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Abstract. This chapter surveys some basic algorithms for analyzing Markov chains (MCs) and

Markov decision processes (MDPs), and discusses their computational complexity. We focus on

discrete-time processes, and we consider both finite-state models as well as countably infinite-state

models that are finitely-presented. The analyses we will primarily focus on are hitting (reachability)

probabilities and ω-regular model checking, but we will also discuss various reward-based analyses.

Although it may not be evident at first, there are fruitful connections between automata theory

and stochastic processes. Firstly, and not surprisingly, ω-automata play a naturally important role

for specifying ω-regular properties of sample paths (trajectories) of stochastic processes. Com-

puting the probability of the event that a random sample path satisfies a given ω-regular property

constitutes the (linear-time) model checking problem for probabilistic systems.

Secondly, it turns out that there are close relationships between classic infinite-state automata-

theoretic models and classic denumerably infinite-state stochastic processes, even though these

models were developed independently in separate mathematical communities. Roughly speaking,

some classic stochastic processes share their underlying state transition systems with corresponding

classic automata-theoretic models. Furthermore, exploiting these connections to automata theory

is fruitful for the algorithmic analysis of such stochastic processes, and for their controlled MDP

extensions. This holds even when the analyses are much simpler than model checking, such as

computing (optimal) hitting probabilities.

A number of important infinite-state stochastic models connected with automata theory can

be captured as (restricted fragments of) recursive Markov chains and recursive Markov decision

processes, which are obtained by adding a natural recursion feature to finite-state MCs and MDPs.

Key computational problems for analyzing classes of recursive MCs and MDPs can be reduced

to computing the least fixed point (LFP) solution of corresponding classes of monotone systems

of nonlinear equations. The complexity of computing the LFP for such equations is a intriguing

problem, with connections to several areas of research in theoretical computer science.
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1 Introduction

Markov chains are a fundamental mathematical model for systems that evolve randomly

over time. They thus play a central role in stochastic modeling in many fields. In settings

where in addition to stochastic behavior we also allow control (or non-determinism), so

that the system state evolves partly randomly and partly based on decisions by a controller,

the resulting model is called a Markov decision process (MDP). MDPs give rise to a

variety of stochastic dynamic optimization problems, depending on what objective the

controller wishes to optimize.

Historically, automata theory developed entirely separately from the theory of stochas-

tic processes and stochastic optimal control, with each developed by a separate mathemat-

ical community having distinct motives. It turns out, however, that there are fruitful con-

nections between these fields. In particular, a number of classic infinite-state automata-

theoretic models, such as one-counter automata, context-free grammars, and pushdown

automata, are in fact closely related to corresponding classic and well-studied countably

infinite-state stochastic processes. Roughly speaking, such automata-theoretic models

share the same (or, a closely related) underlying state transition system with correspond-

ing classic stochastic processes.

Upon reflection, it should not be entirely surprising that this is the case. After all,

Markov chains are nothing other than probabilistic state transition systems. In order for a

class of infinite-state Markov chains to be considered important, it should not only model

interesting real-world phenomena, but it should also hopefully be “analyzable” in some

sense. Better yet, its analyses should have reasonable computational complexity. But

these same criteria also apply to infinite-state automata-theoretic models: their relevance

is at least partly dictated by whether we have efficient algorithms for analyzing them.

Clearly, we can not devise effective algorithms for analyzing arbitrary finitely-presented

countably infinite-state transition systems. For example, Turing machines are clearly

finitely presented, but we can not decide whether a Turing machine halts, i.e., whether

we can reach the halting configuration from the start configuration. Furthermore, if we

consider probabilistic Turing machines (PTMs), we easily see that there can not exist

any algorithm that computes any non-trivial approximation of the probability that a given

probabilistic Turing machine halts.

Researchers working on automata theory and on stochastic processes have, over time,

arrived at related classes of “analyzable” infinite-state transition systems, and they have

built automata-theoretic structure, or stochastic structure, upon them to suit their own

purposes. Let us mention a couple of examples. Consider the derivation graph of a

context-free grammar (CFG), in which states consist of sequences of terminals and non-

terminals and with a simultaneous derivation law defining transitions between states, so

all non-terminals in a sequence are expanded at once according to rules associated with

those nonterminals. The state transition systems obtained this way are intimately related

to the underlying state transition systems of multi-type branching processes (BP), a classic

stochastic process ([33]). Basically, the transition system for the BP corresponding to a

CFG is the quotient of the CFG’s transition system under the equivalence that equates any

two sequences of terminals and nonterminals that contain the same number of occurrences

of each nonterminal symbol in them (see [28] for a detailed explanation).

Likewise, one-counter automata share essentially the same state transition system
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with quasi-birth-death processes (QBDs) (see [21] for the details). QBDs are a class of

stochastic processes heavily studied in queuing theory, where the counter can basically be

used to keep track of the number of jobs in the queue. A generalization of QBDs, referred

to as tree-like QBDs in the queuing theory literature, turns out to share its state transition

graphs with pushdown automata (again, see [21] for the precise correspondence).

The aforementioned stochastic models (in discrete-time) can all be formulated as sub-

cases, in precise ways, of a model obtained by adding a natural recursion feature to finite-

state Markov chains, called recursive Markov chains (RMCs) [28]. RMCs are also es-

sentially equivalent to probabilistic pushdown systems [17] (see [28] for the precise sense

of this equivalence). RMCs and RMDPs constitute natural abstract models of the control

flow of probabilistic procedural programs with recursion.

Of course, being analyzable as automata does not automatically imply that the cor-

responding class of probabilistic transition systems or MDPs is also analyzable, nor the

other way around. For some classes of transition systems, effective/efficient “analyz-

ability” does coincide in the two settings, whereas for others it does not. We shall see

examples of both.

This chapter surveys some basic algorithmic results for the analysis of Markov chains

(MCs) and Markov decision processes (MDPs), in both finite-state settings, as well as

in finitely presented countably-infinite state settings. We will consider a few different

analyses, focusing on computation of hitting (reachability) probabilities and on model

checking. But we will also discuss important reward-based analyses. We will also em-

phasize computational complexity considerations for the relevant problems. Finally, we

shall very briefly mention the extension from MDPs to stochastic games and give some

references to the relevant literature.

Algorithmic analyses of MCs and MDPs, including transient analyses, steady state

analyses, optimal reward analyses, and model checking, play an important role in many

application areas. A sampling of the many application areas where stochastic modeling

and analysis play a role includes: queueing theory, computational biology, natural lan-

guage processing, verification, economics, finance, and operations research in general.

Automata-theoretic models and methods come into play for analysis of stochastic sys-

tems in several ways. To begin with, we can view a Markov chain as a probabilistic

state transition system (or probabilistic automaton). For model checking of MCs (and, re-

spectively, MDPs), one is interested in determining the (optimal) probability with which

a random walk on the MC (respectively, on the MDP using a chosen strategy for the

controller) satisfies a given temporal property. The temporal property may be specified,

for example, as a Linear Temporal Logic (LTL) formula, or as an ω-automaton. In the

latter case the connection to automata theory is very direct: the properties are given by

automata, or formalisms closely related to automata, so automata-theoretic methods are

largely unavoidable.

Even for classic analyses of MCs and MDPs, as already indicated, there are deeper

connections between the transition graphs of models studied originally in automata the-

ory, such as context-free grammars, one-counter automata, and pushdown automata, and

classic stochastic models that have been studied extensively in the stochastic processes

literature over many decades, such as (multi-type) branching processes and (quasi-)birth-

death processes.

Recently, these connections have been exploited to develop efficient algorithms for
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analyzing such stochastic models, and to obtain results about the computational complex-

ity of such analyses. We will survey some of this work. The literature on analysis of such

Markov chains and MDPs is large and growing, even when restricted to aspects involv-

ing automata-theoretic connections. Thus, in this brief survey I can only hope to cover a

very limited selection of the many models and algorithms. We will restrict our attention

entirely to finite or countable-state discrete-time Markov chains (MCs) and MDPs.

After providing some basic background, in Section 2.1 we will define formally a num-

ber of important analysis problems for MCs and MDPs, and discuss carefully the different

computation and decision problems that they give rise to, and we give some examples of

analyses on finite-state MCs and MDPs in section 2.2, to help build the intuition of the

reader. We then proceed in subsequent sections to discuss algorithms for and complex-

ity of these analyses, beginning in section 3, then proceeding in section 4 to finite-state

MDPs. We then define recursive Markov chains and recursive MDPs in section 5. As

already discussed, these recursive models subsume a number of stochastic models and

MDPs which have tight automata-theoretic connections. We then briefly discuss algo-

rithms and complexity of analyzing RMCs and RMDPs, and provide pointers to the by

now large relevant literature.

One of the themes that will emerge in this survey is that for key analyses of both

finite-state MCs and MDPs, as well as for analysing classes of infinite-state recursive

MCs and MDPs, a basic ingredient in their algorithms will be to find a solution to a

corresponding system of equations. In the case of MDPs, these equations correspond

to the appropriate Bellman optimality equations for the classes of MDPs involved. In

particular, in several settings we will need to find the least fixed point (least non-negative)

solution to a monotone system of equations. As the models become richer, these systems

of equations become richer and more involved, e.g., going from linear to non-linear and

requiring richer sets of algebraic operators (e.g., going from operators {+} to {+,max},

or to {+, ∗}, and then to {+, ∗,max}, etc.). The computational complexity of finding

solutions to such systems of equations, which turn out to be very intriguing problems

with interesting connections to several areas of research, are thus intimately connected to

the computational complexity of basic analysis problems for such stochastic models.

Finally, although we do not have room to discuss it in this chapter, let us briefly men-

tion that one can also study the complexity of analysis problems for the extension of

MDPs to stochastic games. In particular, in a two-player zero-sum stochastic game, there

is not just one controller, but also an adversary, whose objective is the opposite of that of

the controller. In turn-based stochastic games, also referred to as simple stochastic games

(SSGs), and first studied by Condon [10], the two players control different states. Condon

[10] showed that deciding whether the value is > 1/2 for a given SSG with the objectives

of maximizing and minimizing the probability of hitting a target state for the two adver-

sarial players is in NP∩co-NP, and it is a major open problem whether this problem can

be decided in P-time. (The problem is well known to be at least as hard as solving parity

games and mean payoff games; see e.g. [46].) Although we shall not have room to dis-

cuss it this survey, we note that, again, key computational questions for stochastic games

boil down to finding a solution for certain equation systems, and again, these equations

become richer as the class of stochastic game models becomes richer, for example, going

from {+,max,min} to {+, ∗,max,min}, and to {+,Val} and to {+, ∗,Val}, where Val

is the value operator Val(M) that gives the minimax value of a 2-player zero-sum matrix
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game with matrix M . Note that Val clearly generalizes both max and min. Equations

over {+,Val} were already used by Shapley [39] to characterize the value of his original

2-player zero-sum stochastic games (which, in the parlance used in this paper, constituted

stochastic games with a discounted total payoff objective). Shapley’s discounted equa-

tions for these defined a contraction mapping whose Banach fixed point gives the value

of the stochastic game starting at each state. In other settings, e.g., in (concurrent) stochas-

tic reachability (hitting) games, the equations define a monotone mapping whose Tarski

least fixed point defines the value vector (note that Val). These games further generalize to

infinite-state recursive settings and require monotone equations over {+, ∗,Val} for their

value [25]. The reader interested in learning more about the stochastic game extensions

of some of the models we discuss in this chapter can consult [30, 27, 22, 18].

Warning: This chapter is certainly not a comprehensive survey of algorithms for

analysis and verification of Markov chains and MDPs and their connections to automata

theory. These are vast and rapidly growing subjects, with a huge existing theoretical and

practical literature. No comprehensive survey is feasible now, and it is not our intention to

attempt one. This chapter only highlights a few basic topics, based largely on the author’s

own research interests, focusing on some connections between probabilistic processes

and automata theory, and on recent research on algorithms for analyzing infinite-state

recursive probabilistic systems. We do not mention many important related subjects. For

example, we do not discuss existing software tools for analysis and model checking of

probabilistic systems. There are many; see, e.g. [34]. Also, some software already exists

for analysing recursive probabilistic systems; see, e.g., [44]. We also do not mention

verification of probabilistic models against branching-time temporal logics like PCTL

(see, e.g., Chapter 10 of [2] for one treatment of this in a textbook). We also do not

discuss probabilistic (bi)simulation and related topics (again, see Chapter 10 of [2] for a

brief treatment of this). There are many other topics related to both algorithms for analysis

of probabilistic processes and to automata theory that we shall not mention at all.

2 Definitions and Background

Although we will endeavour to provide most of the formal definitions needed for our

purposes, our subject is vast and we will need to assume some familiarity with basic

notions and facts from probability theory, the theory of Markov chains, and the theory

of Markov decision processes. For background on these topics the reader is referred, for

example, to the following excellent textbooks [9, 36, 38].

Recall that a σ-algebra over a set Ω is a set F ⊆ 2Ω of subsets of Ω, such that Ω ∈ F ,

and such that F is closed under countable union and under complementation with respect

to Ω. Recall that a probability space, (Ω,F ,P), consists of a set of outcomes, Ω (i.e.,

the sample space), a σ-algebra F ⊆ 2Ω of events over Ω, and a probability measure,

P : F → [0, 1]. For a real-valued random variable (r.v.), X : Ω → R, over a probability

space (Ω,F ,P), the expected value of X , when it exists, is denoted E(X)
.
=

∫

ΩX dP.

