. In other words, irreducibility means the graphas
one strongly-connected component (SCC). Recall that aniSE@aximal subsét C S
such that for alls, s’ € C, s ~ s'. The structure of the strongly-connected components
of G plays an important role in the analysis of finite-state Mar&loainsM. Particularly
important arebottom strongly-connected componefBSCCs). A BSCC(C C S, of G

is an SCC such that for a#l € C there is no state’ ¢ C such thats ~ s'. Fors € S,

we useP; to denote the functio®; : S — [0, 1] defined byP;,(s') := P(s, s") for all

s’ € S. Note that, for alls € S, P, defines a probability distribution afi.

A Markov chain M = (S, P), together with annitial probability distribution on
states,Z : S — [0,1], defines a probability spadé€?, 7, Pz) where the sample space
Q) = Sv consists of the set of infinitajectories or sample pathsor runsof M.1 A
trajectoryr = w1 ... € Q = S is simply an infinite word{-word) over the alphabet
S. For a finite stringw € S*, letC(w) := wS¥ C Q) denote the set of trajectories that
have the stringw as an initial prefix. The (Borel-algebrar C 2’ of measurable events
associated with trajectories of the M@®1, is the (uniquey-algebra generated by (i.e., the
smallesto-algebra containing) all basic open setdasic cylindersgiven by{C(w) |
w € S*}. The probability measur®z : F — [0, 1], which is parametrized by the
initial distributionZ, is uniquely determined by specifying, as follows, the @toibties
of all basic cylindersgaq(w). Firstly, for the empty stringy = €, we haveCp(e) =
S« = (, so of course we definBz(Caq(¢)) := 1. For any non-empty stringy =

1In the probability theory literature the wordn is not often used to refer to sample paths. We use it here to
highlight the close correspondence with the notion of rarautomata theory.
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wows ... w, € ST, wherew; € S,i = 0,...,k, k > 0, we definePz(Cap(w)) :=
Z(wp) - Hle P(w;—1,w;). This definition extends uniquely to all events in thalgebra
F. When the initial distributiorZ assigns probability 1 to a single statg, we will
sometimes usB, instead ofPz to denote the associated probability measure.

A more common formulation of Markov chains, encounteredrobability theory
literature, is the following: a Markov chai, together with initial distributioT, defines
a discrete-time stochastic procegsY; : ¢ € N), consisting of a sequence of random
variablesX, : & — S over the probability spac&?, F,Pz), where eachX; maps a
trajectory;r = mom o ... € S¥ = (, to thei'th state along that trajectory, i.€X;(7) :=
m;. Clearly, according to these definitionB(X, = s) = Z(s), forall s € S, and
furthermore(X;);cn satisfied theMarkov propertyi.e., for any finite sequence of states
S0, 51, - - - 5 Sk, Sk+1, Wherek > 0, we have:

P(Xkt+1 = k41 | Xo =805+, Xk = sg) = P(Xpy1 = sp41 | X = Sk) = P(Sk, Sk+1)

Clearly, these properties also uniquely characterize taekbV chainM (and initial dis-
tribution7), so they can alternatively be taken as the definition of tlaelkddv chain.

Let us observe here that, for any finite-state M, with any initial distributionZ,
with probability 1, a trajectory ofM will eventually enter soméottom strongly con-
nected componefBSCC)C C S of G, and will forever thereafter stay i@. In other
words, if the BSCCs of the underlying graghof a finite-state MC,M, are given by
Cl,CQ, ey Ch, then]P’I(\/le JH=0:V >t Xy € CJ) = 1.

We will sometimes wish to considedabelled Markov chainM = (S, P,1), where
[ : S — XY is amapping that assigns to each state S a symboli(s) € ¥ from some
alphabet:. The labels on distinct states need not be distinct. Sonestinve may wish
to associateewards(payoff9 to states, in which case the labeling functionS — %
assigns numerical values to states. For example, we mayXhav&. We associate with
every trajectoryr = momyms ... € S¥ of M, anw-word{(xw) € ¥ over the alphabet,
defined byl (7) = I(mo)l(m1)l(72) - . ..

For a random variabl¥ : Q — R over the probability spadg?, F, Pr) of trajectories
generated by a Markov chaikt with initial distributionZ, we useEz(Y) = [, Y dPz,
to denote the@xpected valuef Y, assuming it exists, parametrized by initial distribution
Z. If 7 assigns probability to a states, then we typically writéE;(Y') instead ofEz (V).

Example 2.1. A simple example of a labeled finite-state Markov chait; = (S, P, 1),
with 6 statesS = {si, ..., s¢}, is depicted in Figure 1. Thi&state MC has the following
transition probability matrixP = (P ;); jeq1,....61-

1/3 1/2 0 1/6 0
2/5 0 1/5 0 2/5 0

0

/
p_| 0 0 1212 0 0
~ 1 0 0 1/2 1/2 0 0
o 0 0 o0 o0 1
o 0 0 0 1 0

Each states has a label(s) € ¥ = {a, b, c}, and these are depicted in red in Figure 1.
So, for examplel(s;) = a.
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Figure 1. A simple6-state labeled Markov chaimt; .

Let us considehitting probabilities in this MC. It is clear that in the MG\, regard-
less of what state a trajectory starts in, with probabilitthé trajectory will eventually
hit (reach) one of the two states or s5, and will thereafter infinitely-often return to that
state. Consider thigitting (or reachability) probabilities ¢; ;, whereg; ; is defined as the
probability of eventually hitting vertex; starting at vertex;, withi,j = 1,...,6. What,
for example, is the probability; 5 for M in Figure 1? This hitting probability happens
to be17/26. How can we compute it? We will come back to this question itisa 3.
For finite-state MCs, such probabilities can be computeilydagsolving corresponding
systems of linear equations. For this example, the proitiabi(¢] 5, ¢5 ;) constitute the
unigue solution vector to the linear system of equationsvm\tariablés,(xl, x2), given
byz, = (1/3) x 22+ (1/2); za = (2/5) % x1 + (1/5). Hitting probabilities form a basic
ingredient for many other kinds of analyses of MCs, inclgdimodel checking. O

Markov decision processes. A (finite-state or countable-stat&)arkov decision pro-
cess (MDP)is a tupleD = (S, (So,S1), A, P), whereS is a (finite or countable) set
of states (Sp, S1) is a partition ofS into randomstates,S,, andcontrolled statesSs,
ie., S = SyuUSyandSy N S; = 0; A C S x S is atransition relation and finally
P: Sy x S —[0,1]is a probabilistic transition function out of random statésr every
s € S, definesuccessors(s) = {s’' | (s,s’) € A}. We assume that for all statesz S,
successors(s) # (), so all states have at least one successdv.ifror eachs € Sy, we
again use’; to denote the functiod®s : S — [0, 1] defined by lettingPs (s) := P(s, s).
We furthermore assume that for eaclke Sy, Ps defines a probability distribution (i.e.,
> seg Ps(s") = 1), and thatsupport(P;) = successors(s). In other words, the tran-
sitions that are assigned positive probability are prégigansitions to those states that
are immediate successorssoficcording to the transition relatiah, and these probabili-
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ties must of course sum to 1.

We will be focusing on either finite-state MDPs, or countaiolfinite-state MDPs
that are finitely presented. Every specific family of MCs anBR4 that we consider is
finitely-branchingmeaning that for al§ € S, the sekuccessors(s) is finite. Indeed, all
families of MDPs that we consider abeundedly-branchingneaning there is an integer
k > 1 (depending on the MDP) such that for alE S, [successors(s)| < k.

An MDP represents a partially controlled stochastic preceghecontroller (a.k.a.
playern exerts its control by choosingstrategy(a.k.a.policy, a.k.a.scheduley. A strat-
egy(policy) is a functions that, to each strings € S*S; ending in a controlled statec
S, assigns a probability distribution on the neighbors,of (ws) : successors(s) —
[0,1]. We say that a strategyis memoryles#f o(ws) depends only on the last vertex
In this case we can denote the strategy by a function whidgresso every state € Sy
a probability distributiorv (s) : successors(s) — [0,1].

We say that a strategyis deterministiaf for everyws € S*S1, these is somg € S
such thatr(ws)(s’) = 1, in other wordsg(ws) assigns probability 1 to some neighbor
of s. Wheno is deterministic, we writer(ws) = s’ instead ofr(ws)(s’) = 1. Likewise,
for a memoryless deterministic strategywe writeo(s) = s’ instead ofo(ws)(s') =
1. Strategies that are not necessarily memoryless (respbgtileterministic) are called
history-depender{tespectivelyrandomizedl.

Given an MDPD = (S, A, (So, S1), P), fixing a strategy for the controller deter-
mines a unique Markov chai(c) = (ST, P?), for which the set of states 5™ (i.e.,
the non-empty strings oves), and where, for allo, w’ € S* ands, s’ € S:

P(s,s") if s € Sp,and(s,s’) € A, andw’ = ws
P (ws,w's’) :=¢ o(ws) ifse€ Sy, and(s,s) € A, andw’ = ws
0 otherwise

Note that states dP(o) essentially store the entire history of state$ahat are encoun-
tered during a run, starting from some initial state (or eseme initial “history”). Let
Q(o) = (ST)“ denote the set of trajectories (sample paths) of the Markaind (o).
To every trajectory oD (o) in (o) = (ST)“, & = (£)(&1) - - . € Q(o), we associate a
correspondinglay, 7 € S«. Namely,z¢ = wgﬁ ... € 5% whereif§; = w's, for some
w' € S*ands € S, themrf =s.1In otherwordswf is the state of currentlyvisitedby
the historys;, i.e., it is the last “letter” of the string; € S™.

An MDP, D, with an initial distributionZ : S — [0, 1], and a strategy for the con-
troller, together determine a probability spd€E o), F (o), P7) of trajectories ofD (o).

We also want to considdabelled MDPs D = (S, A, (S, S1), P,1), where, again,
[ : S — X assigns to each state a label from the alpha@bheind again the symbols i
may denote rewards, e.g., we may have- Z. Given an MDPD, and a strategy, we
can also associate labé(svs) to the statess € ST of the resulting Markov chai® (o),
by lifting the labels fromD. Thus, ifws € ST, with s € .S, then we overload notation and
leti(ws) := I(s). We can then associate with every trajectorg £,&1& ... € (ST)¥
of D(c), anw-word(§) € X¥, defined byl(&) = 1(£0)1(&1)I(&2) - . .. Likewise, we also
associate the same wal(@) to the corresponding play*, namely, we let(r¢) = I1(£).

Given an MDP,D, and an initial distributior, we will often be interested in the
optimal probability of some family of event&(s), parametrized by the strategyused
by the controller, wheréZ (o) is an event over the probability spa@@(c, F (o), P%) of
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a,4

G & A

Figure 2. A 6-state labeled MDPM,.

trajectories with initial distributiol generated by the strategy For instance, the event
E(0) could be the event specifying that the trajectory evenyuatt a set of target states,
or that the trajectory satisfies some temporal property. Withe clear from the context we
usually simplify notation and refer to the family of evenio), as simplythe eventE,
and we use the notatidff (E) to denote the probability of evet(c) in the probability
space of trajectories generated Byo). Likewise, we will often be interested in the
optimal expected value of a family of random variab¥$y) : (o) — R, parametrized
by the strategy. When it is clear from the context, we will u&f (Y') = fQ(G) Y dPg
to denote the expected value Bfo), parametrized by the strategy in the probability
space of trajectories generatedBe ), and we refer to the family (o) of r.v.’s as simply
therandom variablé”. We shall consider several important analyses in Sectibn 2.

