
Online Appendix to:
Model Checking of Recursive Probabilistic Systems

KOUSHA ETESSAMI, University of Edinburgh
MIHALIS YANNAKAKIS, Columbia University

A. MISSING PROOFS

This electronic appendix provides all proofs that are missing in the main body of the
article.

LEMMA 8. For all D ∈ F ′, ρ−1(D) ∈ F and Pr�(ρ−1(D)) = Pr�′(D).

PROOF. It suffices, by standard facts about probability measure, to prove the claim
for cylinders C(w′) ⊆ �′, where w′ = w0, . . . wk. We use induction on k. The base case
(k = 0) follows from Lemma 7. Namely, C(ε) = �′, and ρ−1(�′) = � \ ρ−1(�). Thus
Pr�(ρ−1(�′)) = 1 − Pr�(ρ−1(�)) = 1.

For the induction step, suppose that the claim holds for the prefix w′ = w0w1 . . . wk.
Let D[w′] = ρ−1(C(w′)). Define the event Ji,y ∈ F to be Ji,y = {t ∈ � |
ρ(t) = w0 . . . wi . . . , and wi = y}. Note that by definition of conditional probability,
Pr�(D[w′wk+1]) = Pr�(D[w′]) Pr�(Jk+1,wk+1 | D[w′]).

We want to show that Pr�(D[w′wk+1]) = Pr�′(C(w′wk+1)). We distinguish three cases,
based on what type of edge (wk, wk+1) is in HA , as in the proof of Lemma 7.

Case 1. wk is not a call port. Thus (wk, wk+1) ∈ EHA is an ordinary edge of the
summary graph and corresponds to an edge of the RMC inside some component Ai of
A. Consider the trajectories t ∈ D[w′]. From the definition of ρ we know that after
some prefix, such a trajectory t arrives at a vertex 〈β,wk〉, and subsequently never
reaches an exit of Ai, in other words, it retains β as a prefix of the call stack for
the remainder of the trajectory. The conditional probability Pr�(Jk+1,wk+1 | D[w′]), is
the probability that the (k + 1)-st step of ρ(t) is wk+1, given that the prefix of ρ(t) is
w0w1, ...wk. Note that this conditional probability is independent of the call stack β,
and that this process has the Markov property, so that it is also independent of how
we arrive at wk. The conditional probability Pr�(Jk+1,wk+1 | D[w′]) is the probability
that the execution from wk transitions next to wk+1 and never reaches an exit of the
component Ai, conditioned on the event that it never reaches an exit of Ai. Let NE(u) ∈
F be the event that, starting at a node 〈β, u〉, we will never reach an exit, in other
words, β ∈ B+ will forever remain on the call stack; because of the Markovian property,
the probability of this event does not depend on β and is equal to ne(u). Recall also that
the conditional probability of an event E1 given event E2 is Pr�(E1 | E2) = Pr�(E1 ∩
E2)/ Pr�(E2).

Since wk is not a call port, and using the Markovian property, we have:

Pr�(Jk+1,wk+1 | D[w′]) = Pr�(Jk+1,wk+1 | Jk,wk)
= Pr�(J1,wk+1 | J0,wk), (now assuming pinit(〈ε,wk〉) = 1)
= Pr�(J1,wk+1 ∩ NE(wk))/ Pr�(NE(wk))
= Pr�(J1,wk+1 ∩ NE(wk+1))/ ne(wk)
= Pr�(J1,wk+1) Pr�(NE(wk+1))/ ne(wk)
= pwk,wk+1 ne(wk+1)/ ne(wk).

c© 2012 ACM 1529-3785/2012/04-ART12 $10.00
DOI 10.1145/2159531.2159534 http://doi.acm.org/10.1145/2159531.2159534

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–2 K. Etessami and M. Yannakakis

Therefore, Pr�(D[w′wk+1]) = Pr�(D[w′])pwk,wk+1 ne(wk+1)/ ne(wk). By the induction hy-
pothesis, and the construction of M′

A , Pr�′(C(w′wk+1)) =
Pr�′(C(w′))p′

wk,wk+1
= Pr�(D[w′])pwk,wk+1 ne(wk+1)/ ne wk = Pr�(D[w′wk+1]).

Case 2. wk = (b , en) is a call port, and wk+1 = (b , ex) is a return port. In this case, the
conditional probability Pr�(Jk+1,wk+1 | D[w′]) is the probability that an execution of the
RMC starting at the call port wk = (b , en) of box b reaches the return port wk+1 = (b , ex)
of b given that it does not reach an exit of the component of wk (and wk+1). From the
properties of conditional probabilities, this is equal to the probability that an execution
of the RMC starting at the call port wk reaches the return port wk+1 and then after that
it does not reach an exit of the component divided by the probability that an execution
starting at wk does not reach an exit. Thus, similar to case 1, we have:

Pr�(Jk+1,wk+1 | D[w′]) = Pr�(J1,wk+1 ∩ NE(wk+1))/ ne(wk), (assuming pinit(〈ε,wk〉) = 1)
= Pr�(J1,wk+1) ne(wk+1)/ ne(wk)
= q∗

(en,ex) ne(wk+1)/ ne(wk).

Again, Pr�(D[w′wk+1]) = Pr�(D[w′])q∗
(wk,wk+1) ne(wk+1)/ ne(wk), and by induction,

Pr�′(C(w′wk+1)) = Pr�′(C(w′))p′
wk,wk+1

=
Pr�(D[w′])q∗

(wk,wk+1) ne(wk+1)/ ne(wk) = Pr�(D[w′wk+1]).