Note that, when E(X) is defined, E(X) ∈ R
.
= [−∞,+∞]. We will sometimes need

to consider extended-real-valued r.v.’s, X : Ω → R, and their expectation. The theory



6 K. Etessami

for these r.v.’s is readily available (see, e.g., [9]), and consists of natural extensions to the

definitions for real-valued r.v.’s and their expectation. A probability distribution over a

finite or countably-infinite set, U , is a functionF : U → [0, 1] such that
∑

u∈U F (u) = 1.

The support of the distribution F is the set support(F ) := {u ∈ U | F (u) > 0}.

Markov chains. We view a (denumerable, discrete-time, time homogeneous) Markov

chain (MC) as being given by a pair, M = (S, P ), consisting of a countable (or finite)

set of states, S, and a probabilistic transition function P : S × S → [0, 1], such that for

all s ∈ S,
∑

s′∈S P (s, s
′) = 1. P is also referred to as the transition probability matrix

of M, and for s, s′ ∈ S we often use the notation Ps,s′ as an alternative to P (s, s′).
When |S| = n is finite, we will indeed find it convenient to view P as an (n × n)
matrix, and we will often find it convenient to view the countable (or finite) state set

S as consisting of (an initial segment of) the positive integers N+ = {1, 2, . . .}. P is

thus, by definition, a stochastic matrix, meaning it is non-negative and all its rows sum

to 1. We use ∆ ⊆ S × S to denote the underlying transition relation of the Markov

chain M, defined by ∆ = {(s, s′) | P (s, s′) > 0}. The state set S together with

∆ defines the underlying directed graph, G = (S,∆), of the Markov chain M. For

every s ∈ S, define successors(s) = {s′ | (s, s′) ∈ ∆}. Clearly, for all s ∈ S,

successors(s) 6= ∅, so all states have at least one successor in ∆. We use the notation

s → s′ as an alternative to (s, s′) ∈ ∆, and we use s
∗
❀ s′ to denote that (s, s′) is in the

transitive closure ∆∗ of ∆, i.e., that there is a (possibly empty) directed path in G from s

to s′. We use s
+
❀ s′ (respectively, s

k
❀ s′) to denote there is a directed path of positive

length (respectively, of length k) from s to s′. The Markov chain is called irreducible if

for all states s, s′ ∈ S, s
∗
❀ s′ holds. In other words, irreducibility means the graphG has

one strongly-connected component (SCC). Recall that an SCC is a maximal subsetC ⊆ S

such that for all s, s′ ∈ C, s
∗
❀ s′. The structure of the strongly-connected components

of G plays an important role in the analysis of finite-state Markov chains M. Particularly

important are bottom strongly-connected components (BSCCs). A BSCC, C ⊆ S, of G

is an SCC such that for all s ∈ C there is no state s′ 6∈ C such that s
∗
❀ s′. For s ∈ S,

we use Ps to denote the function Ps : S → [0, 1] defined by Ps(s
′) := P (s, s′) for all

s′ ∈ S. Note that, for all s ∈ S, Ps defines a probability distribution on S.

A Markov chain M = (S, P ), together with an initial probability distribution on

states, I : S → [0, 1], defines a probability space (Ω,F ,PI) where the sample space

Ω = Sω consists of the set of infinite trajectories, or sample paths, or runs of M.1 A

trajectory π = π0π1 . . . ∈ Ω = Sω is simply an infinite word (ω-word) over the alphabet

S. For a finite string w ∈ S∗, let CM(w) := wSω ⊆ Ω denote the set of trajectories that

have the string w as an initial prefix. The (Borel) σ-algebra F ⊆ 2Ω of measurable events

associated with trajectories of the MC, M, is the (unique) σ-algebra generated by (i.e., the

smallest σ-algebra containing) all basic open sets or basic cylinders, given by {CM(w) |
w ∈ S∗}. The probability measure PI : F → [0, 1], which is parametrized by the

initial distribution I, is uniquely determined by specifying, as follows, the probabilities

of all basic cylinders, CM(w). Firstly, for the empty string w = ǫ, we have CM(ǫ) =
Sω = Ω, so of course we define PI(CM(ǫ)) := 1. For any non-empty string w =

1In the probability theory literature the word run is not often used to refer to sample paths. We use it here to

highlight the close correspondence with the notion of runs in automata theory.
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w0w1 . . . wk ∈ S+, where wi ∈ S, i = 0, . . . , k, k > 0, we define PI(CM(w)) :=

I(w0) ·
∏k

i=1 P (wi−1, wi). This definition extends uniquely to all events in the σ-algebra

F . When the initial distribution I assigns probability 1 to a single state, s, we will

sometimes use Ps instead of PI to denote the associated probability measure.

A more common formulation of Markov chains, encountered in the probability theory

literature, is the following: a Markov chain M, together with initial distribution I, defines

a discrete-time stochastic process, (Xi : i ∈ N), consisting of a sequence of random

variables Xi : Ω → S over the probability space (Ω,F ,PI), where each Xi maps a

trajectory, π = π0π1π2 . . . ∈ Sω = Ω, to the i’th state along that trajectory, i.e.,Xi(π) :=
πi. Clearly, according to these definitions, P(X0 = s) = I(s), for all s ∈ S, and

furthermore, (Xi)i∈N satisfied the Markov property, i.e., for any finite sequence of states

s0, s1, . . . , sk, sk+1, where k > 0, we have:

P(Xk+1 = sk+1 | X0 = s0, . . . , Xk = sk) = P(Xk+1 = sk+1 | Xk = sk) = P (sk, sk+1)

Clearly, these properties also uniquely characterize the Markov chain M (and initial dis-

tribution I), so they can alternatively be taken as the definition of the Markov chain.

Let us observe here that, for any finite-state MC, M, with any initial distribution I,

with probability 1, a trajectory of M will eventually enter some bottom strongly con-

nected component (BSCC) C ⊆ S of G, and will forever thereafter stay in C. In other

words, if the BSCCs of the underlying graph G of a finite-state MC, M, are given by

C1, C2, . . . , Ck, then PI(
∨k

j=1 ∃t > 0 : ∀t′ > t : Xt′ ∈ Cj) = 1.

We will sometimes wish to consider a labelled Markov chain, M = (S, P, l), where

l : S → Σ is a mapping that assigns to each state s ∈ S a symbol l(s) ∈ Σ from some

alphabet Σ. The labels on distinct states need not be distinct. Sometimes, we may wish

to associate rewards (payoffs) to states, in which case the labeling function l : S → Σ
assigns numerical values to states. For example, we may have Σ = Z. We associate with

every trajectory π = π0π1π2 . . . ∈ Sω of M, an ω-word l(π) ∈ Σω over the alphabet Σ,

defined by l(π)
.
= l(π0)l(π1)l(π2) . . ..

For a random variable Y : Ω → R over the probability space (Ω,F ,PI) of trajectories

generated by a Markov chain M with initial distribution I, we use EI(Y )
.
=

∫

Ω Y dPI ,

to denote the expected value of Y , assuming it exists, parametrized by initial distribution

I. If I assigns probability 1 to a state s, then we typically write Es(Y ) instead of EI(Y ).

Example 2.1. A simple example of a labeled finite-state Markov chain, M1 = (S, P, l),
with 6 states, S = {s1, . . . , s6}, is depicted in Figure 1. This 6-state MC has the following

transition probability matrix, P = (Pi,j)i,j∈{1,...,6}:

P =

















0 1/3 1/2 0 1/6 0
2/5 0 1/5 0 2/5 0
0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0
0 0 0 0 0 1
0 0 0 0 1 0

















.

Each state s has a label l(s) ∈ Σ = {a, b, c}, and these are depicted in red in Figure 1.

So, for example, l(s1) = a.
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s1

a

s2

b

s3

c

s5

b

s4

a

s6

c

1
3

1
2

1
6

1
2

1
2

2
5

2
5

1
5

1

1
2

1
2

1

Figure 1. A simple 6-state labeled Markov chain, M1.

Let us consider hitting probabilities, in this MC. It is clear that in the MC M1, regard-

less of what state a trajectory starts in, with probability 1 the trajectory will eventually

hit (reach) one of the two states s3 or s5, and will thereafter infinitely-often return to that

state. Consider the hitting (or reachability) probabilities, q∗i,j , where q∗i,j is defined as the

probability of eventually hitting vertex sj starting at vertex si, with i, j = 1, . . . , 6. What,

for example, is the probability q∗1,3 for M1 in Figure 1? This hitting probability happens

to be 17/26. How can we compute it? We will come back to this question in section 3.

For finite-state MCs, such probabilities can be computed easily by solving corresponding

systems of linear equations. For this example, the probabilities (q∗1,3, q
∗
2,3) constitute the

unique solution vector to the linear system of equations in two variables, (x1, x2), given

by x1 = (1/3) ∗ x2 +(1/2) ; x2 = (2/5) ∗ x1 +(1/5). Hitting probabilities form a basic

ingredient for many other kinds of analyses of MCs, including model checking.

Markov decision processes. A (finite-state or countable-state) Markov decision pro-

cess (MDP) is a tuple D = (S, (S0, S1),∆, P ), where S is a (finite or countable) set

of states; (S0, S1) is a partition of S into random states, S0, and controlled states S1,

i.e., S = S0 ∪ S1 and S0 ∩ S1 = ∅; ∆ ⊆ S × S is a transition relation; and finally

P : S0 × S → [0, 1] is a probabilistic transition function out of random states. For every

s ∈ S, define successors(s) = {s′ | (s, s′) ∈ ∆}. We assume that for all states s ∈ S,

successors(s) 6= ∅, so all states have at least one successor in ∆. For each s ∈ S0, we

again use Ps to denote the function Ps : S → [0, 1] defined by letting Ps(s
′) := P (s, s′).

We furthermore assume that for each s ∈ S0, Ps defines a probability distribution (i.e.,
∑

s′∈S Ps(s
′) = 1), and that support(Ps) = successors(s). In other words, the tran-

sitions that are assigned positive probability are precisely transitions to those states that

are immediate successors of s according to the transition relation ∆, and these probabili-

ties must of course sum to 1.
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We will be focusing on either finite-state MDPs, or countably infinite-state MDPs

that are finitely presented. Every specific family of MCs and MDPs that we consider is

finitely-branching, meaning that for all s ∈ S, the set successors(s) is finite. Indeed, all

families of MDPs that we consider are boundedly-branching, meaning there is an integer

k > 1 (depending on the MDP) such that for all s ∈ S, |successors(s)| 6 k.

An MDP represents a partially controlled stochastic process. The controller (a.k.a.

player) exerts its control by choosing a strategy (a.k.a. policy, a.k.a. scheduler). A strat-

egy (policy) is a function σ that, to each string ws ∈ S∗S1 ending in a controlled state s ∈
S1, assigns a probability distribution on the neighbors of s, σ(ws) : successors(s) →
[0, 1]. We say that a strategy σ is memoryless if σ(ws) depends only on the last vertex s.
In this case we can denote the strategy by a function which assigns to every state s ∈ S0

a probability distribution σ(s) : successors(s) → [0, 1].
We say that a strategy σ is deterministic if for every ws ∈ S∗S1, these is some s′ ∈ S

such that σ(ws)(s′) = 1, in other words, σ(ws) assigns probability 1 to some neighbor

of s. When σ is deterministic, we write σ(ws) = s′ instead of σ(ws)(s′) = 1. Likewise,

for a memoryless deterministic strategy σ, we write σ(s) = s′ instead of σ(ws)(s′) =
1. Strategies that are not necessarily memoryless (respectively, deterministic) are called

history-dependent (respectively, randomized).

Given an MDP, D = (S,∆, (S0, S1), P ), fixing a strategy σ for the controller deter-

mines a unique Markov chain, D(σ) = (S+, P σ), for which the set of states is S+ (i.e.,

the non-empty strings over S), and where, for all w,w′ ∈ S∗ and s, s′ ∈ S:

P σ(ws,w′s′) :=







P (s, s′) if s ∈ S0, and (s, s′) ∈ ∆, and w′ = ws
σ(ws) if s ∈ S1, and (s, s′) ∈ ∆, and w′ = ws
0 otherwise

Note that states of D(σ) essentially store the entire history of states of D that are encoun-

tered during a run, starting from some initial state (or even some initial “history”). Let

Ω(σ) = (S+)ω denote the set of trajectories (sample paths) of the Markov chain D(σ).
To every trajectory of D(σ) in Ω(σ) = (S+)ω , ξ = (ξ0)(ξ1) . . . ∈ Ω(σ), we associate a

corresponding play, π ∈ Sω. Namely, πξ = πξ
0π

ξ
1 . . . ∈ Sω, where if ξi = w′s, for some

w′ ∈ S∗ and s ∈ S, then πξ
i = s. In other words, πξ

i is the state of S currently visited by

the history ξi, i.e., it is the last “letter” of the string ξi ∈ S+.

An MDP, D, with an initial distribution I : S → [0, 1], and a strategy σ for the con-

troller, together determine a probability space (Ω(σ),F(σ),Pσ
I) of trajectories of D(σ).