Example 2.2. An example of a 6-state labeled MDP{, = (.5, (So, S1), A, P, 1), with
statesS = {s1,..., s, 6}, IS depicted in Figure 2. The states are partitioned intata se
of random state$, = {s1,...,s4}, colored blue, and a set of controlled statgs=

{ss, s6}, colored green. Note that the controller has only two ctoateeach of the two
controlled statess andsg: from ss it can either move next to statg or s, and fromsg

it can either move next to state or s,.

For this MDP, each state hastwo labels, one of which is a labé(s) € X from the
alphabe® = {q, b, c}, and the other of which is a numerical lab¢t) € Z. These two
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labels are depicted in red in Figure 2. So, for examiglg,) = a andr(s;) = 6. 2
Consider themaximum (supremum) hitting probabilitieg; . ; ; = sup, PY, (It >0:
X: = s;), defining the supremum probability (over all strategiespwdntually hitting
vertexs; starting at vertexs;, i,j = 1,...,6. What isqy,,, 5 3 for the MDP M5 in
Figure 2? The maximum hitting probability happens tajhe, 5 3 = 3/4, and the mem-
oryless strategy that always chooses to move from state states;, and from state
sg to statessy, achieves this optimal probability. Indeed, for finitetstMDPs, there is
always a memoryless optimal strategy for maximizing (orimining) the probability
of eventually hitting given target states. How can we corauich probabilities? We
will come back to this question in section 4. For general disitate MDPs these max-
imum (minimum) probabilities can be computed by solvingresponding systems of
max(min)-lineaBellman equationsSuch equations can be solved in polynomial time,
using linear programming. Optimal hitting probabilitiegaén form a basic ingredient for
many other kinds of analyses of MDPs, including model chagki O

Quick review of Biichi automata, w-regular languages, and Linear Temporal Logic.

In order to discuss model checking problems for MCs and MD¥snow review basic
facts about, and fix notation fag-automata and linear temporal logic, which are topics
covered in more detail in Chapter 6 of this Handbook ([43}noTstandard formalisms
for specifying languages af-words, are Biichi automata and Linear Temporal Logic. A
Biichi automaton (BAis given by a tuple3 = (Q, X, qo, 6, F'), whereQ is a finite set of
states,”. is a finite alphabetgy € @ is an initial statep C @ x X x @ is a transition
relation, and?” C @ is a set of accepting states. We can assume without loss efajén

(if necessary, by adding an extra dummy state) that theitrmamselation ¢ is total in

the sense that for every stajec @, and every letter. € ¥ of the alphabet, there is
some state’ € @ such that there is a transitidn, a, ¢') € §. The Bichi automaton is
calleddeterministicif for every stateg and everys € Q' there exists at most one state
¢’ such that(q, a,q’) € 6. Otherwise, it isnondeterministic A run of B is a sequence

T = qouoq1v1 g2 - . . Of @lternating stateg; € .S and lettersy; € ¥, ¢ > 0, such that for all

i > 0 (gi,vi,qiv1) € 0. Thew-word associated with run is £(7) = vovivg ... € ¥,
The runr is acceptingf for infinitely many i, ¢; € F'. We define thev-regular language
associated witl8 by L(B) = {L(n) | = is an accepting run d§}. Note thatL(B) C X¢.

It is well known that anyv-regular language can be described as the language of
words associated with a (nondeterministic) Biichi autematndeed, we can take this
as the definitionv-regular languages. However, unlike the fact that detestinfinite
automata (DFAs) suffice to capture all regular languagesfinige strings,deterministic
BAs do notsuffice for expressing alb-regular languages. For example, the language
of w-words over the alphabét, b} that contains only a finite number &% can not be
described by any deterministic BA. To capture.adtegular languages using deterministic
automata, we need more sophisticated acceptance corsdifik@Mouller, Rabin Streetf
or Parity acceptance conditions. (See Chapter 6: [43].)

In particular, the standarslibset constructigrwhich when applied to any (nondeter-
ministic) finite automaton yields a deterministic finite @maton that accepts the same

20f course we can also simply view the lab&(s) as assigning to each state pair (ys, zs) consisting of
alabel fromys € ¥ = {a, b, ¢} and a payoftz; € Z.
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language of finite strings, does not work forautomata: it may yield aw-automaton
that accepts a strictly larger languagewivords.

Remarkably however, it turns out that in a certain sense tiedard subset con-
structiondoes workor the purpose of model checking ofregular properties of labeled
Markov chains and Markov decision processes. This is onevafral key insights first re-
vealed in theour-de-forcegpapers by Courcoubetis and Yannakakis [11, 12, 13, 14].&Thes
papers also established the best complexity bounds alailabhd best possible, subject
to complexity-theoretic assumptions), for model checKinige-state Markov chains and
MDPs. We will highlight some of these results.

Another major insight in the Courcoubetis-Yannakakis papelates to model check-
ing Linear Temporal Logic properties of MCs. Recall thatear Temporal Logi¢LTL)
[37] formulas are built from a finite sé&rop = {P1, ..., Px}. of propositions, using the
usual Boolean connectives, Vv, andA, the unary temporal connectiiéext(denoted))
and the binary temporal connectidatil (U); thus, if€, ¢ are LTL formulas thet® ¢ and
& Uy are also LTL formulas, as aret, £ V¢, as well ag A . This constitutes an induc-
tive definition of temporal formulas. Note that other usa@&rporal connectives can be
defined usindJ. The formulaTrue U ¢ means “eventually holds” and is abbreviated
<& p. The formula—(<¢—) means “alwayg) holds” and is abbreviated .

An LTL formula specifies a language afwords over the alphabél = 2P, as
follows. If w = wg, w1, ws ... € X¥ is anw-word, andy is an LTL formula, then first
we define satisfaction of the formula lbyat position:, wherei > 0, denotedw, @) = ¢.
We define this inductively on the structure of the formglas follows.

(w,i) = pforp € Prop iff p € w;.

w,i) | =& iff not (w,i) E €.

w,1) EEVY Iff (w,i) = Eorw,i = .

w, i) EENY Iff (w,i) E &andw,i = .

w,i) EOE iff (w,(i+1)) &

(w,i) EEUIff 3j 20 ((w,j) EdandVk(i <k <j): (w,k) ).

The w-language specified by an LTL formua is L(¢) := {w € ¥ | (w,0) E ¢}.
The language specified by every LTL formuladsegular, and in fact any LTL formula
can be converted to an equivalent (albeit, exponentiatigdi) nondeterministic Biichi
automaton that accepts the same language (see, e.g., fiehapter 6 [43]).

2.1 Some important analysis problems for MCs and MDPs

We now formally define a variety of important algorithmic &rs&s that one might wish
to perform on MCs and MDPs. Given an MDP, initial distributionZ, and strategy,
let X; denote the random variable that assigns to a traje¢tofghe Markov chairD(o),
the stateX;(¢) = s; € S of D that is visited by the play at timé (In other words,
X&) = s; if & = ws;, for somew € S* ands, € S.) The controller’s goal is to
optimize the (expected) value of some random variable ,@ptbbability of some event,
both of which could be a function of the entire random trajectThere are a wide variety
of objectives that have been studied in the MDP literature. név list some important
analyses that have been considered.
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Note that all of the analyses listed below are also appleablpurely stochastic
Markov chains, because MCs are just special cases of MDReewthere are no con-
trolled nodes. In other words, in an MC the controller hagyarle (vacuous) strategy,
which is to do nothing.

I. MP:

II. DTP:

. NTP:

Mean payoff®: the labelling functiori is a payofffunction,! : S — Q, which
associates to every statea (rational valued) payoff(s) € Q.* The goal of the
controller is to maximizethe expectethean payofdf the playr = sgsis283. . ..

Yo (OO
n

Note that in the case of irreducible finite-state MCs, meayoffaanalysis sub-
sumes, as a very special case, computation ahtregiant (stationary) distribution
of the MC. Recall, the invariant distribution for an irredhie MC, M = (S, P),
with S = {1,...,n}, is the unique probability distributioh on states, given by
a non-negative row vector = (Aq,...,A,) With > . A\; = 1, such thatP = .
When the finite-state MC isrgodic(irreducible and aperiodic), the invariant distri-
bution A is thesteady-statéistribution, giving the long-run probability of being in
any particular state, regardless of the initial distribntiConsider a statee S, and
consider the following labeling of the states.bt with payoffs: letl(;) := 1, and

for all other stateg’ € S\ {j}, leti(j’) := 0. Then); = E; (lim,, .o &iz(_x))

EZ (lim inf

Discounted total payoff: Given a payoff functior : S — @ labelling the states,
and given a rationadliscount factor0 < g < 1, the goal is to maximize the
expectedliscounted total payaff

EZ( lim ) B'(X:)
1=0

The limit in the expression exists under mild conditionsteeMDP (e.g., it suffices
if the payoffs labeling states are bounded in absolute yaldiscounted payoff ob-
jectives play an important role, e.g., in economics and fieawhere the discount
factor 3 can often be viewed as being given by the rate of inflation, the rate at
which the present value of money depreciates over time.

Non-negative total payoff: There is no discount, the states are labeledhbg-
negativepayoffs,l : S — Qx¢. The goal is to either maximize or minimize the
expectedotal reward, which may in general bex:

EZ( lim SI0x) (2.1)
i=0

Sometimes the structure of the MCs or MDPs implies that thiieetation is finite.

3This objective is also known as thieniting-average payoff objective in the MDP literature.

“We restrict to rational payoffs i), rather than payoffs i, for computational reasons. We wish to analyze
the complexity of algorithms also in terms of the encodire sif the input coefficients.

5Note that maximizing expected mean payoff (or discounteaifla when payoffs can be both positive and
negative rational values, is computationally equivalemhinimizing expected mean payoff, because minimizing
the mean payoff amounts to maximizing the mean payoff whigmegbffs labeling states are negated.
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V. MoCh:
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Analyzing expected non-negative total reward includes sgecial case, analysis
of the expecteditting time of a set of target states. Consider an MDR, =
(S, (S0, 51), P,A), with a setF" C S. Turn all target states ifi’ into absorbing
random states, meaning re-define the random stat&/s :as Sy U F, and controlled
states as] := 51 \ F, and letP, ; := 1 for s € F. Define the payoff labels at
states as follows: fog € F, leti(s) := 0, and fors € S'\ F, leti(s) := 1. Let
Hy denote the random variable (family) defining thi&ing time of the target set
F. Then clearly, for every strategy EZ (Hr) = EZ(lim, oo Y1 L(X5)).

Hitting probability of desired (or undesired) target states: Given a set of target
statest’ C S, the goal is to maximize (or minimize) the probability of ateally
hitting a states € F'. In other words, we wish to choose a strategip maximize,
or minimize:PZ(3 > 0: X; € F).

Let us denote the supremum and infimum of these probabitities

Cnaxz.p =SupP7(Ji: X; € F) and qu, 7 p =infP7(Ji: X; € F)

It need not in general be the case that there exists any dirategys* such that
Umax,7,F = ]P’g* (3i: X, € F); and likewise, for infinitely-branching MDPs, there
need not exist any strategy" such thaig;;, 7 » = Pg (Fi: X; € F). Indeed,
one can easily construct examples of infinite-state MDPs&he optimal strategy
exists for maximizing/minimizing the probability of hitiiy a set of target statés.
In such cases, there only exisbptimal strategies, for every> 0.