We also want to consider labelled MDPs, D = (S,∆, (S0, S1), P, l), where, again,

l : S 7→ Σ assigns to each state a label from the alphabet Σ, and again the symbols in Σ
may denote rewards, e.g., we may have Σ = Z. Given an MDP, D, and a strategy σ, we

can also associate labels l(ws) to the statesws ∈ S+ of the resulting Markov chain D(σ),
by lifting the labels from D. Thus, ifws ∈ S+, with s ∈ S, then we overload notation and

let l(ws) := l(s). We can then associate with every trajectory ξ = ξ0ξ1ξ2 . . . ∈ (S+)ω

of D(σ), an ω-word l(ξ) ∈ Σω, defined by l(ξ)
.
= l(ξ0)l(ξ1)l(ξ2) . . .. Likewise, we also

associate the same word l(ξ) to the corresponding play πξ , namely, we let l(πξ) = l(ξ).
Given an MDP, D, and an initial distribution I, we will often be interested in the

optimal probability of some family of events, E(σ), parametrized by the strategy σ used

by the controller, where E(σ) is an event over the probability space (Ω(σ,F(σ),Pσ
I) of

trajectories with initial distribution I generated by the strategy σ. For instance, the event
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Figure 2. A 6-state labeled MDP, M2.

E(σ) could be the event specifying that the trajectory eventually hits a set of target states,

or that the trajectory satisfies some temporal property. When it is clear from the context we

usually simplify notation and refer to the family of events, E(σ), as simply the event E,

and we use the notation Pσ
I(E) to denote the probability of event E(σ) in the probability

space of trajectories generated by D(σ). Likewise, we will often be interested in the

optimal expected value of a family of random variables, Y (σ) : Σ(σ) → R, parametrized

by the strategy σ. When it is clear from the context, we will use Eσ
I(Y )

.
=

∫

Ω(σ)
Y dPσ

I

to denote the expected value of Y (σ), parametrized by the strategy σ, in the probability

space of trajectories generated by D(σ), and we refer to the family Y (σ) of r.v.’s as simply

the random variable Y . We shall consider several important analyses in Section 2.1.

Example 2.2. An example of a 6-state labeled MDP, M2 = (S, (S0, S1),∆, P, l), with

states S = {s1, . . . , s5, s6}, is depicted in Figure 2. The states are partitioned into a set

of random states S0 = {s1, . . . , s4}, colored blue, and a set of controlled states S1 =
{s5, s6}, colored green. Note that the controller has only two choices at each of the two

controlled state s5 and s6: from s5 it can either move next to state s1 or s2, and from s6
it can either move next to state s2 or s4.

For this MDP, each state s has two labels, one of which is a label l(s) ∈ Σ from the

alphabet Σ = {a, b, c}, and the other of which is a numerical label r(s) ∈ Z. These two

labels are depicted in red in Figure 2. So, for example, l(s1) = a and r(s1) = 6. 2

2Of course we can also simply view the labels l(s) as assigning to each state s a pair (ys, zs) consisting of
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Consider the maximum (supremum) hitting probabilities, q∗max,i,j = supσ P
σ
si
(∃t > 0 :

Xt = sj), defining the supremum probability (over all strategies) of eventually hitting

vertex sj starting at vertex si, i, j = 1, . . . , 6. What is q∗max,5,3 for the MDP M2 in

Figure 2? The maximum hitting probability happens to be q∗max,5,3 = 3/4, and the mem-

oryless strategy that always chooses to move from state s5 to state s1, and from state

s6 to state s2, achieves this optimal probability. Indeed, for finite-state MDPs, there is

always a memoryless optimal strategy for maximizing (or minimizing) the probability

of eventually hitting given target states. How can we compute such probabilities? We

will come back to this question in section 4. For general finite-state MDPs these max-

imum (minimum) probabilities can be computed by solving corresponding systems of

max(min)-linear Bellman equations. Such equations can be solved in polynomial time,

using linear programming. Optimal hitting probabilities again form a basic ingredient for

many other kinds of analyses of MDPs, including model checking.

Quick review of Büchi automata, ω-regular languages, and Linear Temporal Logic.

In order to discuss model checking problems for MCs and MDPs, we now review basic

facts about, and fix notation for, ω-automata and linear temporal logic, which are topics

covered in more detail in Chapter 6 of this Handbook ([43]). Two standard formalisms

for specifying languages of ω-words, are Büchi automata and Linear Temporal Logic. A

Büchi automaton (BA) is given by a tuple B = (Q,Σ, q0, δ, F ), where Q is a finite set of

states, Σ is a finite alphabet, q0 ∈ Q is an initial state, δ ⊆ Q × Σ × Q is a transition

relation, and F ⊆ Q is a set of accepting states. We can assume without loss of generality

(if necessary, by adding an extra dummy state) that the transition relation δ is total in

the sense that for every state q ∈ Q, and every letter a ∈ Σ of the alphabet, there is

some state q′ ∈ Q such that there is a transition (q, a, q′) ∈ δ. The Büchi automaton is

called deterministic if for every state q and every a ∈ Q′ there exists at most one state

q′ such that (q, a, q′) ∈ δ. Otherwise, it is nondeterministic. A run of B is a sequence

π = q0v0q1v1q2 . . . of alternating states qi ∈ S and letters vi ∈ Σ, i > 0, such that for all

i > 0 (qi, vi, qi+1) ∈ δ. The ω-word associated with run π is L(π) = v0v1v2 . . . ∈ Σω.

The run π is accepting if for infinitely many i, qi ∈ F . We define the ω-regular language

associated with B byL(B) = {L(π) | π is an accepting run of B}. Note thatL(B) ⊆ Σω.

It is well known that any ω-regular language can be described as the language of ω-

words associated with a (nondeterministic) Büchi automaton. Indeed, we can take this

as the definition ω-regular languages. However, unlike the fact that deterministic finite

automata (DFAs) suffice to capture all regular languages over finite strings, deterministic

BAs do not suffice for expressing all ω-regular languages. For example, the language

of ω-words over the alphabet {a, b} that contains only a finite number of b’s can not be

described by any deterministic BA. To capture all ω-regular languages using deterministic

automata, we need more sophisticated acceptance conditions, like Müller, Rabin, Streett,

or Parity acceptance conditions. (See Chapter 6: [43].)

In particular, the standard subset construction, which when applied to any (nondeter-

ministic) finite automaton yields a deterministic finite automaton that accepts the same

language of finite strings, does not work for ω-automata: it may yield an ω-automaton

that accepts a strictly larger language of ω-words.

a label from ys ∈ Σ = {a, b, c} and a payoff zs ∈ Z.
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Remarkably however, it turns out that in a certain sense the standard subset con-

struction does work for the purpose of model checking of ω-regular properties of labeled

Markov chains and Markov decision processes. This is one of several key insights first re-

vealed in the tour-de-force papers by Courcoubetis and Yannakakis [11, 12, 13, 14]. These

papers also established the best complexity bounds available (and best possible, subject

to complexity-theoretic assumptions), for model checking finite-state Markov chains and

MDPs. We will highlight some of these results.

Another major insight in the Courcoubetis-Yannakakis papers relates to model check-

ing Linear Temporal Logic properties of MCs. Recall that Linear Temporal Logic (LTL)

[37] formulas are built from a finite set Prop = {P1, . . . ,Pk} of propositions, using the

usual Boolean connectives, ¬,∨, and ∧, the unary temporal connective Next (denoted ❢)

and the binary temporal connective Until (U); thus, if ξ, ψ are LTL formulas then ❢ξ and

ξ U ψ are also LTL formulas, as are ¬ξ, ξ∨ψ, as well as ξ∧ψ. This constitutes an induc-

tive definition of temporal formulas. Note that other useful temporal connectives can be

defined using U. The formula True U ψ means “eventually ψ holds” and is abbreviated

✸ψ. The formula ¬(✸¬ψ) means “always ψ holds” and is abbreviated ✷ψ.

An LTL formula specifies a language of ω-words over the alphabet Σ = 2Prop, as

follows. If w = w0, w1, w2 . . . ∈ Σω is an ω-word, and ϕ is an LTL formula, then first

we define satisfaction of the formula by w at position i, where i > 0, denoted (w, i) |= ϕ.

We define this inductively on the structure of the formula ϕ as follows.

• (w, i) |= p for p ∈ Prop iff p ∈ wi.

• (w, i) |= ¬ξ iff not (w, i) |= ξ.

• (w, i) |= ξ ∨ ψ iff (w, i) |= ξ or w, i |= ψ.

• (w, i) |= ξ ∧ ψ iff (w, i) |= ξ and w, i |= ψ.

• (w, i) |= ❢ξ iff (w, (i + 1)) |= ξ.

• (w, i) |= ξ U ψ iff ∃j > i : ( (w, j) |= ψ and ∀k (i 6 k < j) : (w, k) |= ξ ).

The ω-language specified by an LTL formula ϕ, is L(ϕ) := {w ∈ Σω | (w, 0) |= ϕ}.

The language specified by every LTL formula is ω-regular, and in fact any LTL formula

can be converted to an equivalent (albeit, exponentially bigger) nondeterministic Büchi

automaton that accepts the same language (see, e.g., [42] and Chapter 6 [43]).

2.1 Some important analysis problems for MCs and MDPs

We now formally define a variety of important algorithmic analyses that one might wish

to perform on MCs and MDPs. Given an MDP, D, initial distribution I, and strategy σ,

letXi denote the random variable that assigns to a trajectory ξ of the Markov chain D(σ),
the state Xi(ξ) = si ∈ S of D that is visited by the play at time i. (In other words,

Xi(ξ) = si if ξi = wsi, for some w ∈ S∗ and si ∈ S.) The controller’s goal is to

optimize the (expected) value of some random variable, or the probability of some event,

both of which could be a function of the entire random trajectory. There are a wide variety

of objectives that have been studied in the MDP literature. We now list some important

analyses that have been considered.

Note that all of the analyses listed below are also applicable to purely stochastic

Markov chains, because MCs are just special cases of MDPs, where there are no con-
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trolled nodes. In other words, in an MC the controller has only one (vacuous) strategy,

which is to do nothing.

I. MP: Mean payoff3: the labelling function l is a payoff function, l : S → Q, which

associates to every state s a (rational valued) payoff l(s) ∈ Q.4 The goal of the

controller is to maximize5 the expected mean payoff of the play π = s0s1s2s3 . . .:

Eσ
I(lim inf

n→∞

∑n−1
i=0 l(Xi)

n
)

Note that in the case of irreducible finite-state MCs, mean payoff analysis sub-

sumes, as a very special case, computation of the invariant (stationary) distribution

of the MC. Recall, the invariant distribution for an irreducible MC, M = (S, P ),
with S = {1, . . . , n}, is the unique probability distribution λ on states, given by

a non-negative row vector λ = (λ1, . . . , λn) with
∑

i λi = 1, such that λP = λ.

When the finite-state MC is ergodic (irreducible and aperiodic), the invariant distri-

bution λ is the steady-state distribution, giving the long-run probability of being in

any particular state, regardless of the initial distribution. Consider a state j ∈ S, and

consider the following labeling of the states of M with payoffs: let l(j) := 1, and

for all other states j′ ∈ S\{j}, let l(j′) := 0. Then λj = Ej(limn→∞

∑n−1
i=0 l(Xi)

n
).

II. DTP: Discounted total payoff: Given a payoff function l : S → Q labelling the states,

and given a rational discount factor 0 < β < 1, the goal is to maximize the

expected discounted total payoff:

Eσ
I( lim

n→∞

n
∑

i=0

βil(Xi))

The limit in the expression exists under mild conditions on the MDP (e.g., it suffices

if the payoffs labeling states are bounded in absolute value). Discounted payoff ob-

jectives play an important role, e.g., in economics and finance, where the discount

factor β can often be viewed as being given by the rate of inflation, i.e., the rate at

which the present value of money depreciates over time.

III. NTP: Non-negative total payoff: There is no discount, the states are labeled by non-

negative payoffs, l : S → Q>0. The goal is to either maximize or minimize the

expected total reward, which may in general be +∞:

Eσ
I( lim

n→∞

n
∑

i=0

l(Xi)) (2.1)

Sometimes the structure of the MCs or MDPs implies that this expectation is finite.

Analyzing expected non-negative total reward includes, as a special case, analysis

of the expected hitting time of a set of target states. Consider an MDP, M =

3This objective is also known as the limiting-average payoff objective in the MDP literature.
4We restrict to rational payoffs in Q, rather than payoffs in R, for computational reasons. We wish to analyze

the complexity of algorithms also in terms of the encoding size of the input coefficients.
5Note that maximizing expected mean payoff (or discounted payoff), when payoffs can be both positive and

negative rational values, is computationally equivalent to minimizing expected mean payoff, because minimizing

the mean payoff amounts to maximizing the mean payoff when all payoffs labeling states are negated.
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(S, (S0, S1), P,∆), with a set F ⊆ S. Turn all target states in F into absorbing

random states, meaning re-define the random states as S′
0 := S0∪F , and controlled

states as S′
1 := S1 \ F , and let Ps,s := 1 for s ∈ F . Define the payoff labels at

states as follows: for s ∈ F , let l(s) := 0, and for s ∈ S \ F , let l(s) := 1. Let

HF denote the random variable (family) defining the hitting time of the target set

F . Then clearly, for every strategy σ, Eσ
I(HF ) = Eσ

I(limn→∞

∑n
i=0 l(Xi)).

IV. HP: Hitting probability of desired (or undesired) target states: Given a set of target

states F ⊆ S, the goal is to maximize (or minimize) the probability of eventually

hitting a state s ∈ F . In other words, we wish to choose a strategy σ to maximize,

or minimize: Pσ
I(∃i > 0 : Xi ∈ F ).

Let us denote the supremum and infimum of these probabilities by

q∗max,I,F ≡ sup
σ

Pσ
I(∃i : Xi ∈ F ) and q∗min,I,F ≡ inf

σ
Pσ
I(∃i : Xi ∈ F )

It need not in general be the case that there exists any optimal strategy σ∗ such that

q∗max,I,F = Pσ∗

I (∃i : Xi ∈ F ); and likewise, for infinitely-branching MDPs, there

need not exist any strategy σ∗ such that q∗min,I,F = Pσ∗

I (∃i : Xi ∈ F ). Indeed,

one can easily construct examples of infinite-state MDPs where no optimal strategy

exists for maximizing/minimizing the probability of hitting a set of target states.6

In such cases, there only exist ǫ-optimal strategies, for every ǫ > 0.

The objective of optimizing hitting probability can also be easily reformulated as

a special case of NTP, i.e., of optimizing expected total non-negative reward, as

follows: remove all out-going transitions from states in F , and replace them with

a single transition from each state in F to a new state s∗. Let χ(s) = 1 for all

s ∈ F , and let χ(s) = 0 otherwise. Then the goal of maximizing/minimizing

the probability of eventually hitting the target states F is equivalent to the goal of

maximizing/minimizing the undiscounted expected total non-negative payoff, when

the payoffs labelling the states are given by χ.

However, the ability to label non-absorbing states with reward 0 is crucial for

this. In fact, in some MDP settings, analysing expected total reward when all non-

absorbing states are labeled by strictly positive rewards is substantially easier than

analyzing hitting probability (see, in particular, [22] for an example).

V. MoCh: Model checking of ω-regular or LTL properties. Given a labelled MDP, D =
(S,∆, P, l), and initial distribution I, where l : S → Σ, and given an ω-regular

language L over the alphabet Σ, specified by giving a Büchi automaton B or LTL

formula ϕ, so that L = L(B) or L = L(ϕ), the goal of the controller is to choose a

strategy σ so as to maximize (or minimize) the probability that the trajectory π of

D(σ) generates an ω-word l(π) ∈ L. In other words, we can, associate with the ω-

regular languageL, the corresponding event (family)EL(σ) = {π ∈ Ω(σ) | l(π) ∈
L} in the probability space generated of trajectories of the MC D(σ) generated by

the MDP D and the strategy σ. It can be checked that, regardless of what the

strategy σ is used, for any ω-regular language L, the property EL(σ) does indeed

constitute an event in the σ-algebra F(σ). (This was noted already, e.g., in [41].)

6In the case of minimization, such examples require infinitely-branching infinite-state MDPs, but for max-

imization, simple finitely-presented boundedly-branching infinite-state MDPs suffice to show that no optimal

strategy for hitting the target states exists.
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When it is clear from the context, we overload notation and use L to refer to the

event family EL(σ), parametrized by the strategy σ. The goal of model checking7

for MDPs is thus to maximize (or minimize) the probability Pσ
I(L).

For analyses like HP and MoCh, which involve computing the (optimal) probabil-

ity of some event, the associated computational problems can be further subdivided and

classified as either qualitative or quantitative analyses, as we now discuss.

Sometimes we may not need to know the (optimal) probability of the event in ques-

tion, and we may instead just be satisfied to know whether or not the event holds almost

surely, i.e., with (maximum) probability 1, or equivalently whether the complement event

has (infimum) probability 0. These constitute what are generally referred to as qualita-

tive analyses, whereas quantitative analyses involve computing the (optimal) probability

of the event in question. However, particularly for MDPs, there are subtle distinctions

between different forms of qualitative analysis, and also between different forms of quan-

titative analysis. In some settings these distinctions can make a big difference in terms

of the computational complexity of the problems involved. So we now examine these

distinctions more carefully.

(1) Qualitative analysis of MCs and MDPs: Given an (MC or) MDP, D, and an initial

distribution, I, for an event E (again, strictly speaking, a family of event, E(σ),
in the respective probability spaces of trajectories of the MCs, D(σ), parametrized

by the strategy σ), and for set Ψ of strategies constraining the strategies that the

controller may use (e.g., Ψ may simply be all strategies, or only memoryless ones,

or deterministic ones, etc.), consider the following decision problem:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) = 1. (2.2)

This decision problem is referred to as the qualitative almost-sure decision prob-

lem for the eventE (and with respect to the strategy constraint Ψ). This problem is

of course equivalent to asking whether ∃σ ∈ Ψ : Pσ
I(E) = 0, where E = Ω \ E

denotes the complement event. (Again, strictly speaking E(σ) = Ω(σ) \E(σ) is a

family of events parametrized by σ.)

If such a strategy σ exists, then we may also want to compute (some representation

of) such a strategy, in which case this is no longer just a decision problem.

A closely related, but in general not equivalent, problem is:

Decide whether sup
σ∈Ψ

Pσ
I(E) = 1. (2.3)

This is referred to as the qualitative limit-sure decision problem for the event E.8

Although the almost-sure and limit-sure decision problems are related, and al-

though they are obviously equivalent if the model is simply a Markov chain, these

problems are certainly not equivalent for all MDPs, because as already discussed in

7In the context of MDPs, as phrased here, this is an optimization problem, and not a decision problem, so

the word “model checking” is a bit of a misnomer. But we will adhere to this terminology.
8The term limit-sure was first used in [15], where they considered the distinct almost-sure and limit-sure

decision problems in the context of concurrent (stochastic) reachability games. As we shall see, the distinc-

tion between almost-sure and limit-sure qualitative analyses is relevant in various other contexts, including for

important classes of finitely-presented infinite-state MDPs.
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relation to HP, in general there need not exist any optimal strategy σ that achieves

probability 1 for the event HitF
.
= (∃i : Xi ∈ F ), and yet there may exist a se-

quence of strategies σ1, σ2, σ3, . . ., which achieve probabilities arbitrarily close to

1. For example, we could have Pσi

I (HitF ) = 1− 1
2i . In such a case, the limit-sure

condition (2.3) holds while the almost-sure condition (2.2) does not.

We also in general need to consider, as distinct qualitative problems for MDPs,

the following duals of the above problems, which are not in general equivalent,

namely, decide whether: ∀σ ∈ Ψ : Pσ
I(E) = 1. This is of course the complement

of deciding whether ∃σ ∈ Ψ : Pσ
I(E) < 1, which is equivalent to:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) > 0 (2.4)

Note however that, in this dual setting, there is no distinction between the almost-

sure and the limit-sure cases. The above problems are also equivalent to deciding

whether infσ∈Ψ Pσ
I(E) < 1, and to deciding whether supσ∈Ψ Pσ

I(E) > 0.

We refer to problem (2.4) as the qualitative witness-positivity9 decision problem for

(the family of) events E.

Let us also mention some “qualitative” problems that can be associated with objec-

tives such as NTP, where the objective is optimize the expected total non-negative

payoff. It is possible, for example, that ∃σ ∈ Ψ : Eσ
I(limn→∞

∑n
i=0 l(Xi)) = +∞

holds true, or else that supσ∈Ψ Eσ
I(limn→∞

∑n

i=0 l(Xi)) = +∞. Again, the latter

may hold true while the former does not, because there may be no optimal strat-

egy. These problems are clearly analogous to the almost-sure and limit-sure qual-

itative decision problems for the probability of an event E. We will call them the

qualitative witness-infinity problem and the qualitative limit-infinity problem for the

expectation of the associated random variable (family) Y . In many settings, such

“qualitative” problems are not relevant because the random variable Y is guaran-

teed to have bounded expectation. For example, this holds for finite-state MDPs

with MP and DTP, namely mean payoff and discounted total payoff objectives.

(2) Quantitative analysis of MCs and MDPs:

Quantitative analysis problems can be considered for all of the problems (I.-V.) on

on our list, and not just for those relating to the (optimal) probability of an event.

In general, for quantitative analysis we want to compute the optimal (supremum or

infimum) expected value of some random variable family Y or the optimal proba-

bility of some event family E.

However, it may not always be possible to compute the quantity in question exactly.

This may be because of the computational complexity doing so. It may also be

because of a more basic reason: in a variety of stochastic models we can consider,

the optimal (supremum or infimum) value over all σ ∈ Ψ may be irrational, even

when all of the finite data describing the Markov chain or MDP consists of rational

values. In such cases, we can still consider approximating the optimal value within

some desired error bound, or deciding whether the optimal value is at least a given

rational value r ∈ Q. Again, there are some subtle distinctions, so let us formulate

these problems more precisely:

9Or, witness-less-than-one, where appropriate.
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(a) Quantitative decision problems: Given an MDP, D, and initial distribution I,

and some event (family) E, and given a rational value r ∈ Q:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) > r (2.5)

Or, if the objective is to optimize the expected value of a r.v. Y , we may want

to decide whether or not ∃σ ∈ Ψ : Eσ
I(Y ) > r.

Of course, if such a strategy σ exists, we may also wish to compute (some

representation of) such a strategy. A different decision problem is:

Decide whether ∃σ ∈ Ψ : Pσ
I(E) 6 r (2.6)

And analogously, decide whether ∃σ ∈ Ψ : Eσ
I(Y ) 6 r.

Note that decision problem (2.5) is concerned with the goal of maximizing the

probability of the event E (or expectation of the r.v. Y ): does there exist a

strategy that obtains a value of at least r? Whereas, decision problem (2.6) is

concerned with the goal of minimizing the probability of E (or expectation of

r.v. Y ): does there exist a strategy that obtains an value of at most r?
Sometimes, the above decision problems are too hard computationally, whereas

the corresponding approximation problems are not as hard.

(b) Quantitative ǫ-approximation problems: We are given an MC or MDP, D, and

initial distribution I, some event (family) E whose probability we are inter-

ested in, or a random variable (family) Y whose expectation we are interested

in. Let v∗ = supσ∈Ψ Pσ
I(E), or v∗ = infσ∈Ψ Eσ

I(Y ), in the respective cases.

We are also given a rational positive error threshold ǫ > 0. We wish to10:

Compute an ǫ-approximate value, v ∈ Q, such that |v∗ − v| < ǫ. (2.7)

We may then also wish to compute (a representation of) an ǫ-optimal strategy:

a strategy σ′ such that |v∗ − Pσ′

I (E)| < ǫ or |v∗ − Eσ′

I (Y )| < ǫ, respectively.

2.2 More examples of analyses for finite-state MCs and MDPs

We now reconsider the example MC and MDP given in Figures 1 and 2, and consider

other analyses for these.

Example 2.3. Let us consider again the labeled 6-state finite-state Markov chain, M1 =
(S, P, l), depicted in Figure 1, and let us consider some other analyses for that MC.

MoCh: Consider the following model checking problem. The LTL formula ✷✸ b, ex-

presses the property that the symbol b occurs infinitely often in the ω-word. What is

the the probability Ps1(L(✷✸ b))? It is not difficult to see, by inspection of M1, that

Ps1(L(✷✸ b)) is precisely equal to the probability of eventually hitting state s5 starting

in state s1. In other words, Ps1(L(✷✸ b)) = q∗1,5. Furthermore, since we know that

starting from state s1, with probability 1 we will eventually hit either state s3 or s5, i.e.,

that q∗1,3 + q∗1,5 = 1, and since we have already noted that q∗1,3 = 17/26, we can conclude

that Ps1(L(✷✸ b)) = 9/26.

10Note: such an ǫ-approximation may be impossible with v ∈ Q, e.g., because v∗ = sup
σ∈Ψ Eσ

I
(Y ) = ∞.
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Note that in this case model checking was boiled down to computing hitting prob-

abilities. The general algorithms for model checking Markov chains against ω-regular

properties are much more involved, but as we shall see they also ultimately reduce the

problem to computing hitting probabilities on certain associated Markov chains.

MP: Now let us use hitting probabilities to do mean payoff analysis on the MC, M1. In

particular, suppose that the labels on states are associated with payoffs, as follows: a := 4,

b := −3, c := 7. Let v∗i = Esi (lim infn→∞

∑n−1
i=0 l(Xi)

n
) denote the expected mean payoff

when starting in state si. In the MC M1, what is v∗1? Let G1 denote the underlying graph

of M1. The two BSCCs of G1 are C1 = {s3, s4} and C2 = {s5, s6}. Clearly, starting

in state s1 of M1, with probability 1 we will eventually hit one of these two BSCCs and

stay in that BSCC forever thereafter. We already know that we will eventually hit C1 with

probability q∗1,3 = 17/26, and that we will hit C2 with probability q∗1,5 = 9/26. Note that

the MC defined by restricting M1 to the nodes of BSCC C1 is ergodic, and that its unique

steady-state distribution is clearly (1/2, 1/2). Likewise, although the MC defined by

restricting M1 to the nodes of C2 is not ergodic, it is irreducible, and its unique invariant

distribution is (1/2, 1/2). In other words, in the case of both BSCCs C1 and C2, once we

enter such a BSCC, in the long run we spend 1/2 the time in each of the two states of that

BSCC. Thus v∗1 , the long-run mean payoff starting in state s1, can be calculated via the

following expression: v∗1 = (17/26)× (1/2 × 7 + 1/2 × 4) + (9/26)× (1/2 × −3 +
1/2× 7) = 217/52.