The objective of optimizing hitting probability can also basily reformulated as
a special case dfiTP, i.e., of optimizing expected total non-negative rewas, a
follows: remove all out-going transitions from statesfin and replace them with
a single transition from each state ito a new state*. Let x(s) = 1 for all

s € F, and lety(s) = 0 otherwise. Then the goal of maximizing/minimizing
the probability of eventually hitting the target sta€ss equivalent to the goal of
maximizing/minimizing the undiscounted expected totalimegative payoff, when
the payoffs labelling the states are givenay

However, the ability to label non-absorbing states with amh0 is crucial for
this. In fact, in some MDP settings, analysing expected tetaard when all non-
absorbing states are labeleddiyictly positiverewards is substantially easier than
analyzing hitting probability (see, in particular, [22)fan example).

Model checking of w-regular or LTL properties. Given a labelled MDPD =
(S, A, P,l), and initial distributionZ, wherel : S — ¥, and given anu-regular
languageL over the alphabet, specified by giving a Biichi automatdhor LTL
formulay, so thatl = L(B) or £L = L(y), the goal of the controller is to choose a
strategyo so as to maximize (or minimize) the probability that theacapryr of
D(o) generates an-word[(w) € L. In other words, we can, associate with the
regularlanguagég, the corresponding event (familff): (o) = {m € Q(0) | () €

L} in the probability space generated of trajectories of the™@G) generated by
the MDP D and the strategy. It can be checked that, regardless of what the

6In the case of minimization, such examples require infipiteanching infinite-state MDPs, but for max-
imization, simple finitely-presented boundedly-branghinfinite-state MDPs suffice to show that no optimal
strategy for hitting the target states exists.
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strategyo is used, for any-regular languagé, the propertyE. (o) does indeed
constitute an event in the-algebraF (o). (This was noted already, e.g., in [41].)
When it is clear from the context, we overload notation anel fiso refer to the
event familyE (o), parametrized by the strategy The goal of model checkirig
for MDPs is thus to maximize (or minimize) the probabilRg(L).

For analyses likeHP and MoCh, which involve computing the (optimal) probabil-
ity of some event, the associated computational problem$edurther subdivided and
classified as eithequalitativeor quantitativeanalyses, as we now discuss.

Sometimes we may not need to know the (optimal) probabifitthe event in ques-
tion, and we may instead just be satisfied to know whether ptheoevent holdalmost
surely i.e., with (maximum) probability 1, or equivalently whetithe complement event
has (infimum) probability). These constitute what are generally referred touweita-
tive analyseswhereagjuantitative analyseivolve computing the (optimal) probability
of the event in question. However, particularly for MDPsgrh are subtle distinctions
between different forms of qualitative analysis, and alstwieen different forms of quan-
titative analysis. In some settings these distinctionsmake a big difference in terms
of the computational complexity of the problems involved e now examine these
distinctions more carefully.

(1) Qualitative analysis of MCs and MDPs:Given an (MC or) MDPPD, and an initial
distribution,Z, for an eventE (again, strictly speaking, a family of everf(o),
in the respective probability spaces of trajectories ofi@s, D(o), parametrized
by the strategy), and for setl of strategies constraining the strategies that the
controller may use (e.g¥y may simply beall strategies, or onlynemorylessnes,
or deterministicones, etc.), consider the following decision problem:

Decide whether JoeU: PI(F)=1. (2.2)

This decision problem is referred to as tpgalitativealmost-suredecision prob-
lemfor the eventy (and with respect to the strategy constraimt This problem is
of course equivalent to asking whether € ¥ : PS(E) = 0, whereE = Q\ E

denotes the complement event. (Again, strictly speakifg) = Q(0) \ E(o) is a
family of events parametrized loy)

If such a strategy exists, then we may also want to compute (some represemtatio
of) such a strategy, in which case this is no longer just asitetiproblem.
A closely related, but in generabtequivalent, problem is:

Decide whether sup PZ(E) = 1. (2.3)
oev

This is referred to as thgualitativelimit-sure decision problenfor the event?.®

“In the context of MDPs, as phrased here, this is an optinoizgtroblem, and not a decision problem, so
the word “model checking” is a bit of a misnomer. But we willele to this terminology.

8The termlimit-sure was first used in [15], where they considered the distinctoatrsure and limit-sure
decision problems in the context of concurrent (stochpstiachability games. As we shall see, the distinc-
tion between almost-sure and limit-sure qualitative asesyis relevant in various other contexts, including for
important classes of finitely-presented infinite-state MDP
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Although the almost-sure and limit-sure decision probleres related, and al-
though they are obviously equivalent if the model is simpMarkov chain, these
problems are certainly not equivalent for all MDPs, becassalready discussed in
relation toHP, in general there need not exist any optimal stratedlyat achieves
probability 1 for the eveniiity = (3i : X; € F), and yet there may exist a se-
guence of strategies,, 05, 03, . . ., which achieve probabilities arbitrarily close to
1. For example, we could haW' (Hitr) = 1 — 5. In such a case, the limit-sure
condition (2.3) holds while the almost-sure condition j2i@es not.

We also in general need to consider, as distinct qualitatiedlems for MDPs,
the following duals of the above problems, which are not in general equivalent,
namely, decide whetheYic € ¥ : PZ(E) = 1. This is of course the complement
of deciding whetheBo € ¥ : PZ(E) < 1, which is equivalent to:

Decide whether JoeU: PE(E)>0 (2.4)

Note however that, in this dual setting, there is no distincbetween the almost-
sure and the limit-sure cases. The above problems are aléeatmt to deciding
whetherinf,cy PZ(E) < 1, and to deciding whethenp,, .y PZ(E) > 0.

We refer to problem (2.4) as tlygialitative witness-positivifydecision problenfor
(the family of) eventd.

Let us also mention somejtialitative’ problems that can be associated with objec-
tives such adTP, where the objective is optimize the expected total noratieg
payoff. It is possible, for example, that € U : EZ(lim,, o0 Y o {(Xi)) = +00
holds true, or else thatip,, ¢ p,; EZ(lim, oo Y50 (X)) = +o0. Again, the lat-
ter may hold true while the former does not, because there meayo optimal
strategy. These problems are clearly analogous to the &nos and limit-sure
gualitative decision problems for the probability of an®ve. We will call them
the qualitative witness-infinity problerand thequalitative limit-infinity problem
for the expectation of the associated random variable {§arwi. In many settings,
such “qualitative” problems are not relevant because théam variablé” is guar-
anteed to have bounded expectation. For example, this fmifisite-state MDPs
with MP andDTP, namely mean payoff and discounted total payoff objectives

(2) Quantitative analysis of MCs and MDPs:

Quantitative analysis problems can be considered for ah@problems (1.-V.) on
on our list, and not just for those relating to the (optimabhmbility of an event.
In general, for quantitative analysis we want to computeoiitémal (supremum or
infimum) expected value of some random variable farfilpr the optimal proba-
bility of some event familyE.

However, it may not always be possible to compute the quaintijuestion exactly.
This may be because of the computational complexity doinglsmay also be
because of a more basic reason: in a variety of stochastielsag can consider,
the optimal (supremum or infimum) value over @l ¥ may beirrational, even
when all of the finite data describing the Markov chain or M@Rsists of rational
values. In such cases, we can still consa@proximatinghe optimal value within
some desired error bound, @ecidingwhether the optimal value is at least a given

90r, witness-less-than-onahere appropriate.
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rational valuer € Q. Again, there are some subtle distinctions, so let us foateul
these problems more precisely:
(a) Quantitative decisioproblems:Given an MDPD, and initial distributiorZ,
and some event (family}, and given a rational value€ Q:

Decide whether Joe VU :PHE)>r (2.5)

Or, if the objective is to optimize the expected value of a¥.ywe may want

to decide whether ornéls € ¥ : EZ(E) > r.

Of course, if such a strategy exists, we may also wish to compute (some
representation of) such a strategy. A different decisiablam is:

Decide whether Joe U :PLHE)<r (2.6)

And analogously, decide whethés € ¥ : EZ(E) < r.

Note that decision problem (2.5) is concerned with the gbadaximizinghe
probability of the evenf (or expectation of the r.vY): does there exist a
strategy that obtains a value atfleastr? Whereas, decision problem (2.6) is
concerned with the goal @finimizingthe probability ofE’ (or expectation of
r.v. Y): does there exist a strategy that obtains an vals ofostr?
Sometimes, the above decision problems are too hard cotignahy, whereas
the correspondingpproximatiorproblems are not as hard.

(b) Quantitativec-approximatiorproblems:We are given an MC or MDHp, and
initial distributionZ, some event (family}y whose probability we are inter-
ested in, or a random variable (family)whose expectation we are interested
in. Letv* = sup,cy PF(E), orv* = inf,cy EZ(Y), in the respective cases.
We are also given a rational positive error threshoie 0. We wish td°:

Compute are-approximate value; € Q, such thatv* —v| <e.  (2.7)

We may then also wish to compute (a representation ofy@ptimal strategy
a strategy’ such thatv* — P (E)| < eor|v* —EZ (Y)| < ¢, respectively.

2.2 More examples of analyses for finite-state MCs and MDPs

We now reconsider the example MC and MDP given in Figures 123rahd consider
other analyses for these.

Example 2.3. Let us consider again the labelédtate finite-state Markov chaint; =
(S, P,1), depicted in Figure 1, and let us consider some other arafgs¢hat MC.

MoCh: Consider the following model checking problem. The LTLradaO < b, ex-
presses the property that the symbabccurs infinitely often in thes-word. What is
the the probabilityP,, (L(O < b))? It is not difficult to see, by inspection ¢¥1,, that
P, (L(O < b)) is precisely equal to the probability of eventually hittisgitess starting
in states;. In other wordsP,, (L(O< b)) = ¢f 5. Furthermore, since we know that
starting from state;, with probability1 we will eventually hit either state; or s, i.e.,

10Note: such ar-approximation may be impossible withe Q, e.g., because* = sup, g EZ(Y) = oo.
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thatg; 5 + ¢ 5 = 1, and since we have already noted tfigf = 17/26, we can conclude
thatP,, (L(O < b)) = 9/26.

Note that in this case model checking was boiled down to cdimgunitting prob-
abilities. The general algorithms for model checking Markbains againsb-regular
properties are much more involved, but as we shall see ttseywlimately reduce the
problem to computing hitting probabilities on certain asated Markov chains.

MP: Now let us use hitting probabilities to doean payofénalysis on the MCM . In
particular, suppose that the labels on states are assbuidkepayoffs, as followsa := 4,
b:=—-3,c:=1T. Letvf = E,, (liminf,, W) denote the expected mean payoff
when starting in state;. In the MC M, whatisvj? LetG; denote the underlying graph
of M;. The two BSCCs of7; areC; = {ss3,s4} andCy = {ss, s¢}. Clearly, starting
in states; of M1, with probability1 we will eventually hit one of these two BSCCs and
stay in that BSCC forever thereafter. We already know thatileeventually hitC; with
probabilityq; 5 = 17/26, and that we will hitC; with probabilityq; 5 = 9/26. Note that
the MC defined by restricting1; to the nodes of BSCC, is ergodic, and that its unique
steady-state distribution is clear{yt/2,1/2). Likewise, although the MC defined by
restrictingM; to the nodes of’; is not ergodic, itis irreducible, and its unique invariant
distribution is(1/2, 1/2). In other words, in the case of both BSCCsand(5, once we
enter such a BSCC, in the long run we spépid the time in each of the two states of that
BSCC. Thusyj, the long-run mean payoff starting in state can be calculated via the
following expressionv; = (17/26) x (1/2 x 7+ 1/2 x 4) + (9/26) x (1/2 x =3 +
1/2 x 7) = 217/52. O

Example 2.4.Now let us reconsider the 6-state labeled MBR; = (S, (So, S1), A, P, 1),
with statesS = {sq,..., s¢}, depicted in Figure 2.

MoCh: Consider, in particular, the following model checking Ipiem. What is the supre-
mum probabilitysup,, P7_(L(O < b))?

It is not difficult to see, by inspection 0¥1,, that regardless what strategys used,
P (L(O < b)) is precisely equal to the probabili§Z (3: : X; = s4) of eventually
hitting states, starting at state. It can furthermore be seen that the probability of
hitting states, is maximized by the simple memoryless strategjy, that always moves
to states, whenever in states, and always moves to statg whenever in states. And,
furthermore the (maximum) probability that this strateghiaves of eventually hitting
statesy is 13/22. In other wordssup, Pg, (M; | ©0b) = P7 (M; | ©0b) =
qzlax,5,4 = 13/22

This example is too simple in at least one sense: the maxinmatmapility in this
case is attained by a deterministic memoryless strategyntgeneral for obtaining the
maximum probability of an LTL otv-regular property on a finite-state MDPs it need
not suffice to use a deterministic memoryless strategy (iiquéar, memory may be
required).

MP: Finally, let us consider thenean payofbbjective on the MDPM,, in Figure 2,
where the aim is to maximize the expected limitingn(inf of the) average payoff per
step, where the one-step reward at stagegiven by the functiom(s). In other words, the

n—1
aim is to maximizeEg (lim inf,,_ M) Note that in the MDPM, regardless
of what strategy is employed by the controller, with proligbi the trajectory will even-
tually enter one of the two stateg or s,, and stay there forever thereafter. Once it is in
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one of these two states, the (expected) limiting averagefpténereafter is simply the pay-
off at that state, which ig(s3) = 7 for states; and and-(s,) = 8 for states,. Thus, since
r(s4) > r(s3), in order to maximize the expected mean payoff starting piotiner state,
we simply need to maximize the probability of eventuallytihg states,. We already
know from our previous calculations that, starting at stgtéhe maximum probability of
eventually hitting state, is 13/22, and this is achieved by the deterministic memoryless
strategy that always moves from stateto states,, and from state to states,. Thus
the maximum expected mean payof{is/22) « 8 + (1 — 13/22) « 7 = (167/22), and
this is achieved by the same deterministic memorylesseglyator finite-state MDPs, it
is always the case that there exists an optimal deternamstimoryless strategy for max-
imizing the expected limiting average payoff (see, e.gedrem 9.1.8 in [38]), and one
can compute the optimal limiting average payoff, and annsgkimemoryless strategy, in
polynomial time using linear programming (see, e.g., chieg® and 9 of [38]). O

3 Analysis of finite-state Markov chains

In this section we review some algorithms for analyzing éirstate MCs, and discuss
their complexity. Let us already summarize the known faittsall of the analyses (1.-V.)
listed in section 2.1, all qualitative and quantitative idexm and computation problems
are solvable in stronghy polynomial time, as a function of the encoding size of thegiv
finite-state MC,M. For qualitative analyses, the algorithms only involvepir-dheoretic
analysis of the underlying transition graphof the MC, M. For quantitative analyses,
the algorithms additionally involve solving corresporglisystems of linear equations.
For model checkingNloCh) the complexity is polynomial in the encoding size.bt
but exponential in the encoding size of theregular languagef, and remarkably this
is so whether’ is specified by a non-deterministic Biichi automaton (BB,)0or as an
LTL formula ¢ (as shown by Courcoubetis and Yannakakis [11, 13]). Thiegpie the
fact that worst-case exponential blow-up is unavoidablemtranslating LTL formulas
to BAs.

We shall only discuss analyses (l1l.-V.) in more detail. W also observe that some
key facts used for analyzing finite-state MCs hold more gaherfor all denumerable
MCs. Suppose we are “given” a M@ = (S, P), where for now we allow the set
to be countably infinite. Later, for computational purpgses will assumesS is finite.
For convenience, we equafewith (an initial segment of) the positive natural numbers
Ny ={1,2,...}. We letn = |S|. Thus, ifn € N, thenS = {1,...,n}, and otherwise
if n = o0 (i.e., ifn =w), thenS = N,.

HP: Suppose we are “given” a subsBtC S of target states, and suppose we wish to
compute the probabilitieg;’, of eventually hitting a target state in starting from initial

11Recall that a problem whose input instances are represbptedector of rational values is said to be solv-
able instronglypolynomial time if the problem can be solved by an algoritiat toth:(z) runs in polynomial
time, as a function of the dimensienof the input vector, in the unit-cost (arbitrary precisi@nthmetic RAM
model of computation, where standard arithmetic operat{en, «} on, and comparisons of, arbitrary rational
numbers require unit-cost, ar{@) runs in polynomial space as a function of the encoding sizéa@finput
vector, where the rational coordinates are encoded as, wgittahumerator and denominator given in binary.
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statei € S. In other wordsg; =P;(3t > 0: X; € F').

We first observe that hitting probabilities for a denumeeddC can be “computed” by
“solving” the following linear system of equations (alheitith infinitely many equations,
if there are infinitely many states). There is one variableand one equation, for every
statei € S:

z; =1 foralli € F,

2i=Y,esPoj-a; forallie S\ F. (3.1)

The vector of variables is denotad= (z; : ¢ € S). Note that ifn = |S| = oo,
then the infinite sums in (3.1) are always uniquely definedabee the coefficients are
non-negative and we interpret the variablesonly over non-negative reals (indeed, over
probabilities). We can denote the entire system of equstiorvector notation, as:

x = R(x)

where R(z) denotes the linear (affine) map given by the right hand sidekeolinear
equationsin (3.1). Note that since all coefficients and taorts in the linear maps defining
R(r) are non-negativey : RY, — RY, defines anonotonemapping from non-negative
vectors to non-negative vectors. That is, foralk: y > 0, we haveR(z) > R(y) > 0.

It is easy to see that the hitting probabilitigs = (¢} : ¢ € S) must be a solution of
x = R(z). Indeed, ifi € F, then clearlygf = 1, and ifi € S\ F, then clearly
q = Zjes P; jq;7, because starting atZ F', in order to eventually hit’, we first have
to take one step and thereafter eventuallyhiand) ¢ P; jq; captures the probability
of eventually hittingF" after one step, starting at

Unfortunately, in general the equations= R(x) can have multiple solutions, for
trivial reasons. To see this, consider the trivial 2-stat@®dv chain with state§ =
{1, 2}, with transition probabilities defined b, ; = P » = 1, andP; ; = 0 fori # j,
and where the target statefis= {1}. The equations = R(z) are thus given bya(; = 1;
29 = x2). Obviously, any pai(1, ) for r € R is a solution.

It turns out the hitting probabilities* = (¢ : i € S) are always the least non-negative
solution ofz = R(z), which is theleast fixed poin{LFP) of the monotone operator
R : RY, — RE,. Letus state this more precisely. For a vegjoe R", andk > 1,
let R(y) = y, and fork > 1, let R*+1(y) = R(R¥(y)). For anyk > 0, let¢* denote
the probability of hitting target sdt' starting in initial state, in at mostk time stepsin
other wordsg? = P;(3t (0 < t < k) : X; € F). Note thatlim;._., ¢* T= ¢}, meaning
¢ converges monotonically from below tg, ask — +oo. Let¢® = (¢f : i € 9)
denote the corresponding vector. We shall @ser just0, to denote an all-zero vector
of the appropriate dimensions, when this is clear from th&ed. The following key
Proposition, 3.1, is well-known and easy to prove: part éf) be proved by induction on
k, and the rest follows. (We will later learn that variants ebposition 3.1 hold in much
more general settings, when the symbols in the propositeméerpreted differently.)

JES

Proposition 3.1.
(1) Forallk >0, ¢* = R*1(0), and thusRF*1(0) < ¢*, andlimy .., R*(0) 7= ¢*.
(2) ¢* = R(q¢*),and if¢" € RY, andq’ = R(q’) theng* < ¢'.
In other wordsg* is theLeast Fixed PoinLFP) of R(x).
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Now suppose thatm = (5, P) is a finite-state Markov chain, se = |S| < oo,
and that we are given the transition probability matRxexplicitly. How can we use
Proposition (3.1) to compute the hitting probabilitig® We have to compute the least
non-negative solution to the linear system of equatioes R(x). One (not very efficient)
way to do this in polynomial time is to formulate this as a inprogramming problem.
Namely, the vectog™* is the unique optimal solution to the following LP.

minimize: . g
subject to:

R(z) L x;

x> 0.

(3.2)

Note that the inequality?(z) < = stands for a system of inequaliti&(z) < z;,i € S,
and likewiser > 0 stands forr; > 0,7 € S.

Although this already shows we can compuytein P-time, we can do much better.
Namely, let us denote b = (S, A) the underlying directed graph of the M@{. Note
thatg’ = 0 if and only if there is no path iid7 from i to any statgj € . We can thus
easily compute the s&z.., = {i | ¢ = 0} in P-time by a simple depth-first search in
G. We can then remove the equations corresponding to vasiahlé € Sz, from the
system of equations = R(z), and replace occurrences of variablgss Sz..., by 0 on
the right hand side of any other equatians= R;(x) where they occur. For convenience
in what is to follow, we also remove the variabledor i € F', and their equations; = 1,
and replace the occurrences of variables F' by 1 on the RHS of any other equations
x; = R;j(x) where they occur.

This gives us a new system of linear equatidns= (), in fewer variables. It
turns out that this new system hasuaiquesolution, corresponding to the remaining
(positive) coordinates af*, and furthermore, if the equation is written in matrix naiat
asi = Pz + b, then the matrix/ — P) is guaranteed to be invertible, and the (positive)
coordinates of* that were not eliminated are given by the solutiér- P)—lb. Thus, we
can compute™ in (strongly) polynomial time by first doing some simple graph-theoretic
analysis orG, and then solving a linear system of equations.

We note that it follows from basic facts in matrix theory that- P)~! = >3° | P
We can use this to put a probabilistic interpretation on #iewationg* = (I — P)*lb =
Sho P*b. Note thatPF, = P;(X, = j) is the probability that, in Markov chaint
derived fromM, which excludes all states ifiz.,., U F', and replaces them with dead-
end absorbing states, starting in statat timek the trajectory is in statg. Thus, for
k > 0, (P*b); is the probability of entering a state I for the first time at timek + 1. It
is thus clear, by a probabilistic argument, that= 3275 | P*b = (I — P)~'b.

A more basic method for computing numerically is already immediately suggested
by Proposition 3.1, and it “works” even for infinite-state BICNamely, we can simply
iteratively compute a sequence of vectgfs= R¥(0), k = 0,1, .. ., lettingy° := 0, and
y**t1 .= R(y"*). By Proposition 3.1, the sequenge = R*(0) converges monotonically
to ¢*. This well-known method is calledalue iteration Of course, one issue is that we
do nota priori know how many iterations of value iteration are required dsnation
of the input matrixP in order to converge to within a desired error bound of thearec
q*. It turns out that in the worst case there are bad exampldmite-state MCs, where
convergence of value iteration can be very slow. For exangaesider the MCM =
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(S, P), whereS = {1,...,n}, and where the target setis = {n}, and where for all
ie{l,...,n—1},P,; =1/2andP, ;11 = 1/2,andP, ,, = 1, and all other transition
probabilities are of course. Note thatg; = 1 for all i € S. Now by Proposition 3.1,
qF = LF(0). However, it can be seen that for &ll< 27, ¢F <1 — (1 — 1/27)" <

(1 —(1/e)), wheree = 2.71828... is the base of the natural log. Thus, we need at least
k > 2" value iterations beforg.¥(0) — ¢f| < 1/3 < (1/e). However, value iteration
works reasonably well on many instances of MCs, and optidwagiants of it are widely
used in practice (also for MDPSs).