Example 2.4. Now let us reconsider the 6-state labeled MDP,M2 = (S, (S0, S1),∆, P, l),
with states S = {s1, . . . , s6}, depicted in Figure 2.

MoCh: Consider, in particular, the following model checking problem. What is the supre-

mum probability supσ P
σ
s5
(L(✷✸ b))?

It is not difficult to see, by inspection of M2, that regardless what strategy σ is used,

Pσ
s5
(L(✷✸ b)) is precisely equal to the probability Pσ

s5
(∃i : Xi = s4) of eventually

hitting state s4 starting at state s5. It can furthermore be seen that the probability of

hitting state s4 is maximized by the simple memoryless strategy, σ∗, that always moves

to state s2 whenever in state s5, and always moves to state s4 whenever in state s6. And,

furthermore the (maximum) probability that this strategy achieves of eventually hitting

state s4 is 13/22. In other words, supσ P
σ
s1
(M1 |= ✸✷ b) = Pσ∗

(M1 |= ✸✷ b) =
q∗max,5,4 = 13/22.

This example is too simple in at least one sense: the maximum probability in this

case is attained by a deterministic memoryless strategy, but in general for obtaining the

maximum probability of an LTL or ω-regular property on a finite-state MDPs it need

not suffice to use a deterministic memoryless strategy (in particular, memory may be

required).

MP: Finally, let us consider the mean payoff objective on the MDP, M2, in Figure 2,

where the aim is to maximize the expected limiting (lim inf of the) average payoff per

step, where the one-step reward at state s is given by the function r(s). In other words, the

aim is to maximize Eσ
I(lim infn→∞

∑n−1
i=0 r(Xi)

n
). Note that in the MDP, M2, regardless

of what strategy is employed by the controller, with probability 1 the trajectory will even-

tually enter one of the two states s3 or s4, and stay there forever thereafter. Once it is in

one of these two states, the (expected) limiting average payoff thereafter is simply the pay-

off at that state, which is r(s3) = 7 for state s3 and and r(s4) = 8 for state s4. Thus, since
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r(s4) > r(s3), in order to maximize the expected mean payoff starting at any other state,

we simply need to maximize the probability of eventually hitting state s4. We already

know from our previous calculations that, starting at state s5, the maximum probability of

eventually hitting state s4 is 13/22, and this is achieved by the deterministic memoryless

strategy that always moves from state s5 to state s2, and from state s6 to state s4. Thus

the maximum expected mean payoff is (13/22) ∗ 8 + (1 − 13/22) ∗ 7 = (167/22), and

this is achieved by the same deterministic memoryless strategy. For finite-state MDPs, it

is always the case that there exists an optimal deterministic memoryless strategy for max-

imizing the expected limiting average payoff (see, e.g., Theorem 9.1.8 in [38]), and one

can compute the optimal limiting average payoff, and an optimal memoryless strategy, in

polynomial time using linear programming (see, e.g., chapters 8 and 9 of [38]).

3 Analysis of finite-state Markov chains

In this section we review some algorithms for analyzing finite-state MCs, and discuss

their complexity. Let us already summarize the known facts: for all of the analyses (I.-V.)

listed in section 2.1, all qualitative and quantitative decision and computation problems

are solvable in strongly11 polynomial time, as a function of the encoding size of the given

finite-state MC, M. For qualitative analyses, the algorithms only involve graph-theoretic

analysis of the underlying transition graph G of the MC, M. For quantitative analyses,

the algorithms additionally involve solving corresponding systems of linear equations.

For model checking (MoCh) the complexity is polynomial in the encoding size of M
but exponential in the encoding size of the ω-regular language, L, and remarkably this

is so whether L is specified by a non-deterministic Büchi automaton (BA), B, or as an

LTL formula ϕ (as shown by Courcoubetis and Yannakakis [11, 13]). This is despite the

fact that worst-case exponential blow-up is unavoidable when translating LTL formulas

to BAs.

We shall only discuss analyses (III.-V.) in more detail. We will also observe that some

key facts used for analyzing finite-state MCs hold more generally, for all denumerable

MCs. Suppose we are “given” a MC, M = (S, P ), where for now we allow the set S
to be countably infinite. Later, for computational purposes, we will assume S is finite.

For convenience, we equate S with (an initial segment of) the positive natural numbers

N+ = {1, 2, . . .}. We let n ≡ |S|. Thus, if n ∈ N+, then S = {1, . . . , n}, and otherwise

if n = ∞ (i.e., if n = ω), then S = N+.

HP: Suppose we are “given” a subset F ⊆ S of target states, and suppose we wish to

compute the probabilities, q∗i , of eventually hitting a target state in F starting from initial

state i ∈ S. In other words, q∗i
.
= Pi(∃t > 0 : Xt ∈ F ).

We first observe that hitting probabilities for a denumerable MC can be “computed” by

11Recall that a problem whose input instances are represented by a vector of rational values is said to be solv-

able in strongly polynomial time if the problem can be solved by an algorithm that both: (i) runs in polynomial

time, as a function of the dimension n of the input vector, in the unit-cost (arbitrary precision) arithmetic RAM

model of computation, where standard arithmetic operations {+, ∗} on, and comparisons of, arbitrary rational

numbers require unit-cost, and (ii) runs in polynomial space as a function of the encoding size of the input

vector, where the rational coordinates are encoded as usual, with numerator and denominator given in binary.
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“solving” the following linear system of equations (albeit, with infinitely many equations,

if there are infinitely many states). There is one variable, xi, and one equation, for every

state i ∈ S:

xi = 1 for all i ∈ F ;

xi =
∑

j∈S Pi,j · xj for all i ∈ S \ F .
(3.1)

The vector of variables is denoted x = (xi : i ∈ S). Note that if n ≡ |S| = ∞,

then the infinite sums in (3.1) are always uniquely defined, because the coefficients are

non-negative and we interpret the variables xj only over non-negative reals (indeed, over

probabilities). We can denote the entire system of equations, in vector notation, as:

x = R(x)

where R(x) denotes the linear (affine) map given by the right hand sides of the linear

equations in (3.1). Note that since all coefficients and constants in the linear maps defining

R(x) are non-negative,R : Rn
>0 → Rn

>0 defines a monotone mapping from non-negative

vectors to non-negative vectors. That is, for all x > y > 0, we have R(x) > R(y) > 0.

It is easy to see that the hitting probabilities q∗ = (q∗i : i ∈ S) must be a solution of

x = R(x). Indeed, if i ∈ F , then clearly q∗i = 1, and if i ∈ S \ F , then clearly

q∗i =
∑

j∈S Pi,jq
∗
j , because starting at i 6∈ F , in order to eventually hit F , we first have

to take one step and thereafter eventually hit F , and
∑

j∈S Pi,jq
∗
j captures the probability

of eventually hitting F after one step, starting at i.
Unfortunately, in general the equations x = R(x) can have multiple solutions, for

trivial reasons. To see this, consider the trivial 2-state Markov chain with states S =
{1, 2}, with transition probabilities defined by P1,1 = P2,2 = 1, and Pi,j = 0 for i 6= j,
and where the target state is F = {1}. The equationsx = R(x) are thus given by (x1 = 1;

x2 = x2). Obviously, any pair (1, r) for r ∈ R is a solution.

It turns out the hitting probabilities q∗ = (q∗i : i ∈ S) are always the least non-negative

solution of x = R(x), which is the least fixed point (LFP) of the monotone operator

R : Rn
>0 → Rn

>0. Let us state this more precisely. For a vector y ∈ Rn, and k > 1,

let R0(y) = y, and for k > 1, let Rk+1(y) = R(Rk(y)). For any k > 0, let qki denote

the probability of hitting target set F starting in initial state i, in at most k time steps. In

other words, qki
.
= Pi(∃t (0 6 t 6 k) : Xt ∈ F ). Note that limk→∞ qki ↑= q∗i , meaning

qki converges monotonically from below to q∗, as k → +∞. Let qk = (qki : i ∈ S)
denote the corresponding vector. We shall use 0, or just 0, to denote an all-zero vector

of the appropriate dimensions, when this is clear from the context. The following key

Proposition, 3.1, is well-known and easy to prove: part (1) can be proved by induction on

k, and the rest follows. (We will later learn that variants of Proposition 3.1 hold in much

more general settings, when the symbols in the proposition are interpreted differently.)

Proposition 3.1.

(1) For all k > 0, qk = Rk+1(0), and thusRk+1(0) 6 q∗, and limk→∞Rk(0) ↑= q∗.

(2) q∗ = R(q∗), and if q′ ∈ Rn
>0 and q′ = R(q′) then q∗ 6 q′.

In other words, q∗ is the Least Fixed Point (LFP) of R(x).

Now suppose that M = (S, P ) is a finite-state Markov chain, so n ≡ |S| < ∞,

and that we are given the transition probability matrix P explicitly. How can we use



Analysis of Probabilistic Processes and Automata Theory 21

Proposition (3.1) to compute the hitting probabilities q∗? We have to compute the least

non-negative solution to the linear system of equations x = R(x). One (not very efficient)

way to do this in polynomial time is to formulate this as a linear programming problem.

Namely, the vector q∗ is the unique optimal solution to the following LP.

minimize:
∑

i∈S xi
subject to:

R(x) 6 x ;
x > 0.

(3.2)

Note that the inequality R(x) 6 x stands for a system of inequalities Ri(x) 6 xi, i ∈ S,

and likewise x > 0 stands for xi > 0, i ∈ S.

Although this already shows we can compute q∗ in P-time, we can do much better.

Namely, let us denote by G = (S,∆) the underlying directed graph of the MC, M. Note

that q∗i = 0 if and only if there is no path in G from i to any state j ∈ F . We can thus

easily compute the set SZero = {i | q∗i = 0} in P-time by a simple depth-first search in

G. We can then remove the equations corresponding to variables xi, i ∈ SZero, from the

system of equations x = R(x), and replace occurrences of variables xi ∈ SZero by 0 on

the right hand side of any other equations xj = Rj(x) where they occur. For convenience

in what is to follow, we also remove the variables xi for i ∈ F , and their equations xi = 1,

and replace the occurrences of variables xi ∈ F by 1 on the RHS of any other equations

xj = Rj(x) where they occur.

This gives us a new system of linear equations x̂ = R̂(x̂), in fewer variables. It

turns out that this new system has a unique solution, corresponding to the remaining

(positive) coordinates of q∗, and furthermore, if the equation is written in matrix notation

as x̂ = P̂ x̂+ b, then the matrix (I − P̂ ) is guaranteed to be invertible, and the (positive)

coordinates of q∗ that were not eliminated are given by the solution (I− P̂ )−1b. Thus, we

can compute q∗ in (strongly) polynomial time by first doing some simple graph-theoretic

analysis on G, and then solving a linear system of equations.

We note that it follows from basic facts in matrix theory that (I − P̂ )−1 =
∑∞

k=0 P̂
k.

We can use this to put a probabilistic interpretation on the calculation q∗ = (I− P̂ )−1b =
∑∞

k=0 P̂
kb. Note that P̂ k

i,j = Pi(Xk = j) is the probability that, in Markov chain M̂
derived from M, which excludes all states in SZero ∪ F , and replaces them with dead-

end absorbing states, starting in state i, at time k the trajectory is in state j. Thus, for

k > 0, (P̂ kb)i is the probability of entering a state in F for the first time at time k + 1. It

is thus clear, by a probabilistic argument, that q∗ =
∑∞

k=0 P̂
kb = (I − P̂ )−1b.

A more basic method for computing q∗ numerically is already immediately suggested

by Proposition 3.1, and it “works” even for infinite-state MCs. Namely, we can simply

iteratively compute a sequence of vectors yk = Rk(0), k = 0, 1, . . ., letting y0 := 0, and

yk+1 := R(yk). By Proposition 3.1, the sequence yk = Rk(0) converges monotonically

to q∗. This well-known method is called value iteration. Of course, one issue is that we

do not a priori know how many iterations of value iteration are required as a function

of the input matrix P in order to converge to within a desired error bound of the vector

q∗. It turns out that in the worst case there are bad examples for finite-state MCs, where

convergence of value iteration can be very slow. For example, consider the MC M =
(S, P ), where S = {1, . . . , n}, and where the target set is F = {n}, and where for all

i ∈ {1, . . . , n− 1}, Pi,1 = 1/2 and Pi,i+1 = 1/2, and Pn,n = 1, and all other transition
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probabilities are of course 0. Note that q∗i = 1 for all i ∈ S. Now by Proposition 3.1,

qki = Rk
i (0). However, it can be seen that for all k 6 2n, qk1 6 1 − (1 − 1/2n)2

n

6

(1 − (1/e)), where e = 2.71828 . . . is the base of the natural log. Thus, we need at least

k > 2n value iterations before |Rk
1(0) − q∗1 | 6 1/3 6 (1/e). However, value iteration

works reasonably well on many instances of MCs, and optimized variants of it are widely

used in practice (also for MDPs).