NTP: Let us now consider non-negative total payoff analysis @dWvhich, as already
noted, generalizes hitting probability analysis. We shall reuse symbolg* andR(x),
with a different interpretation, for reasons that will baw clear shortly. Suppose we
have a non-negative payoff-labeled M® = (S, P, 1), with n = |S| states (possibly
infinite), and with/ : S — N. We wish to compute; = E; (limg— 00 Zf:o 1(X;)). We
can again write a linear system of equations for this, wite equation per variable;,
over variables: = (z; | i € S), as follows.

z; =1(i) + > jes Pij - xy, forallieS. (3.3)

We can again denote this system of linear equations, in vactation, as = R(x).
Sincel(i) > 0, the operatoR () is again monotone, and it turns out that again the vector
q* of expected total payoffs is the least non-negative salutior = R(z), except with
the difference that we now must also allow for the possiptlitat some coordinates of
are-+oo. Formally, we can work over the ordered semi—rﬁ}go = RsgU{+o0}, where
by definition+oc * 0 = 0, and+oo 4+ 7 = +oc, and+oco > r, forall 7 € R-,. Let
¥ =E;(X;_ol(X;)). Then, it turns out that

Proposition 3.2. The statement of Proposition 3.1 holds true, verbatim, ffigr above
re-interpretations of: = R(z), ¢*, andq”.

Thus the expectation vectgr is theleast fixed poinbf the monotone operatar :
K;O — K;O. Thus, by Proposition 3.2, value iteratigh := R*(0) converges monotoni-
cally, in the limit, to the expected total payoff vectgr. However, since some coordinates
of ¢* may now betoo, the value iterateg” may never actually get “close enough” to
¢*. We can nevertheless again compute expectatjpms strongly polynomial time for
finite-state MCs, including determining those coordin#ites are+oo, using a variant of
what was described earlier for computing hitting probé#bii. First, consider the under-
lying graphG = (S, A) of M. For any bottom-SCQ; C S, of G, if there is somg € C
such that(j) > 0, then clearlyv;, = +oo for all j* € C, and for allj” € S such that
§' <% j. Indeed, this describes all states such thgt = +oo, because with probability
1 the trajectory will eventually hit some BSCC, and thereadtay in that BSCC forever.
We can thus use depth-first search to decompgdsso its DAG of SCCs, and find and
remove from the equations = R(z) any variablezr; such thaty; = +oco. Likewise,
by simple reachability analysis & we can find and remove all variables such that
¢ = 0, by just noting that = 0 iff there is no statgy € S such that botli(j) > 0
andi ~» j. After we remove, as indicated, botro and0 variables from the equations,
we are left either with an empty list of equations or a systéiiinear equations on the



Analysis of Probabilistic Processes and Automata Theory 23

remaining variables whoseiquesolution is a positive real-valued vector that yields the
remaining coordinates of the vectpr. We can thus compute these remaining coordinates
(in strongly polynomial time) by solving the remaining lareequations.

MoCh: Suppose we are given a labeled finite-state M€,= (S, P,1), an initial dis-
tributionZ, and a Biichi automato§ = (Q, X, qo, 6, F'). Suppose we wish to compute
the probabilityp* = Pz(L(B)). We now describe an algorithm for computipg due to
Courcoubetis and Yannakakis [13], which runs in time poiyra in the encoding size
|M| of M, and exponential in the encoding siz# of 5.

We can assume, without loss of generality that S, i.e., the alphabet df is the set
of states ofM. We can do so because we can always update the transititionelaf 3,
refining it so that if(q, a, ¢’) was ind, and for some € S we havel(s) = a, then we put
(g,s,4¢') in the new transition relation. It is clear that the probipithat M generates
a trajectory accepted by the new BA is the same as the pratyabiht M generates a
trajectory labeled by am-word in L(B). So from now on, we assunme= S.

We first perform a naiveubset constructionn the BA, B, to obtain a determinis-
tic BA. Recall however that the subset construction doesneneral preserve the-
regular language of a BA, and that in fagtregular languages accepted by some non-
deterministic BAs are not accepted by any deterministic B&vertheless, it was shown
by [11, 13] that the subset construction “works” in a suitalvhy for probabilistic model
checking. LetB’ = (29.%, {q0}, ¢, F'), be the deterministic BA obtained by perform-
ing the usual subset construction Bn The states o3’ are2?, the alphabet i€ = S,
the start state i§qo}, andd’ C 29 x ¥ x 2% is adeterministictransition relation de-
fined byd’ := {(T,a,7") | T' ={¢d € Q | g € T : (¢,a,q") € §}. Finally, we let
F'={TCQ|TNF#0}.

Next, we define theroductMC, M @ B’ = (S x 29, P), obtained from the MG\,
and the deterministic Buichi automatdi, The states oM ® B’ are pairgs, T'), where
s € S andT € 29, The transition probability functiof is defined as follows:

i sy { Pls.s) H(I8,T)ed
P((s,T),(s',T")) = { 0 otherwise

Note thatM @ B’ is indeed an MC, whose trajectories anefinemenbf the trajec-
tories of M. In particular, projecting a trajectogyc (S x 2¢)“ on to its left coordinates
yields a trajectory ofM. Let G denote the underlying directed graph of the MC,
M ® B'. Finally, for a pair(s,T) € S x 2%, which defines a state o1 ® B/, and
thus also a node @ v/, let Grmgs ((s,T)) denote the directed subgraph@fiz 5
induced by the set of nodes consisting of all of the nd@eg™”) € S x 2% of Grgn

*

that are reachable frois, T'), i.e., such thats, T') ~ (s', T").

The following important definitions are key to the algorithfpair (s, q) € S x Q is
calledspecial? if ¢ € F and some bottom-SCC of G g5/ ((s, {g})) contains a node
(s,T) € C with ¢ € T. For a bottom-SCC(' C S x 29 of G ymeep (and thus also of
M ® B’) we shall callC acceptingf there exists somés, T') € C such that there exists
g € T' N F such thai(s, ¢) is a special pair. The following theorem from [11, 13] redsice
theMoCh problem for finite-state MCs tBlP problems on (larger) finite-state MCs:

12)n [13] “recurrent” was used, but “recurrent” has other riags so we use “special” instead, as in [29].
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Theorem 3.3([11, 13]). Given a labeled finite-state MOV = (S, P, 1), with initial
states € S, and given a non-deterministic B, with initial stateqg, the probability
Ps(L(B)) is equal to the probability that in the M@1 ® B’, starting from initial state
(s,{qo}), the trajectory eventually reaches an accepting botton&8CM ® B’.

Thus, in order to comput&,(L(5)), we first need to do graph-theoretic analysis on
the directed graph& ,(g 5/, and also analysis of various subgraghsg s ((s, {q})),
for s’ € S andq € F, so as to computsepecialpairs(s’,q) € S x @, and use that
to compute allacceptingbottom-SCCs of7 y(x 5. We can then consider all nodes in
such accepting bottom-SCCs as target nodes, and compugedhability of hitting a
target node starting from the initial state, {¢o}) of the MC M ® B’, which yields
the probabilityP;(L(B)) that we are after. To compute the hitting probabilities we of
course use the methods already described for soliPgNote that this algorithm does
not involve full-fledged determinization of Biichi autoradsuch as Safra’s construction)
which involves a2!B!1°g 1Bl plow-up in size and requires more sophisticated acceptance
conditions such as Rabin or Muller conditions.

Overall, this algorithm runs istronglypolynomial time as a function gi\t| (assum-
ing B is fixed) and exponential time as a function Bf, when is nondeterministic (and
polynomial in|B| whenB is deterministic). It was furthermore shown in [11, 13] that
given MC, M, and nondeterministic BAB, as input, the qualitative problem of deciding
whetherP;(L(B)) = 1 is in PSPACE, and it was already shown in [41] that the problem
is PSPACE-hard, so the qualitative problem is PSPACE-cetapl

Courcoubetis-Yannakakis [11, 13] also considered modetking of finite-state MCs
with respect to properties specified by LTL formulas and,addbly, they showed that
both the quantitative problem and the qualitative problemUTL model checking of
MCs has the same complexity as that of model checking-aegular property given by a
nondeterministic BA. This was surprising, because it id\kebwn that in general trans-
lating an LTL formula to a BA requires worst-case exponétuiiew-up. Their algorithm
involves iterative constructions of larger and larger érstate MCs, starting from\,
built up via a structural induction on the subformulas of tAé& formula. The transi-
tion probabilities of the new MCs in the iterative constrantare obtained by computing
certain hitting probabilities on the old MCs. See [13] fotalks.

4 Analysis of finite-state MDPs

We now review some algorithms for analyzing finite-state MDéhd discuss their com-
plexity. Many analogies with the algorithms for finite-gtdiCs will soon become clear.
In fact, we have deliberately stated some equations and facffinite-state MCs in a
general enough form so as to be able to reuse them here (@ardtals for recursive MCs
and 1-recursive MDPs).

Let us already summarize the known facts: again, for all efghalyses (l.-V.), listed
in section 2.1, all qualitative and quantitative decisianl a&omputation problems are
solvable in polynomial time as a function of the encoding sifthe given MDP (but the
known P-time algorithms for all of them require solving lamegrogramming problems,
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and thus none of them are currently known to be solvab#ronglypolynomial timé?).
For qualitative analyses, the algorithms only involve andrame graph analysis on the
underlying transition grap& of the MDP,D, which can be done in P-time. For quantita-
tive analyses, the algorithms additionally involve sotytorresponding max/min-linear
Bellman optimality equations, which can be solved in P-time using linear programming.
For model checkingMloCh) the complexity is polynomial in the encoding sizeldfbut
again exponential in the encoding siZ8 if the w-regular propertyl = L(B), is given
by a nondeterministic Buchi automatds, However for finite-state MDPs, unlike finite-
state MCs, if£ = L(yp) is given by an LTL formulay, then the complexity is double-
exponential as a function of the encoding size-ofThese complexity bounds can not be
improved, because the problems are EXPTIME-hard and 2EMEThard, respectively.
These results on model checking finite-state MDPs were legtald by Courcoubetis and
Yannakakisin [11, 13, 12, 14].

Analyses, IMP, and II.DTP, are standard for finite-state MDPs, and algorithms for
them can be found in any textbook on MDPs. See, e.g., [38] foosough treatment.

Let us mention that for analyses (1.-IV.) on finite-state MDR is well-known that
there always exist deterministic memoryless optimal stias (see [38]). For model
checking (V.MoCh), memoryless strategies do not suffice in general for optingithe
probability of anw-regular property, but bounded-memory strategies do suffict]).

We shall only discuss analysel® andMoCh further. Suppose we are “given”a MDP,
D = (S5,(S0,51),A, P), where for now we allow the sef to be countably infinite.
Again, for convenience, we equatewith (an initial segment of) the positive natural
numbersN,; = {1,2,...}, and letn = |S|. We will furthermore assume that every state
1 € S is boundedly branchingmeaning there is somec N (depending on the MDP),
such that for every € S;, |successors(i)| < k. This allows us to usenax andmin
operators in the Bellman optimality equations, whereas welevotherwise requireup
andinf.

HP: Suppose we are “given” a subsgt C S of target states, and suppose we wish
to compute the supremum probabilitigs,,,, ;, or the infimum probabilitiesg;;,, ;, of
eventually hitting a target state ifi starting from initial state € S. In other words,
Gmax.i = Sup, PY (3t > 0: Xy € F), andg;,;,, ; = inf, P7(F > 0: X; € F),

Maximum (minimum, respectively) hitting probabilitiesrfa denumerable MDP can
be “computed” by “solving” the following max-(min-)lineaystem of equations, called
their Bellman optimality equationsThere is one variable;;, and one equation, for ev-
ery state; € S. Letopt = max or min, according to whether we are maximizing or
minimizing hitting probability. The equations are givert by

=1 foralli € F;,
e A foralli € Sy \ F; (4.1)
Ty = OptjEsuccessors(i)wj foralli € 5, \ E.

Note that, as in the case of MCsif= |S| = oo, then the infinite sums for variables
1 € Spin (3.1) are always well defined because of non-negativitytHermore, since we

13A notable exception is the case BTP where the discount factor isfixed constantwhich was shown
in [45] to be solvable in strongly polynomial time. See al8@][for a generalization to turn-based discounted
stochastic games
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have assumefbuccessors(i)| < k < oo for all i € Sq, themax (or min) operators
in the equations for variablese S; are well defined for any real values assigned to the
variablesz;. We can denote the entire system of equations, in vectotionias:

x = R(x)

where R(z) denotes thenax-(min)-linear map given by the right hand sides of the
equations in (4.1). Note that since all coefficients and tanis definingR(z) are non-
negative,R : RY, — R, again defines anonotonemap from non-negative vectors to
non-negative vectors. Let = (q;,, , : 7 € S), whereopt = max or = min, respectively.
For anyk > 0, let qf;pm denote the optimal probability of hitting target détstarting in
initial statei, in at mostk time stepsLet¢” = (¢, ; : i € S) denote the corresponding
vector of optimal probabilities. The following is again gds prove by induction otk.

Proposition 4.1. The statement of Proposition 3.1 holds true, verbatim, ffigr above
re-interpretations of: = R(z), ¢*, andq”.

Thus the optimal hitting probabilitieg® are the LFP oft = R(z). Now suppose
thatD = (S, (So, S1), A, P) is a finite-state MDP. How can we use Proposition (4.1) to
compute the optimal hitting probabilitieg? We have to compute the least non-negative
solution to the linear system of equations= R(x). One way to do this in polyno-
mial time for maximizingMDPs is to formulate this as a linear programming problem.
Namely, the vector;: .. is the unique optimal solution to the LP given in (3.2), with
this new interpretation oRR(z). However, to express the constraifitéz) < x as an
LP, and recalling that fof € 51, R;(%) = max;cguccessors(s) Tj» WE Need to rewrite
the corresponding constraint®; (z) < x;, as a system of linear inequality constraints
(x; < x; | j € successors(i)). With this madification (3.2) again defines an LP, and
the vectorg .. is the unique optimal solution to this LP.

For minimizingMDPs, computing;;, can also be reduced to linear programming,
but this case involves some more preprocessing. In ordespiess the problem as an LP
one first needs to do a little graph-theoretic analysis. fipalty, we first need to identify
and remove all statessuch thatgy,;,, ; = 0. We can do this by a simple and-or game
graph analysis on the underlying gra@ghof the MDP. Once this is done, it turns out that
on the remaining MDP one can solve fgf,,, as the unique optimal solution of a different
LP, namely the LP given bgnaximize:)_, z; ; subject to: R(z) > z, > 0, where in
this case when we have; () = min,cguccessors(s) £, WE have to rewrite the constraint
R;(x) > z;, as a system of constraints; > x; | 7 € successors(7)).

A more basic method for computing is again already immediately suggested by
Proposition 3.1value iteration By Proposition 3.1, the sequenge = R*(0) converges
monotonically tog*. As we already saw, even for finite-state MCs, value iteratian be
slow to converge in the worst case, but it is widely used ircfica, also for MDPs.

Another standard method for solvitp for maximizing MDPs, as well as for solv-
ing many other classes of MDPs, is callgdlicy iterationor strategy improvementit
involved initially fixing an arbitrary (memoryless) strgiefor the controller, and evaluat-
ing ¢* on the resulting MC, and then updating the strategy (at estatg) by choosing a
neighbor whose value is strictly greater than that of theemily chosen neighbor chosen
by the previous fixed strategy, if such a strictly greateghbor exists. See, e.g., [38] for
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much more on policy iteration for MDPs.

It is worth mentioning that answering tiigialitativequestions of whethey;, . ;, =
0,1, or whetherg;,;, , = 0,1, requires only (game) graph theoretic analyses that do
not depend on the actual probabilities of transitions indiven MDP, and so do not
require solving LPs. Thus, these qualitative questionsifdcan be answered strongly
polynomial time. (See, e.g., [13, 14].)

MoCh: Given a labeled finite-state MDY = (S, (So, S1), A, P,1), an initial state
so € S, and a Biichi automatolf = (Q, X, o, 6, F'), we wish to compute the optimum
(w.l.0o.g., maximum) probability* = sup, P7 (L(B)). Qualitative decision problems
associated with this were studied in [13, 41], and quantéatecision problems where
studied in [14]. We briefly mention the main results of [14].

As in the case oMoCh for MCs, we can assume, w.l.o.g., that= S, and we
let B’ = (29,%, {qo},¢', F'), be the deterministic BA obtained by performing the usual
(naive) subset construction ¢h Next, as for MCs, we define thiroductMDP, D@ B’ =
(8 x 29, (Sy x 29,8, x 29), A, P). Note that there is a one-to-one correspondence
between strategiesonD and strategies onD ® B’ (becausds’ is deterministic). Using
more involved analysis than for the case of MCs, employirggrtbtion ofcontrollably
recurrentpairs(s,q) € S x @ (which we will not define here) that roughly correspond
to thespecialpairs in the case of MCs, [14] showed how one can compute & satget
statesZ C S x 29 of D ® B/, such that in order to optimize the probabilit§ (L (1))
in D, it suffices for the strategy to first optimize the probability of hitting a target sét
in D ® B’ and once a target state ine Z is hit, the strategy should then switch to a
different strategy ., that thereafter assures that with probability 1 the infitvégectory is
accepted by3 (which is made possible, by definition of the target st&gslin this way,
the problemMoCh is reduced to (much larger) instances of the problé®) which as
we saw can be solved using linear programming. Let us notebemthat, whereas for
HP we always have memoryless deterministic (positional)oatistrategies, the optimal
strategies obtained this way ftoCh by [14] are not positional, and in fact it is easy to
see that optimal positional strategies kdoCh need not exist. The complexity of [14]'s
algorithm for computing™ = max, P (L(B)) is polynomial in|D| and exponential in
the size|B| for a nondeterministic Buichi automatdh It was previously shown in [13]
that even the qualitative decision problem of determinimgtherp* = 1 is EXPTIME-
complete, and thus we can not improve substantially on tmspdexity upper bound. If
thew-regular property is specified as an LTL formula instead,aswhown in [13] that
the resulting qualitative problem of determining whether= 1 is already 2EXPTIME-
complete.

5 Adding Recursion to MCs and MDPs

As mentioned in the introduction, a number of important s¢gsof countably infinite-
state MCs and MDPs that are closely related to automatagtiemodels are subsumed,
in precise senses, by adding a natueglursionfeature to MCs and MDPs. in a manner
similar to allowing potentially recursive subroutine salh procedural programs. The
resulting formal models, calle@cursive Markov chain@RMCs) andrecursive Markov
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Decision ProcesseRMDPs) were defined and studied in [28, 29] and in [30, 27, re
spectively. RMCs and RMDPs provide natural abstract mofielgrobabilistic pro-
cedural programs with recursion (and this indeed partlyivated their study). RMCs
(and RMDPs), and various of their subclasses, capture pilidiec and controlled exten-
sions of classic infinite-state automata theoretic modetdyding pushdown automata,
context-free grammars, and one-counter automata. In&d@s and RMDPs can equiv-
alently be viewed as probabilistic and MDP extensions ohpos/in automata. We refer
the reader to [28] and [30] for detailed formal definitionglaesults about RMCs and
RMDPs, respectively.

A (not-necessarily finitely-presenteRecursive Markov Chain (RMC), is a tuple
A= (4,...,A;), where eacltomponentd; = (N, B;,Y;, En;, Ex;, ¢;) consists of:

e A (countable, or finite) seV; of nodes

e A subset ofentrynodesEtn; C N;, and a subset adxithodesEz; C N;.

e A (countable, or finite) seB, of boxesand a mapping; : B, — {1,...,k} that
assigns to every box (the index of) one of the componefys, .., A;. To each
boxb € B;, we associate a set ofll ports Call, = {(b,en) | en € Eny,4)}
corresponding to the entries of the corresponding compoaed a set ofeturn
ports Return, = {(b,ex) | ex € Ewxy, )}, corresponding to the exits of the
corresponding component.

o A probabilistic transition relatiod;, where transitions are of the fora, py ., v)
where:

(1) the source is either a non-exitnode € N;\ Ex;, or areturn port, = (b, ex)
of a boxb € B;,

(2) The destination is either a non-entry node € N; \ En;, or a call port
u = (b,en) of aboxb € B;,

(3) pu,v € Ry is the transition probability fron to v,

(4) Consistency of probabilitiesfor eachu, Z{v’|(u,pu ey Puw = 1, un-
lessu is a call port or exit node, neither of which have outgoingsitions, in
which case by defaulf",, pu,.» = 0.

When we want to ensure that an RMC is finitely-presented fonpaational pur-
poses, we assume that all the sets involved (like nddeand boxesB;) are finite, and
we assume that the transition probabilitigs, are rational numbers, given as the ratio
of two integers, and we measure their size by the number sfitvithe numerator and
denominator. The sizéA|, of a given finitely-presented RMC}, is the number of bits
needed to specify it (including the encoding size of thedition probabilities). As in the
case of MCs and MDPs, some general theorems used for anafly&i4Cs hold true even
when sets defining them like noda% and boxesB3; are (countably) infinite.

We will use the termvertexof A; to refer collectively to its set of nodes, call ports,
and return ports, and we denote this setyy Thus, the transition relatiof} is a set of
probability-weighted directed edges on the @egtof vertices ofA;. We will use all the
notations without a subscript to refer to the union overtadl tomponents of the RMC
A. Thus,N = UF_, N; denotes the set of all the nodes4fQ = UF_, Q; the set of all
vertices,B = UX_, B, the set of all the boxe§, = U¥_,Y; the mapY : B — {1,...,k}
of all boxes to components, aid= U;d; the set of all transitions ofl.

Example 5.1. Figure 3 depicts a example RMC (taken from [29]). This RMC tves
componentsi;, Ao, each with one entry and two exits (in general different congnts



Analysis of Probabilistic Processes and Automata Theory 29

ex1 @ T

exrs 637,2

& J

Figure 3. A sample Recursive Markov Chain (taken from [29])

may have different numbers of entries and exits). CompoAgias two boxedy; which
maps toA; andb, which maps tad,. O

An RMC A defines a global denumerable Markov chaity = (V, P4) as follows.
The globalstatesV C B* x (@ are pairs of the forms, u), wheres € B* is a (possibly
empty) sequence of boxes ande @ is avertexof A, denoting thecall stack More
precisely, the stateE C B* x @ and transition probabilities?4, of M 4 are defined
inductively as follows:

(1) (e,u) € V,foru € Q. (e denotes the empty string.)
(2) if (B,u) € V and(u, py v, v) € 0, then(s,v) € V andPa ({3, u), (8,v)) = pu.v-
(3) if (8, (b,en)) € V, where(b, en) € Call,, then
(Bb,en) € V andP4 ({5, (b,en)), (Bb,en)) = 1.
(4) if (Bb,ex) € V, where(b, ex) € Return, then
(B, (b,ex)) € V andPa((Bb, ex), (B, (b,ex))) = 1.
(1) corresponds to the possible initial states, (2) comrdp to a transition within a com-
ponent, (3) corresponds to a recursive call when a new coamigmentered via a box, (4)
corresponds to the end of a recursive call when the procésssesomponent and control
returns to the calling component.