NTP: Let us now consider non-negative total payoff analysis of MCs which, as already

noted, generalizes hitting probability analysis. We shall now reuse symbols q∗ and R(x),
with a different interpretation, for reasons that will become clear shortly. Suppose we

have a non-negative payoff-labeled MC, M = (S, P, l), with n ≡ |S| states (possibly

infinite), and with l : S → N. We wish to compute q∗j = Ej(limk→∞

∑k

i=0 l(Xi)). We

can again write a linear system of equations for this, with one equation per variable xi,
over variables x = (xi | i ∈ S), as follows.

xi = l(i) +
∑

j∈S Pi,j · xj , for all i ∈ S. (3.3)

We can again denote this system of linear equations, in vector notation, as x = R(x).
Since l(i) > 0, the operatorR(x) is again monotone, and it turns out that again the vector

q∗ of expected total payoffs is the least non-negative solution of x = R(x), except with

the difference that we now must also allow for the possibility that some coordinates of q∗

are +∞. Formally, we can work over the ordered semi-ring R>0 = R>0 ∪{+∞}, where

by definition +∞ ∗ 0 = 0, and +∞ + r = +∞, and +∞ > r, for all r ∈ R̂>0. Let

qkj = Ej(
∑k

t=0 l(Xt)). Then, it turns out that

Proposition 3.2. The statement of Proposition 3.1 holds true, verbatim, for the above

re-interpretations of x = R(x), q∗, and qk.

Thus the expectation vector q∗ is the least fixed point of the monotone operator R :
R

n

>0 → R
n

>0. Thus, by Proposition 3.2, value iteration yk := Rk(0) converges monotoni-

cally, in the limit, to the expected total payoff vector q∗. However, since some coordinates

of q∗ may now be +∞, the value iterates yk may never actually get “close enough” to

q∗. We can nevertheless again compute expectations q∗ in strongly polynomial time for

finite-state MCs, including determining those coordinates that are +∞, using a variant of

what was described earlier for computing hitting probabilities. First, consider the under-

lying graphG = (S,∆) of M. For any bottom-SCC,C ⊆ S, ofG, if there is some j ∈ C
such that l(j) > 0, then clearly v∗j′ = +∞ for all j′ ∈ C, and for all j′ ∈ S such that

j′
∗
❀ j. Indeed, this describes all states such that v∗j′ = +∞, because with probability

1 the trajectory will eventually hit some BSCC, and thereafter stay in that BSCC forever.

We can thus use depth-first search to decompose G into its DAG of SCCs, and find and

remove from the equations x = R(x) any variable xi such that q∗i = +∞. Likewise,

by simple reachability analysis on G we can find and remove all variables xi such that

q∗i = 0, by just noting that q∗i = 0 iff there is no state j ∈ S such that both l(j) > 0

and i
∗
❀ j. After we remove, as indicated, both +∞ and 0 variables from the equations,

we are left either with an empty list of equations or a system of linear equations on the

remaining variables whose unique solution is a positive real-valued vector that yields the

remaining coordinates of the vector q∗. We can thus compute these remaining coordinates
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(in strongly polynomial time) by solving the remaining linear equations.

MoCh: Suppose we are given a labeled finite-state MC, M = (S, P, l), an initial dis-

tribution I, and a Büchi automaton, B = (Q,Σ, q0, δ, F ). Suppose we wish to compute

the probability p∗ = PI(L(B)). We now describe an algorithm for computing p∗, due to

Courcoubetis and Yannakakis [13], which runs in time polynomial in the encoding size

|M| of M, and exponential in the encoding size |B| of B.

We can assume, without loss of generality that Σ = S, i.e., the alphabet of B is the set

of states of M. We can do so because we can always update the transition relation δ of B,

refining it so that if (q, a, q′) was in δ, and for some s ∈ S we have l(s) = a, then we put

(q, s, q′) in the new transition relation. It is clear that the probability that M generates

a trajectory accepted by the new BA is the same as the probability that M generates a

trajectory labeled by an ω-word in L(B). So from now on, we assume Σ = S.

We first perform a naive subset construction on the BA, B, to obtain a determinis-

tic BA. Recall however that the subset construction doesn’t in general preserve the ω-

regular language of a BA, and that in fact ω-regular languages accepted by some non-

deterministic BAs are not accepted by any deterministic BA. Nevertheless, it was shown

by [11, 13] that the subset construction “works” in a suitable way for probabilistic model

checking. Let B′ = (2Q,Σ, {q0}, δ′, F ′), be the deterministic BA obtained by perform-

ing the usual subset construction on B. The states of B′ are 2Q, the alphabet is Σ = S,

the start state is {q0}, and δ′ ⊆ 2Q × Σ × 2Q is a deterministic transition relation de-

fined by δ′ := {(T, a, T ′) | T ′ = {q′ ∈ Q | ∃q ∈ T : (q, a, q′) ∈ δ}. Finally, we let

F ′ = {T ⊆ Q | T ∩ F 6= ∅}.

Next, we define the product MC, M⊗B′ = (S × 2Q, P̃ ), obtained from the MC M,

and the deterministic Büchi automaton, B′. The states of M⊗B′ are pairs (s, T ), where

s ∈ S and T ∈ 2Q, The transition probability function P̃ is defined as follows:

P̃ ((s, T ), (s′, T ′)) =

{

P (s, s′) if (T, s′, T ′) ∈ δ′

0 otherwise

Note that M⊗B′ is indeed an MC, whose trajectories are a refinement of the trajec-

tories of M. In particular, projecting a trajectory ξ ∈ (S × 2Q)ω on to its left coordinates

yields a trajectory of M. Let GM⊗B′ denote the underlying directed graph of the MC,

M ⊗ B′. Finally, for a pair (s, T ) ∈ S × 2Q, which defines a state of M ⊗ B′, and

thus also a node of GM⊗B′ , let GM⊗B′((s, T )) denote the directed subgraph of GM⊗B′

induced by the set of nodes consisting of all of the nodes (s′, T ′) ∈ S × 2Q of GM⊗B′

that are reachable from (s, T ), i.e., such that (s, T )
∗
❀ (s′, T ′).

The following important definitions are key to the algorithm. A pair (s, q) ∈ S×Q is

called special12 if q ∈ F and some bottom-SCC C of GM⊗B′ ((s, {q})) contains a node

(s, T ) ∈ C with q ∈ T . For a bottom-SCC, C ⊆ S × 2Q of GM⊗cB′ (and thus also of

M⊗B′) we shall call C accepting if there exists some (s, T ) ∈ C such that there exists

q ∈ T ∩ F such that (s, q) is a special pair. The following theorem from [11, 13] reduces

the MoCh problem for finite-state MCs to HP problems on (larger) finite-state MCs:

Theorem 3.3 ([11, 13]). Given a labeled finite-state MC, M = (S, P, l), with initial

state s ∈ S, and given a non-deterministic BA, B, with initial state q0, the probability

12In [13] “recurrent” was used, but “recurrent” has other meanings so we use “special” instead, as in [29].
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Ps(L(B)) is equal to the probability that in the MC M ⊗ B′, starting from initial state

(s, {q0}), the trajectory eventually reaches an accepting bottom-SCC of M⊗B′.

Thus, in order to compute Ps(L(B)), we first need to do graph-theoretic analysis on

the directed graphs GM⊗B′ , and also analysis of various subgraphs GM⊗B′((s′, {q})),
for s′ ∈ S and q ∈ F , so as to compute special pairs (s′, q) ∈ S × Q, and use that

to compute all accepting bottom-SCCs of GM⊗B′ . We can then consider all nodes in

such accepting bottom-SCCs as target nodes, and compute the probability of hitting a

target node starting from the initial state (s, {q0}) of the MC M ⊗ B′, which yields

the probability Ps(L(B)) that we are after. To compute the hitting probabilities we of

course use the methods already described for solving HP. Note that this algorithm does

not involve full-fledged determinization of Büchi automata (such as Safra’s construction)

which involves a 2|B| log |B| blow-up in size and requires more sophisticated acceptance

conditions such as Rabin or Müller conditions.

Overall, this algorithm runs in strongly polynomial time as a function of |M| (assum-

ing B is fixed) and exponential time as a function of |B|, when B is nondeterministic (and

polynomial in |B| when B is deterministic). It was furthermore shown in [11, 13] that,

given MC, M, and nondeterministic BA, B, as input, the qualitative problem of deciding

whether Ps(L(B)) = 1 is in PSPACE, and it was already shown in [41] that the problem

is PSPACE-hard, so the qualitative problem is PSPACE-complete.

Courcoubetis-Yannakakis [11, 13] also considered model checking of finite-state MCs

with respect to properties specified by LTL formulas and, remarkably, they showed that

both the quantitative problem and the qualitative problem for LTL model checking of

MCs has the same complexity as that of model checking an ω-regular property given by a

nondeterministic BA. This was surprising, because it is well-known that in general trans-

lating an LTL formula to a BA requires worst-case exponential blow-up. Their algorithm

involves iterative constructions of larger and larger finite-state MCs, starting from M,

built up via a structural induction on the subformulas of the LTL formula. The transi-

tion probabilities of the new MCs in the iterative construction are obtained by computing

certain hitting probabilities on the old MCs. See [13] for details.

4 Analysis of finite-state MDPs

We now review some algorithms for analyzing finite-state MDPs, and discuss their com-

plexity. Many analogies with the algorithms for finite-state MCs will soon become clear.

In fact, we have deliberately stated some equations and facts for finite-state MCs in a

general enough form so as to be able to reuse them here (and also later, for recursive MCs

and 1-recursive MDPs).

Let us already summarize the known facts: again, for all of the analyses (I.-V.), listed

in section 2.1, all qualitative and quantitative decision and computation problems are

solvable in polynomial time as a function of the encoding size of the given MDP (but the

known P-time algorithms for all of them require solving linear programming problems,

and thus none of them are currently known to be solvable in strongly polynomial time13).

13A notable exception is the case of DTP where the discount factor is a fixed constant, which was shown
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For qualitative analyses, the algorithms only involve and-or game graph analysis on the

underlying transition graphG of the MDP, D, which can be done in P-time. For quantita-

tive analyses, the algorithms additionally involve solving corresponding max/min-linear

Bellman optimality equations, which can be solved in P-time using linear programming.

For model checking (MoCh) the complexity is polynomial in the encoding size of D, but

again exponential in the encoding size |B| if the ω-regular property, L = L(B), is given

by a nondeterministic Büchi automaton, B. However for finite-state MDPs, unlike finite-

state MCs, if L = L(ϕ) is given by an LTL formula, ϕ, then the complexity is double-

exponential as a function of the encoding size of ϕ. These complexity bounds can not be

improved, because the problems are EXPTIME-hard and 2EXPTIME-hard, respectively.

These results on model checking finite-state MDPs were established by Courcoubetis and

Yannakakis in [11, 13, 12, 14].

Analyses, I. MP, and II. DTP, are standard for finite-state MDPs, and algorithms for

them can be found in any textbook on MDPs. See, e.g., [38] for a thorough treatment.

Let us mention that for analyses (I.-IV.) on finite-state MDPs, it is well-known that

there always exist deterministic memoryless optimal strategies (see [38]). For model

checking (V. MoCh), memoryless strategies do not suffice in general for optimizing the

probability of an ω-regular property, but bounded-memory strategies do suffice ([14]).

We shall only discuss analyses HP and MoCh further. Suppose we are “given” a MDP,

D = (S, (S0, S1),∆, P ), where for now we allow the set S to be countably infinite.

Again, for convenience, we equate S with (an initial segment of) the positive natural

numbers N+ = {1, 2, . . .}, and let n ≡ |S|. We will furthermore assume that every state

i ∈ S1 is boundedly branching, meaning there is some k ∈ N (depending on the MDP),

such that for every i ∈ S1, |successors(i)| 6 k. This allows us to use max and min
operators in the Bellman optimality equations, whereas we would otherwise require sup
and inf .
HP: Suppose we are “given” a subset F ⊆ S of target states, and suppose we wish

to compute the supremum probabilities, q∗max,i, or the infimum probabilities, q∗min,i, of

eventually hitting a target state in F starting from initial state i ∈ S. In other words,

q∗max,i
.
= supσ P

σ
i (∃t > 0 : Xt ∈ F ), and q∗min,i

.
= infσ P

σ
i (∃t > 0 : Xt ∈ F ),

Maximum (minimum, respectively) hitting probabilities for a denumerable MDP can

be “computed” by “solving” the following max-(min-)linear system of equations, called

their Bellman optimality equations. There is one variable, xi, and one equation, for ev-

ery state i ∈ S. Let opt = max or min, according to whether we are maximizing or

minimizing hitting probability. The equations are given by:

xi = 1 for all i ∈ F ;

xi =
∑

j∈S Pi,j · xj for all i ∈ S0 \ F ;
xi = optj∈successors(i)xj for all i ∈ S1 \ F .