Some states oM 4 areterminating having no outgoing transitions. These are pre-
cisely the stateé, ex), whereex is an exit. If we want to viewM 4 as a proper Markov
chain, we can consider terminating states\éf, to beabsorbingstates, with a self-loop
transition to themselves having probability 1.

Unrestricted RMCs are essentially equivalent, in a presgsse, tgrobabilistic push-
down automatdpPDASs) (see [28] for the precise equivalence). An RMC whanery
component has at most one exit is calletl-axitRMC, or just1-RMC 1-RMCs corre-
spond, in a precise sense, to the stochastic process gathbsateft-most derivations of
astochastic context-free grammg@CFG), and they also intimately relatednilti-type
branching processesee [28] for details of these relationships). An RMC whéer¢ is
only one box in the entire RMC is calllzaboxRMC. As shown in [23], these correspond
to probabilistic 1-counter automata, and to (discreteejiquasi-birth death processes.
Termination probability analysis (VI. TP): We now define a key analysis for RMCs,
namely computation dermination probabilitieswhich plays a central role in many other



30 K. Etessami

analyses of RMCs. For an RM@|, = (4;4,..., Ax), given a vertexu € Q; and an exit
ex € Ex;, bothinthe same componed}, letq, .., denote the probability of eventually
reaching the staté&, ex), starting at the staté, v). Computation of termination prob-
abilities U en) plays an important role for many other analyses of RMCsuidiclg for
MoCh, in a way analogous to the role tHdP plays for analysing (finite-state) MCs.

Considering the termination probabilitieaem as unknowns, we can set up a system
of non-linearpolynomial equations, such that the probabilitjggm) are thel_east Fixed
Point (LFP) solution of this system. Use a variablg, .., for each unknown probability
A(y er)- We Will often find it convenient to index the variableg, .. according to a fixed
order, so we can refer to them alsoaas . . ., z,,, with eachz, ., identified withx;
for somej. Of course, ifN; or B; are infinite for some componedt;, then we have an
infinite vectorx = (z1...z;...) of variables, rather than amvectorx = (z; | j €
{1,...,n}), for somen < cc.

Given RMCA = (Ay,...,Ax), we define a system of polynomial equations=
R(x), over the variables ,, ,), whereu € Q; andex € Ex;, for1l <i < k. The system
contains one equatiofy, ;) = Ry, (%), for each variable:(,, ..y, whereR, c,)(x)
is a multivariate polynomial with positive rational coeféints. x = R(z) is defined as

follows: There are several based on the “type” of verteket [k] = {1,..., k}.
T(yer) = 1 if u=ex € Fz,; fori € [K]
T(y,eq) =0 if u,ex € Ex;, andu # ex, fori € [k]
T(user) = Do (o] (upu.v,0)ed} Puv * T(vsex) if u e N; \ {ex} oru = (b,ex’)forb € B;, i € [K]

T(y,ex) = Zex/EEmy(b> Z(en,ex’) * T((b,ea’),ex) if u= (b, en), forbe B;,i € [k]
(5.1)
Given a (finitely-presented) RM@, we can obviously construct the systam- R(x)
in polynomial time. R(x) has sizeD(|A|6?), where¢ denotes the maximum number of
exits of any component. Let* € R™ denote the:-vector of probabilities;am), using
the same indexing as used for The mapR : RY, — R% is clearly monotone oY,
and furthermore, the following analog of Proposition 3.1diso

Theorem 5.1. (see [28]*%) The termination probability vectag* for an RMC is thdeast
fixed pointof x = R(x). Thus,q* = R(q*), and for allq’ € R%, if ¢ = R(q'), then
q* < q'. Furthermore,R*(0) < R*1(0) < q* Vk > 0, andq* = limy_, o, R*(0).

For (finitely-presented) RMCs the termination probatakty* are in general irra-
tional, so we can’'t compute them “exactly”. However, usirggidion procedures for
theexistential theory of reaJsve can decide, e.g., whethgr > r, for any given rational
valuer, in PSPACE (see [28]). It was shown in [28] that for general@ny non-trivial
approximationof the probabilitiesy* is at least as hard as long standing open problems
in the complexity of numerical computation, namely, sggiare-root sum problernd a
harder arithmetic circuit decision problem known as Pos§LP, both of which are not
even known to be decidable in NP nor in the polynomial timedrighy.

In [28], a decomposed multivarialéewton’s metho studied and shown to converge

14In [28] this theorem is only claimed for finitely-presentedIBs, where the sets of nodes and boxes are
finite, but exactly the same proofs establish the result vilhesets of nodes and boxes can be countably infinite.
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monotonically to the LFRy*, of z = R(x) for an arbitrary RMC, starting frord, and
more generally this holds for amgonotone polynomial system of equatiOd®S), 2 =
R(z). The convergence behavior of Newton’s method for MPSs wlasesjuently studied
further in [16], yielding some important insights. FirstiL6] gave examples of (not
strongly connected) 1-exit RMCs, on whose system of equatio= R(x) Newton’s
method would require an exponential number of iterations asction of the encoding
size of the 1-RMC (and of = R(xz)) to converge to within even 1 bit of precision of
the LFP vector* starting from0, and on the other hand, in certain strongly-connected
cases of RMCs [16] gave exponential upper bounds on the nuofiterations required
to obtain a desired approximation ¢d as a function of the encoding size of= R(x)
for RMCs. For arbitrary MPSs, [16] gave no upper bounds omtimaber of iterations
of Newton required as a function of the encoding size of thirfMPS. Recently, in
[40] an exponential worst-case upper bound was establiginddewton’s method for as
a function of the encoding size of the MPS for computing iteLiB desired precision.
The bound in [40] is essentially optimal in several impot{gerameters of the problem.

In the case of 1-exit RMCs, the corresponding equation syste= R(z) is aprob-
abilistic polynomial system of equatio(lBPS). These consist of equations of the form
z; = R;(x), whereR;(z) is aprobabilistic polynomigl meaning a multivariate poly-
nomial in the variables: whose monomial coefficients and constant term are all non-
negative and their sum is (at most) 1. A recent result in [h®jxs that Newton’s method,
combined with P-time methods from [28] for qualitative ayséd of termination for 1-exit
RMCs, can be used to obtain a P-time algorithm for PPSs andt RBICs (in the stan-
dard Turing model of computation) for approximatigigto within arbitrary desired preci-
sion2~7, for j given in unary. This result also has important consequefocesulti-type
branching processg®8Ps) andstochastic context-free grammgSCFGs). For instance,
it yields the first P-time algorithm for computing extinatiprobabilities of BPs, and for
computing the probability of generating a given stringdduitrary SCFGs (see [19]). See
also the recent paper [20], where it is has been further stibatrfor a very broad class
of SCFGs, excluding only some degenerate “deeply critiSs&tFGs, Newton’s method
yields a P-time algorithm for computing within desired ps@&m the probability that the
SCFG generates a string in a given regular language, giventiyA. In particular, [20]
shows that this runs in P-time for any SCFG whose parameterssiimated using the
standard EM (“inside-outside”) method.

In the case of 1-box RMCs, which are essentially equivalemtiscrete-timeguasi-
birth-death processe®BDs), and tgorobabilistic one-counter automaté was shown
in [21] that decomposed Newton’s method requires only padyially many iterations, as
a function of the encoding size ef= R(z), and ofj, to compute;* to within additive
error2=7. The vectorg* corresponds to the so call€d matrix of a QBD, which is a
key to many other analyses of QBDs (see, e.g., [35, 3]), aisdhihs yields the first P-
time algorithm, in the unit-cost arithmetic RAM model of cpuatation, for computing
the G matrix of an arbitrary QBD. More recently, in [40], it was stiothat with suitable
rounding of Newton’s method th@ matrix can be computed in P-time in the standard
Turing model of computation.

Model checking (MoCh): model checking of RMCs was studied in [29], where it was
shown how to us&P analysis toward both qualitative and quantitative modeb&ing of
RMCs. The algorithms are involved: in brief, given a labeRMC, A, and aw-regular



32 K. Etessami

property, say given by a Biichi automatBnit is possible to use termination probabilities
g* to first define a finite-state MC, called tleenditioned summary chain\t’, of the
“product” of the RMC and the naive determinizatid# of B, and then to boil down
the probability of L(B) in the original RMC to the probability of hitting a subsgt of
states inM’, where7 can be computed using suitable modifications to the notion of
special pairs used earlier for solvinyloCh by [13] for finite-state MCs. Furthermore, a
different algorithm can be used for properties specifiedyformulas. For the resulting
complexity bounds for the various cases of qualitative amhdjtative analysis, see [29],
whose results also yield the best available complexity beuyimproving by more than
one exponential the prior bounds) for model checkingegular and LTL properties of
probabilistic pushdown systems, a problem which was fitstied in [17].

For model checking 1-box RMCs (equivalently, probabitisine-counter automata
(pOCASs)), a recent paper [8] shows how to use the polynorinied algorithm obtained
in [23, 40] for computing (to within any desired precisiohgttermination probabilities
q* for 1-box RMCs and pOCAs, in order to obtain an algorithm femputing (to within
desired precision) the probability of anregular property for pOCAs which, for a fixed
w-regular property, also runs in polynomial time (see al€)[4

Recursive Markov Decision Processes (RMDPs)t is not difficult to generalize the
definition of RMCs to define RMDPs, by allowing some nodes ef RMC to becon-
trolled. RMDPs were first studied in [24, 30], where it was shown thafprtunately,
even very basic computational problems, such as compatigghon-trivial approxima-
tion of theoptimal (supremum or infimunt@rmination probabilities of finitely presented
RMDPs is not computable. Furthermore, [24, 30] showed thah eualitative model
checking MoCh) analyses are undecidable already for 1-exit RMDPs.

Fortunately it was also shown in [24, 30] that fbrexitRMDPs (1-RMDPs), which
correspond also to controlled versions of BPs and SCFGspiissible to set up a mono-
tone max/min probabilistic polynomial system of equati¢max/minPPS)z = R(x),
whose LFPg*, corresponds precisely to the vector of optimal termimapoobabilities.
A maxPPS (respectively, minPPS),= R(x) consists of equations; = R;(z), where
eachR;(x) has the formmax{Q:(z), ..., Qx, ()}, where eacl),(x) is a probabilistic
polynomial in the variables. It was furthermore shown in [24, 30] that the controller
always has optimal deterministic stackless and memorgptmal strategies for opti-
mizing termination probability in 1-RMDP. Already for 2-€RMDPs, it is not even the
case that there necessarily exiats/optimal strategy for maximizing the probability of
termination (see [24]). It was subsequently shown in [25 i@t qualitativeoptimal ter-
mination problems for 1-RMDPs can be decided in P-time uaisgectral optimization
method that requires use of linear programming. The algmstfrom [25] for decid-
ing whether optimal termination probability for 1-RMDPseigactly 1 were later used in
[7] in order to show that there is a P-time algorithm for détecwhether there exists a
strategy which achieves optimal termination probabilitygfreaching a given vertex of
a l-exit RMC inany calling context (any call stack). However, there need nigteany
optimal strategy for reaching a vertex in any calling cotitexen when the supremum
probability of doing so is 1, and even the decidability ofatatining whether the supre-
mum probability is 1 for this problem remains open. Finallya recent advance it was
shown in [18] that for 1-RMDPs the vectqt of optimal termination probabilities can
be approximated in P-time to within arbitrary desired psixti, by using a generaliza-
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tion of Newton’s method applied to the corresponding marPRiS equations = R(x),
which converges monotonically to their LFP. The generdlikewton method requires
solving an LP in each iteration (in both the maximizing aneimizing cases, which are
different).