(4.1)

Note that, as in the case of MCs, if n ≡ |S| = ∞, then the infinite sums for variables

i ∈ S0 in (3.1) are always well defined because of non-negativity. Furthermore, since we

have assumed |successors(i)| 6 k < ∞ for all i ∈ S1, the max (or min) operators

in the equations for variables i ∈ S1 are well defined for any real values assigned to the

in [45] to be solvable in strongly polynomial time. See also [32] for a generalization to turn-based discounted

stochastic games
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variables xj . We can denote the entire system of equations, in vector notation, as:

x = R(x)

where R(x) denotes the max-(min)-linear map given by the right hand sides of the

equations in (4.1). Note that since all coefficients and constants defining R(x) are non-

negative, R : Rn
>0 → Rn

>0 again defines a monotone map from non-negative vectors to

non-negative vectors. Let q∗ = (q∗opt,i : i ∈ S), where opt = max or = min, respectively.

For any k > 0, let qkopt,i denote the optimal probability of hitting target set F starting in

initial state i, in at most k time steps. Let qk = (qkopt,i : i ∈ S) denote the corresponding

vector of optimal probabilities. The following is again easy to prove by induction on k.

Proposition 4.1. The statement of Proposition 3.1 holds true, verbatim, for the above

re-interpretations of x = R(x), q∗, and qk.

Thus the optimal hitting probabilities q∗ are the LFP of x = R(x). Now suppose

that D = (S, (S0, S1),∆, P ) is a finite-state MDP. How can we use Proposition (4.1) to

compute the optimal hitting probabilities q∗? We have to compute the least non-negative

solution to the linear system of equations x = R(x). One way to do this in polyno-

mial time for maximizing MDPs is to formulate this as a linear programming problem.

Namely, the vector q∗max is the unique optimal solution to the LP given in (3.2), with

this new interpretation of R(x). However, to express the constraints R(x) 6 x as an

LP, and recalling that for i ∈ S1, Ri(x) ≡ maxj∈successors(i) xj , we need to rewrite

the corresponding constraints, Ri(x) 6 xi, as a system of linear inequality constraints

(xj 6 xi | j ∈ successors(i)). With this modification (3.2) again defines an LP, and

the vector q∗max is the unique optimal solution to this LP.

For minimizing MDPs, computing q∗min can also be reduced to linear programming,

but this case involves some more preprocessing. In order to express the problem as an LP

one first needs to do a little graph-theoretic analysis. Specifically, we first need to identify

and remove all states i such that q∗min,i = 0. We can do this by a simple and-or game

graph analysis on the underlying graph G of the MDP. Once this is done, it turns out that

on the remaining MDP one can solve for q∗min as the unique optimal solution of a different

LP, namely the LP given by maximize:
∑

i xi ; subject to: R(x) > x, x > 0, where in

this case when we have Ri(x) = minj∈successors(i) xj , we have to rewrite the constraint

Ri(x) > xi, as a system of constraints (xj > xi | j ∈ successors(i)).
A more basic method for computing q∗ is again already immediately suggested by

Proposition 3.1: value iteration. By Proposition 3.1, the sequence yk = Rk(0) converges

monotonically to q∗. As we already saw, even for finite-state MCs, value iteration can be

slow to converge in the worst case, but it is widely used in practice, also for MDPs.

Another standard method for solving HP for maximizing MDPs, as well as for solv-

ing many other classes of MDPs, is called policy iteration or strategy improvement. It

involved initially fixing an arbitrary (memoryless) strategy for the controller, and evaluat-

ing q∗ on the resulting MC, and then updating the strategy (at every state) by choosing a

neighbor whose value is strictly greater than that of the currently chosen neighbor chosen

by the previous fixed strategy, if such a strictly greater neighbor exists. See, e.g., [38] for

much more on policy iteration for MDPs.

It is worth mentioning that answering the qualitative questions of whether q∗max,i =
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0, 1, or whether q∗min,i = 0, 1, requires only (game) graph theoretic analyses that do

not depend on the actual probabilities of transitions in the given MDP, and so do not

require solving LPs. Thus, these qualitative questions for HP can be answered in strongly

polynomial time. (See, e.g., [13, 14].)

MoCh: Given a labeled finite-state MDP, D = (S, (S0, S1),∆, P, l), an initial state

s0 ∈ S, and a Büchi automaton, B = (Q,Σ, q0, δ, F ), we wish to compute the optimum

(w.l.o.g., maximum) probability p∗ = supσ P
σ
s0
(L(B)). Qualitative decision problems

associated with this were studied in [13, 41], and quantitative decision problems where

studied in [14]. We briefly mention the main results of [14].

As in the case of MoCh for MCs, we can assume, w.l.o.g., that Σ = S, and we

let B′ = (2Q,Σ, {q0}, δ′, F ′), be the deterministic BA obtained by performing the usual

(naive) subset construction on B. Next, as for MCs, we define the product MDP, D⊗B′ =
(S × 2Q, (S0 × 2Q, S1 × 2Q), ∆̃, P̃ ). Note that there is a one-to-one correspondence

between strategies σ on D and strategies σ on D⊗B′ (because B′ is deterministic). Using

more involved analysis than for the case of MCs, employing the notion of controllably

recurrent pairs (s, q) ∈ S × Q (which we will not define here) that roughly correspond

to the special pairs in the case of MCs, [14] showed how one can compute a set of target

states Z ⊆ S × 2Q of D ⊗ B′, such that in order to optimize the probability Pσ
I(L(B))

in D, it suffices for the strategy σ to first optimize the probability of hitting a target set Z
in D ⊗ B′ and once a target state in z ∈ Z is hit, the strategy σ should then switch to a

different strategy σz that thereafter assures that with probability 1 the infinite trajectory is

accepted by B (which is made possible, by definition of the target states Z). In this way,

the problem MoCh is reduced to (much larger) instances of the problem HP, which as

we saw can be solved using linear programming. Let us note however that, whereas for

HP we always have memoryless deterministic (positional) optimal strategies, the optimal

strategies obtained this way for MoCh by [14] are not positional, and in fact it is easy to

see that optimal positional strategies for MoCh need not exist. The complexity of [14]’s

algorithm for computing p∗ = maxσ P
σ
s0
(L(B)) is polynomial in |D| and exponential in

the size |B| for a nondeterministic Büchi automaton B. It was previously shown in [13]

that even the qualitative decision problem of determining whether p∗ = 1 is EXPTIME-

complete, and thus we can not improve substantially on this complexity upper bound. If

the ω-regular property is specified as an LTL formula instead, it was shown in [13] that

the resulting qualitative problem of determining whether p∗ = 1 is already 2EXPTIME-

complete.

5 Adding Recursion to MCs and MDPs

As mentioned in the introduction, a number of important classes of countably infinite-

state MCs and MDPs that are closely related to automata-theoretic models are subsumed,

in precise senses, by adding a natural recursion feature to MCs and MDPs. in a manner

similar to allowing potentially recursive subroutine calls in procedural programs. The

resulting formal models, called recursive Markov chains (RMCs) and recursive Markov

Decision Processes (RMDPs) were defined and studied in [28, 29] and in [30, 27], re-

spectively. RMCs and RMDPs provide natural abstract models for probabilistic pro-
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cedural programs with recursion (and this indeed partly motivated their study). RMCs

(and RMDPs), and various of their subclasses, capture probabilistic and controlled exten-

sions of classic infinite-state automata theoretic models, including pushdown automata,

context-free grammars, and one-counter automata. Indeed, RMCs and RMDPs can equiv-

alently be viewed as probabilistic and MDP extensions of pushdown automata. We refer

the reader to [28] and [30] for detailed formal definitions and results about RMCs and

RMDPs, respectively.

A (not-necessarily finitely-presented) Recursive Markov Chain (RMC), A, is a tuple

A = (A1, . . . , Ak), where each componentAi = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

• A (countable, or finite) set Ni of nodes.
• A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.
• A (countable, or finite) set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that

assigns to every box (the index of) one of the components, A1, . . . , Ak. To each

box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈ EnYi(b)}
corresponding to the entries of the corresponding component, and a set of return

ports, Returnb = {(b, ex) | ex ∈ ExYi(b)}, corresponding to the exits of the

corresponding component.
• A probabilistic transition relation δi, where transitions are of the form (u, pu,v, v)

where:
(1) the source u is either a non-exit node u ∈ Ni\Exi, or a return port u = (b, ex)

of a box b ∈ Bi,
(2) The destination v is either a non-entry node v ∈ Ni \ Eni, or a call port

u = (b, en) of a box b ∈ Bi ,
(3) pu,v ∈ R>0 is the transition probability from u to v,
(4) Consistency of probabilities: for each u,

∑

{v′|(u,pu,v′ ,v
′)∈δi}

pu,v′ = 1, un-

less u is a call port or exit node, neither of which have outgoing transitions, in

which case by default
∑

v′ pu,v′ = 0.

When we want to ensure that an RMC is finitely-presented for computational pur-

poses, we assume that all the sets involved (like nodes Ni and boxes Bi) are finite, and

we assume that the transition probabilities pu,v are rational numbers, given as the ratio

of two integers, and we measure their size by the number of bits in the numerator and

denominator. The size, |A|, of a given finitely-presented RMC, A, is the number of bits

needed to specify it (including the encoding size of the transition probabilities). As in the

case of MCs and MDPs, some general theorems used for analysis of RMCs hold true even

when sets defining them like nodes Ni and boxes Bi are (countably) infinite.

We will use the term vertex of Ai to refer collectively to its set of nodes, call ports,

and return ports, and we denote this set by Qi. Thus, the transition relation δi is a set of

probability-weighted directed edges on the set Qi of vertices of Ai. We will use all the

notations without a subscript to refer to the union over all the components of the RMC

A. Thus, N = ∪k
i=1Ni denotes the set of all the nodes of A, Q = ∪k

i=1Qi the set of all

vertices, B = ∪k
i=1Bi the set of all the boxes, Y = ∪k

i=1Yi the map Y : B 7→ {1, . . . , k}
of all boxes to components, and δ = ∪iδi the set of all transitions of A.

Example 5.1. Figure 3 depicts a example RMC (taken from [29]). This RMC has two

components A1, A2, each with one entry and two exits (in general different components

may have different numbers of entries and exits). ComponentA2 has two boxes, b′1 which

maps to A1 and b′2 which maps to A2.
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Figure 3. A sample Recursive Markov Chain (taken from [29])

An RMC A defines a global denumerable Markov chain MA = (V, PA) as follows.

The global states V ⊆ B∗ ×Q are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly

empty) sequence of boxes and u ∈ Q is a vertex of A, denoting the call stack. More

precisely, the states V ⊆ B∗ × Q and transition probabilities, PA, of MA are defined

inductively as follows:

(1) 〈ǫ, u〉 ∈ V , for u ∈ Q. (ǫ denotes the empty string.)

(2) if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and PA(〈β, u〉, 〈β, v〉) = pu,v.

(3) if 〈β, (b, en)〉 ∈ V , where (b, en) ∈ Callb, then

〈βb, en〉 ∈ V and PA(〈β, (b, en)〉, 〈βb, en〉) = 1.

(4) if 〈βb, ex〉 ∈ V , where (b, ex) ∈ Returnb, then

〈β, (b, ex)〉 ∈ V and PA(〈βb, ex〉, 〈β, (b, ex)〉) = 1.

(1) corresponds to the possible initial states, (2) corresponds to a transition within a

component, (3) corresponds to a recursive call when a new component is entered via a

box, (4) corresponds to the end of a recursive call when the process exits a component

and control returns to the calling component.

Some states of MA are terminating, having no outgoing transitions. These are pre-

cisely the states 〈ǫ, ex〉, where ex is an exit. If we want to view MA as a proper Markov

chain, we can consider terminating states of MA to be absorbing states, with a self-loop

transition to themselves having probability 1.

Unrestricted RMCs are essentially equivalent, in a precise sense, to probabilistic push-

down automata (pPDAs) (see [28] for the precise equivalence). An RMC where every

component has at most one exit is called a 1-exit RMC, or just 1-RMC. 1-RMCs corre-

spond, in a precise sense, to the stochastic process generated by left-most derivations of

a stochastic context-free grammar (SCFG), and they also intimately related to multi-type

branching processes (see [28] for details of these relationships). An RMC where there is

only one box in the entire RMC is call a 1-box RMC. As shown in [23], these correspond

to probabilistic 1-counter automata, and to (discrete-time) quasi-birth death processes.

Termination probability analysis (VI. TP): We now define a key analysis for RMCs,

namely computation of termination probabilities, which plays a central role in many other

analyses of RMCs. For an RMC, A = (A1, . . . , Ak), given a vertex u ∈ Qi and an exit

ex ∈ Exi, both in the same componentAi, let q∗(u,ex) denote the probability of eventually
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reaching the state 〈ǫ, ex〉, starting at the state 〈ǫ, u〉. Computation of termination prob-

abilities q∗(u,ex) plays an important role for many other analyses of RMCs, including for

MoCh, in a way analogous to the role that HP plays for analysing (finite-state) MCs.