For 1-box RMDPs, corresponding to controlled QBDs and to M&f®ensions of
probabilistic one-counter automata, we do not have a qooreting equation system
x = R(z) which captures their termination probabilities. Nevelgbs, it was shown
in [6] and [4] that for both maximizing and minimizing the teination probability in 1-
box RMDPs, the qualitative problem of deciding whether thral probability is 1 for
termination, i.e. for hitting counter value 0 &ny state, can be decided in P-time using,
among other things, linear programming. Subsequentlyag shown in [5] that for a
1-box RMDP one caapproximatethe optimal probability of termination iany state in
exponential time. Optimal strategies need not exist forimaing termination probabil-
ity in 1-box RMDPs [5]. It remains open whether this exporarime upper bound can
be improved. Deciding whether the (optimal) terminatioohability is, say,> 1/2, is
already square-root-sum-hard, even for 1-box RMCs ([28pparently hardeselective
termination problems for 1-box RMDPs were also studied Jngéch as whether there is
some strategy with which we hit counter valum a desired control stateith probability
1. It was shown in [6] that this problem is already PSPACEdhand that this particu-
lar qualitative selective termination problem is decigabHowever, the decidability of
limit-sure (and quantitative) “selective” terminatiorr fb-box RMDPs remains open.
Recursive Stochastic Gamesalthough we have not discussetbchastic gameésee,
e.g., [39, 10, 31]), we mention that a number of results, iigaar about 1-RMDPs,
extend naturally to two-player zero-sutrexit Recursive Simple Stochastic Gar(ies
RSSGs) ([24, 30]) and tb-exit Recursive Concurrent Stochastic GaifieRCSGs) ([26,
27]). In particular, corresponding to 1-RSSGs with the otiye (and counter-objective)
of maximizing (and minimizing) termination probabilityheére are monotone min-max-
polynomial equations = R(x) whose LFP yields the vector of termination values start-
ing at each vertex ([24, 30]). Corresponding to 1-RCSGs asvshin [27], there are
monotone minimax-polynomial equations, where the valuerator,Val()M ), for a 1-
shot 2-player zero-sum matrix gamé is used in the equations, the LFP of which yields
the value vector of the 1-RCSG. It was shown in [25, 30] thaidleg whether the value
of a 1-RSSG termination game is exactly 1 is in NRo-NP, and that this problem is
already at least as hard as Condaimntitativedecision problem for finite-state SSGs
[10], whereas for finite-state SSGs the qualitative denigimblem of deciding whether
the value is 1 is known to be in P-time. For 1-RCSG terminagiames it was shown in
[27] that quantitative decision and approximation prolsdor the game value are solv-
able in PSPACE using the associated monotone system ofiegsiat= R(z), and it was
shown that even theualitativeproblem deciding whether the game valud is at least
as hard as thequare-root sum problenwhich as discussed already is not even known
to be in NP. The complexity of analyzing 1-box RSSGs (eqenty, one-counter SSGs)
was studied in [6, 4, 5] where some upper and lower bounds egtablished, but the pre-
cise complexity of a number of analysis problems for onerteuSSGs (and one-counter
MDPs) remains open.



34

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

K. Etessami

References

E. Allender, P. Burgisser, J. Kjeldgaard-Pedersen, RrB. Miltersen. On the complexity of
numerical analysisSIAM J. Comput.38(5):1987-2006, 2009. Earlier version appeared in
Proc. 21st IEEE Conference on Computational Comple2®p6. 30

C. Baier and J.-P. Katoetrrinciples of Model CheckingVIT Press, 2008. 5

D. Bini, G. Latouche, and B. MeinNumerical methods for Structured Makov Chai@xford
University Press, 2005. 31

T. Brazdil, V. Brozek, and K. Etessami. One-counterch@stic games. IFRSTTCSpages
108-119, 2010. 33

T. Brazdil, V. Brozek, K. Etessami, and A. Kucera. Appimating the termination value of
one-counter mdps and stochastic games$CHLP (2), pages 332—-343, 2011. 33

T. Brazdil, V. Brozek, K. Etessami, T. Kucera, and D. \ajhk. One-counter Markov decision
processes. IACM-SIAM Symposium on Discrete Algorithms (SODA'20110. 33

T. Brazdil, V. Brozek, V. Forejt, and A. Kucera. Reachiay in recursive Markov decision
processeslnf. Comput, 206(5):520-537, 2008. 32

T. Brazdil, S. Kiefer, and A. Kucera. Efficient analysi§ probabilistic programs with an
unbounded counter. IBAV, pages 208—-224, 2011. 32

K. L. Chung. A Course in Probability TheoryAcademic Press, 3rd edition, 2001. 5, 6
A. Condon. The complexity of stochastic gamb¥. & Comp, 96(2):203-224, 1992. 4, 33

C. Courcoubetis and M. Yannakakis. Verifying tempgmaiperties of finite-state probabilistic
programs. IrProc. of 29th Annual IEEE Symp. on Foundations of Computenge (FOCS)
pages 338-345, 1988. 12, 19, 23, 24, 25

C. Courcoubetis and M. Yannakakis. Markov decisiorcpsses and regular events (extended
abstract). IrProc. of 17th International Colloquium on Automata, Langes and Program-
ming (ICALP) volume 443 olLNCS pages 336—349. Springer, 1990. 12, 25

C. Courcoubetis and M. Yannakakis. The complexity afiqabilistic verification.Journal of
the ACM 42(4):857-907, 1995. 12, 19, 23, 24, 25, 27, 32

C. Courcoubetis and M. Yannakakis. Markov decisioncpeses and regular event&€EE
Trans. on Automatic Contrp#t3(10):1399-1418, 1998. 12, 25, 27

L. de Alfaro, T. A. Henzinger, and O. Kupferman. Conamt reachability games. IRAroc.
39th IEEE Symp. on Foundations of Computer Science (FQ#28ks 564-575, 1998. 15

J. Esparza, S. Kiefer, and M. Luttenberger. Computhmgléast fixed point of positive poly-
nomial systemsSIAM Journal on Computing9(6):2282—2355, 2010. 31

J. Esparza, A. Kucera, and R. Mayr. Model checking phdistic pushdown automatd.og-
ical Methods in Computer Scienc&1), 2006. 3, 32

K. Etessami, A. Stewart, and M. Yannakakis. Polynontigle algorithms for branching
Markov decision processes and probabilistic min(max) patgial equations. I#roc. 39rd
Int. Coll. on Automata, Languages, and Programming (ICALZ@1L2. 5, 32

K. Etessami, A. Stewart, and M. Yannakakis. Polynontiale algorithms for multi-type
branching processes and stochastic context-free graminaPsoc. of 44th Symp. on Theory
of Computing (STOCpages 579-588, 2012. 31

K. Etessami, A. Stewart, and M. Yannakakis. Stochastittext-free grammars, regular lan-
guages, and Newton’s method. Rmoc. 40th Int. Coll. on Automata, Languages, and Pro-
gramming (ICALP)2013. 31



[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]
[40]

Analysis of Probabilistic Processes and Automata Theory 35

K. Etessami, D. Wojtczak, and M. Yannakakis. Quasibiteath processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown systemBrdc. 5th Int. Symp. on Quanti-
tative Evaluation of Systems (QESpages 243-253, 2008. 3, 31

K. Etessami, D. Wojtczak, and M. Yannakakis. Recurstechastic games with positive
rewards. InProc. 35th ICALR pages 71-723, 2008. 5, 14

K. Etessami, D. Wojtczak, and M. Yannakakis. Quasttbiteath processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown systeRexform. Eval, 67(9):837-857,
2010. 29, 32, 33

K. Etessami and M. Yannakakis. Recursive Markov decigirocesses and recursive stochas-
tic games. IrProc. 32nd ICALRpages 891-903, 2005. 32, 33, 35

K. Etessami and M. Yannakakis. Efficient analysis ofsks of recursive Markov decision
processes and stochastic gamesPtac. 23rd Symp. on Theoretical Aspects of Comp. Sci.
(STACS)pages 634—645, 2006. 5, 32, 33, 35

K. Etessami and M. Yannakakis. Recursive concurrerttgtstic games. 183rd Int. Coll. on
Automata, Languages, and Programming (ICALB)ges 324—-335, 2006. 33, 35

K. Etessami and M. Yannakakis. Recursive concurresthststic gamed.ogical Methods in
Computer Sciencel(4), 2008. (Journal version of [26].). 5, 28, 33

K. Etessami and M. Yannakakis. Recursive Markov chastschastic grammars, and mono-
tone systems of nonlinear equatiodsACM 56(1), 2009. 2, 3, 28, 29, 30, 31

K. Etessami and M. Yannakakis. Model checking of remerprobabilistic systemsACM
Trans. Comput. Log13(2), 2012. 23, 28, 29, 31, 32

K. Etessami and M. Yannakakis. Recursive Markov dedsiprocesses and re-
cursive stochastic games. Journal of the ACM (to appear) 2015. Com-
bines results inICALP'05 & STACS'06 papers [24, 25]. Manuscript available at:
http:// homepages. i nf. ed. ac. uk/ kousha/j sub_r nmdp._rssg. pdf . 5, 28, 32,
33

J. Filar and K. Vrieze Competitive Markov Decision Processé&pringer, 1997. 33

T. D. Hansen, P. Miltersen, and U. Zwick. Strategy itena is strongly polynomial for 2-
player turn-based stochastic games with a constant diséactor. InInnovations in Com-
puter Science (IC$Spages 253-263, 2011. 25

T. E. Harris.The Theory of Branching Process&pringer-Verlag, 1963. 2

M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0:ifeation of probabilistic real-time
systems. IrCAV, pages 585-591, 201ht t p: / / www. pri srmodel checker. org. 5

G. Latouche and V. Ramaswanhitroduction to Matrix Analytic Methods in Stochastic Mod-
eling. ASA-SIAM series on statistics and applied probabilityd29 31

J. R. Norris.Markov Chains Cambridge University Press, 1997. 5

A. Pnueli. The temporal logic of programs. Pmoc. 18th Symp. on Foundations of Computer
Sciencepages 46-57, 1977. 12

M. L. Puterman.Markov Decision ProcesseWiley, 1994. 5, 19, 25, 26
L. Shapley. Stochastic gameBroc. Nat. Acad. S¢i39:1095-1100, 1953. 5, 33

A. Stewart, K. Etessami, and M. Yannakakis. Upper bauiod Newton’s method on mono-
tone polynomial systems, and P-time model checking of ilisic one-counter automata.
In Proc. of 25th Int. Conf. on Computer Aided Verification (CAW)lume 8044 ofLNCS
pages 495-510. Springer, 2013. 31, 32



36 K. Etessami

[41] M. Vardi. Automatic verification of probabilistic conerent finite-state programs. Rroc. of
26th IEEE FOCSpages 327-338, 1985. 15, 24, 27

[42] M.Y. Vardi and P. Wolper. An automata-theoretic apmtoto automatic program verification.
In Proc. 1st Symp. on Logic in Comp. Sci. (LIC8ges 322—-331, 1986. 12

[43] T. Wilke. Chapter 6w-automata. In J.-E. Pin, editddandbook of Automata Thearuro-
pean Math Society, 2013? 11, 12

[44] D. Wojtczak and K. Etessami. Premo : An analyzer for pimlistic recursive models. In
TACAS pages 66-71, 2007. 5

[45] Y. Ye. A new complexity result on solving the Markov dsicin problem.Math. Oper. Res.
30(3):733-749, 2005. 25

[46] U. Zwick and M. Paterson. The complexity of mean paydifres on graphsTheoretical
Computer Science 58(1-2):343—-359, 1996. 4