Considering the termination probabilities q∗(u,ex) as unknowns, we can set up a system

of non-linear polynomial equations, such that the probabilities q∗(u,ex) are the Least Fixed

Point (LFP) solution of this system. Use a variable x(u,ex) for each unknown probability

q∗(u,ex). We will often find it convenient to index the variables x(u,ex) according to a fixed

order, so we can refer to them also as x1, . . . , xn, with each x(u,ex) identified with xj
for some j. Of course, if Ni or Bi are infinite for some component Ai, then we have an

infinite vector x = (x1 . . . xj . . .) of variables, rather than an n-vector x = (xj | j ∈
{1, . . . , n}), for some n <∞.

Given RMC A = (A1, . . . , Ak), we define a system of polynomial equations, x =
R(x), over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 6 i 6 k. The system

contains one equation x(u,ex) = R(u,ex)(x), for each variable x(u,ex), where R(u,ex)(x)
is a multivariate polynomial with positive rational coefficients. x = R(x) is defined as

follows: There are several based on the “type” of vertex u. Let [k] = {1, . . . , k}.

x(u,ex) = 1 if u = ex ∈ Exi for i ∈ [k]
x(u,ex) = 0 if u, ex ∈ Exi, and u 6= ex, for i ∈ [k]
x(u,ex) =

∑

{v|(u,pu,v ,v)∈δ} pu,v · x(v,ex) if u ∈ Ni \ {ex} or u = (b, ex′) for b ∈ Bi, i ∈ [k]

x(u,ex) =
∑

ex′∈ExY (b)
x(en,ex′) · x((b,ex′),ex) if u = (b, en), for b ∈ Bi, i ∈ [k]

(5.1)

Given a (finitely-presented) RMCA, we can obviously construct the system x = R(x)
in polynomial time. R(x) has size O(|A|θ2), where θ denotes the maximum number of

exits of any component. Let q∗ ∈ Rn denote the n-vector of probabilities q∗(u,ex), using

the same indexing as used for x. The map R : Rn
>0 7→ Rn

>0 is clearly monotone on Rn
>0,

and furthermore, the following analog of Proposition 3.1 holds.

Theorem 5.1. (see [28] 14) The termination probability vector q∗ for an RMC is the least

fixed point of x = R(x). Thus, q∗ = R(q∗), and for all q′ ∈ Rn
>0, if q′ = R(q′), then

q∗ 6 q′. Furthermore, Rk(0) 6 Rk+1(0) 6 q∗ ∀k > 0, and q∗ = limk→∞Rk(0).

For (finitely-presented) RMCs the termination probabilities q∗ are in general irra-

tional, so we can’t compute them “exactly”. However, using decision procedures for

the existential theory of reals, we can decide, e.g., whether q∗j > r, for any given rational

value r, in PSPACE (see [28]). It was shown in [28] that for general RMCs any non-trivial

approximation of the probabilities q∗ is at least as hard as long standing open problems

in the complexity of numerical computation, namely, the square-root sum problem and a

harder arithmetic circuit decision problem known as PosSLP ([1]), both of which are not

even known to be decidable in NP nor in the polynomial time hierarchy.

In [28], a decomposed multivariate Newton’s method is studied and shown to converge

monotonically to the LFP, q∗, of x = R(x) for an arbitrary RMC, starting from 0, and

more generally this holds for any monotone polynomial system of equations (MPS), x =

14In [28] this theorem is only claimed for finitely-presented RMCs, where the sets of nodes and boxes are

finite, but exactly the same proofs establish the result when the sets of nodes and boxes can be countably infinite.
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R(x). The convergence behavior of Newton’s method for MPSs was subsequently studied

further in [16], yielding some important insights. Firstly, [16] gave examples of (not

strongly connected) 1-exit RMCs, on whose system of equations x = R(x) Newton’s

method would require an exponential number of iterations as a function of the encoding

size of the 1-RMC (and of x = R(x)) to converge to within even 1 bit of precision of

the LFP vector q∗ starting from 0, and on the other hand, in certain strongly-connected

cases of RMCs [16] gave exponential upper bounds on the number of iterations required

to obtain a desired approximation to q∗ as a function of the encoding size of x = R(x)
for RMCs. For arbitrary MPSs, [16] gave no upper bounds on the number of iterations

of Newton required as a function of the encoding size of the input MPS. Recently, in

[40] an exponential worst-case upper bound was established for Newton’s method for as

a function of the encoding size of the MPS for computing its LFP to desired precision.

The bound in [40] is essentially optimal in several important parameters of the problem.

In the case of 1-exit RMCs, the corresponding equation system x = R(x) is a prob-

abilistic polynomial system of equations (PPS). These consist of equations of the form

xi = Ri(x), where Ri(x) is a probabilistic polynomial, meaning a multivariate poly-

nomial in the variables x whose monomial coefficients and constant term are all non-

negative and their sum is (at most) 1. A recent result in [19] shows that Newton’s method,

combined with P-time methods from [28] for qualitative analysis of termination for 1-exit

RMCs, can be used to obtain a P-time algorithm for PPSs and 1-exit RMCs (in the stan-

dard Turing model of computation) for approximating q∗ to within arbitrary desired preci-

sion 2−j , for j given in unary. This result also has important consequences for multi-type

branching processes (BPs) and stochastic context-free grammars (SCFGs). For instance,

it yields the first P-time algorithm for computing extinction probabilities of BPs, and for

computing the probability of generating a given string for arbitrary SCFGs (see [19]). See

also the recent paper [20], where it is has been further shown that for a very broad class

of SCFGs, excluding only some degenerate “deeply critical” SCFGs, Newton’s method

yields a P-time algorithm for computing within desired precision the probability that the

SCFG generates a string in a given regular language, given by a DFA. In particular, [20]

shows that this runs in P-time for any SCFG whose parameters are estimated using the

standard EM (“inside-outside”) method.

In the case of 1-box RMCs, which are essentially equivalent to discrete-time quasi-

birth-death processes (QBDs), and to probabilistic one-counter automata, it was shown

in [21] that decomposed Newton’s method requires only polynomially many iterations, as

a function of the encoding size of x = R(x), and of j, to compute q∗ to within additive

error 2−j . The vector q∗ corresponds to the so called G matrix of a QBD, which is a

key to many other analyses of QBDs (see, e.g., [35, 3]), and this thus yields the first P-

time algorithm, in the unit-cost arithmetic RAM model of computation, for computing

the G matrix of an arbitrary QBD. More recently, in [40], it was shown that with suitable

rounding of Newton’s method the G matrix can be computed in P-time in the standard

Turing model of computation.

Model checking (MoCh): model checking of RMCs was studied in [29], where it was

shown how to use TP analysis toward both qualitative and quantitative model checking of

RMCs. The algorithms are involved: in brief, given a labeled RMC, A, and a ω-regular

property, say given by a Büchi automaton B, it is possible to use termination probabilities

q∗ to first define a finite-state MC, called the conditioned summary chain, M′, of the
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“product” of the RMC and the naive determinization B′ of B, and then to boil down

the probability of L(B) in the original RMC to the probability of hitting a subset T of

states in M′, where T can be computed using suitable modifications to the notion of

special pairs, used earlier for solving MoCh by [13] for finite-state MCs. Furthermore, a

different algorithm can be used for properties specified by LTL formulas. For the resulting

complexity bounds for the various cases of qualitative and quantitative analysis, see [29],

whose results also yield the best available complexity bounds (improving by more than

one exponential the prior bounds) for model checking ω-regular and LTL properties of

probabilistic pushdown systems, a problem which was first studied in [17].

For model checking 1-box RMCs (equivalently, probabilistic one-counter automata

(pOCAs)), a recent paper [8] shows how to use the polynomial time algorithm obtained

in [23, 40] for computing (to within any desired precision) the termination probabilities

q∗ for 1-box RMCs and pOCAs, in order to obtain an algorithm for computing (to within

desired precision) the probability of an ω-regular property for pOCAs which, for a fixed

ω-regular property, also runs in polynomial time (see also [40]).

Recursive Markov Decision Processes (RMDPs): It is not difficult to generalize the

definition of RMCs to define RMDPs, by allowing some nodes of the RMC to be con-

trolled. RMDPs were first studied in [24, 30], where it was shown that, unfortunately,

even very basic computational problems, such as computing any non-trivial approxima-

tion of the optimal (supremum or infimum) termination probabilities of finitely presented

RMDPs is not computable. Furthermore, [24, 30] showed that even qualitative model

checking (MoCh) analyses are undecidable already for 1-exit RMDPs.

Fortunately it was also shown in [24, 30] that for 1-exit RMDPs (1-RMDPs), which

correspond also to controlled versions of BPs and SCFGs, it is possible to set up a mono-

tone max/min probabilistic polynomial system of equations (max/minPPS), x = R(x),
whose LFP, q∗, corresponds precisely to the vector of optimal termination probabilities.

A maxPPS (respectively, minPPS), x = R(x) consists of equations xi = Ri(x), where

each Ri(x) has the form max{Q1(x), . . . , Qki
(x)}, where each Qj(x) is a probabilistic

polynomial in the variables x. It was furthermore shown in [24, 30] that the controller

always has optimal deterministic stackless and memoryless optimal strategies for opti-

mizing termination probability in 1-RMDP. Already for 2-exit RMDPs, it is not even the

case that there necessarily exists any optimal strategy for maximizing the probability of

termination (see [24]). It was subsequently shown in [25, 30] that qualitative optimal ter-

mination problems for 1-RMDPs can be decided in P-time using a spectral optimization

method that requires use of linear programming. The algorithms from [25] for decid-

ing whether optimal termination probability for 1-RMDPs is exactly 1 were later used in

[7] in order to show that there is a P-time algorithm for detecting whether there exists a

strategy which achieves optimal termination probability 1 of reaching a given vertex of

a 1-exit RMC in any calling context (any call stack). However, there need not exist any

optimal strategy for reaching a vertex in any calling context, even when the supremum

probability of doing so is 1, and even the decidability of determining whether the supre-

mum probability is 1 for this problem remains open. Finally, in a recent advance it was

shown in [18] that for 1-RMDPs the vector q∗ of optimal termination probabilities can

be approximated in P-time to within arbitrary desired precision, by using a generaliza-

tion of Newton’s method applied to the corresponding max/minPPS equations x = R(x),
which converges monotonically to their LFP. The generalized Newton method requires
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solving an LP in each iteration (in both the maximizing and minimizing cases, which are

different).

For 1-box RMDPs, corresponding to controlled QBDs and to MDP extensions of

probabilistic one-counter automata, we do not have a corresponding equation system

x = R(x) which captures their termination probabilities. Nevertheless, it was shown

in [6] and [4] that for both maximizing and minimizing the termination probability in 1-

box RMDPs, the qualitative problem of deciding whether the optimal probability is 1 for

termination, i.e. for hitting counter value 0 in any state, can be decided in P-time using,

among other things, linear programming. Subsequently, it was shown in [5] that for a

1-box RMDP one can approximate the optimal probability of termination in any state in

exponential time. Optimal strategies need not exist for maximizing termination probabil-

ity in 1-box RMDPs [5]. It remains open whether this exponential time upper bound can

be improved. Deciding whether the (optimal) termination probability is, say, > 1/2, is

already square-root-sum-hard, even for 1-box RMCs ([23]). Apparently harder selective

termination problems for 1-box RMDPs were also studied in [6], such as whether there is

some strategy with which we hit counter value 0 in a desired control state with probability

1. It was shown in [6] that this problem is already PSPACE-hard, and that this particu-

lar qualitative selective termination problem is decidable. However, the decidability of

limit-sure (and quantitative) “selective” termination for 1-box RMDPs remains open.

Recursive Stochastic Games: although we have not discussed stochastic games (see,

e.g., [39, 10, 31]), we mention that a number of results, in particular about 1-RMDPs,

extend naturally to two-player zero-sum 1-exit Recursive Simple Stochastic Games (1-

RSSGs) ([24, 30]) and to 1-exit Recursive Concurrent Stochastic Games (1-RCSGs) ([26,

27]). In particular, corresponding to 1-RSSGs with the objective (and counter-objective)

of maximizing (and minimizing) termination probability, there are monotone min-max-

polynomial equations x = R(x) whose LFP yields the vector of termination values start-

ing at each vertex ([24, 30]). Corresponding to 1-RCSGs as shown in [27], there are

monotone minimax-polynomial equations, where the value operator, Val(M), for a 1-

shot 2-player zero-sum matrix game M is used in the equations, the LFP of which yields

the value vector of the 1-RCSG. It was shown in [25, 30] that deciding whether the value

of a 1-RSSG termination game is exactly 1 is in NP ∩ co-NP, and that this problem is

already at least as hard as Condon’s quantitative decision problem for finite-state SSGs

[10], whereas for finite-state SSGs the qualitative decision problem of deciding whether

the value is 1 is known to be in P-time. For 1-RCSG termination games it was shown in

[27] that quantitative decision and approximation problems for the game value are solv-

able in PSPACE using the associated monotone system of equations x = R(x), and it was

shown that even the qualitative problem deciding whether the game value is 1 is at least

as hard as the square-root sum problem, which as discussed already is not even known

to be in NP. The complexity of analyzing 1-box RSSGs (equivalently, one-counter SSGs)

was studied in [6, 4, 5] where some upper and lower bounds were established, but the pre-

cise complexity of a number of analysis problems for one-counter SSGs (and one-counter

MDPs) remains open.
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