Case 3. wk = (b , en) is a call port, and wk+1 = en is the corresponding entry. By
the definition of the summarization map ρH and ρ, the next vertex wk+1 after wk in
ρ(t) is en iff the call of the box b does not terminate. Thus, the conditional probability
Pr�(Jk+1,wk+1 | D[w′]) is the probability that in an execution of the RMC starting at the
call port wk = (b , en), the call of the box b does not terminate, given that the execution
does not reach an exit of the component of wk. Note that every execution, in which the
call of the box b does not terminate, obviously does not reach an exit of the component
of wk. Therefore, the conditional probability is equal to the probability that the call
of the box b from its call port (b , en) (i.e., the component Y (b) starting at its entry en)
does not terminate divided by the probability that an execution starting at wk does not
reach an exit of the component of wk. That is, we have:

Pr�(Jk+1,wk+1 | D[w′]) = Pr�(J1,wk+1 | J0,wk)
= Pr�(J1,wk+1 ∩ NE(wk))/ Pr�(NE(wk)), (assuming pinit(〈ε,wk〉) = 1)
= Pr�(J1,wk+1)/ ne(wk), (because NE(wk) ⊆ J1,wk+1)
= Pr�(NE(wk+1))/ ne(wk) = ne(wk+1)/ ne(wk)

Again, Pr�(D[w′wk+1]) = Pr�(D[w′]) ne(wk+1)/ ne(wk), and Pr�′(C(w′wk+1)) =
Pr�′(C(w′))p′

wk,wk+1
= Pr�(D[w′]) ne(wk+1)/ ne(wk) = Pr�(D[w′wk+1]).

THEOREM 17. The qualitative problem of determining whether a given RMC A sat-
isfies a property specified by a Büchi automaton B with probability = 1, (i.e., whether
PA (L(B)) = 1)) is EXPTIME-complete. Furthermore, this holds even if the RMC is fixed
and each component has one entry and one exit. Moreover, the qualitative “emptiness”
problem, namely determining whether PA (L(B)) = 0, is also EXPTIME-complete, again
even when the RMC is fixed and each component has one entry and one exit.

PROOF. The EXPTIME upper bound was established in Theorem 16. So we need to
establish EXPTIME-hardness.

We begin by proving the result for determining whether PA (L(B)) = 1 in the case
where both A and B are part of the input. The case where A is fixed, and the case for

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–3

qualitative emptiness, PA (L(B)) ?= 0, are variations on the same proof, and we sketch
them at the end.

The reduction is from the acceptance problem for alternating linear space bounded
Turing machines. As is well known, ASPACE(S(n)) = ∪c>0DTIME(cS(n)). There is a fixed
linear space bounded alternating Turing machine, T, such that the problem of deciding
whether T accepts a given input of length n is EXPTIME-complete. We can assume
wlog that T has one tape, and uses space n. The tape contains initially the given
input x. Recall that an alternating TM has four types of states: existential, universal,
accepting, and rejecting. We assume wlog that the TM has two possible moves from
each existential and universal state, and it halts when it is in an accepting or rejecting
state. Let � be the tape alphabet, Q the set of states and � = � ∪ (Q × �) the extended
tape alphabet. A configuration of the TM is expressed as usual as a string of length n
where the ith symbol is (q, X) ∈ (Q × �) (we will usually write qX instead of (q, X)) if
the head is on the tape cell i, the state is q and the tape symbol is X , and otherwise
the ith symbol is the tape symbol X in cell i. The type of a configuration (existential,
universal etc) is determined by the type of the state. A computation is a sequence of
configurations starting from the initial one, according to the transition rules of the TM.
We assume wlog that all computations of the TM halt.

There is a natural game associated with an alternating TM between two players,
an existential player E and a universal player U. The positions of the game correspond
to the configurations. Player E moves at the existential configurations and player U
at the universal ones. Accepting configurations are winning positions for player E,
and rejecting configurations are winning for player U. An input x is accepted by the
TM iff the existential player E has a winning strategy from the initial configuration
corresponding to x.

We will construct a RMC, A, and a BA, B, so that A satisfies B with probability 1
iff x is not accepted by T, in other words, E does not have a winning strategy.

Let us first mention that the only thing that will matter about A, is its “structure,”
in other words, which edges have nonzero probability. We thus describe these edges
without defining the probabilities explicitly: any positive probabilities that sum to 1
will do.

The RMC A has an initial component C0 and a component C(q, X) for each state
q ∈ Q and tape symbol X ∈ �. The automaton B has an initial state s0, a final state f
which is the only accepting state, and a state (δ, i) for each δ ∈ �, and i = 1, . . . , n. The
alphabet of B is the vertex set of A.

Let q0 be the initial state of the TM T, and let x = x1 · · · xn be the input. Component
C0 of A has an edge from its entry to a node u0, an edge from u0 to a box that is
mapped to C(q0, x1) and an edge from the exit of the box to an absorbing node v0 that
has a self-loop.

Component C(q, X), where q is an existential state and X ∈ �, is structured as
follows. Suppose that the two moves of the TM T when it is in state q and reads X are
(pk, Yk, Dk), k = 1, 2, where pk ∈ Q is the next state, Yk is the symbol written over X ,
and Dk = L/R (left/right) is the direction of the head movement. For each i = 1, .., n,
k = 1, 2, and Z ∈ �, the component has a set of nodes u[q, X , i, k, Z], v[q, X , i, k, Z],
and a set of boxes b [q, X , i, k, Z], each mapped to component C(pk, Z). The entry
of the component C(q, X) has edges to each of the nodes u[q, X , i, k, Z], every node
u[q, X , i, k, Z] has an edge to the call port of the corresponding box b [q, X , i, k, Z], the
return port of each such box has an edge to the corresponding node v[q, X , i, k, Z], and
each of these nodes has an edge to the exit of the component.

Component C(q, X), where q is a universal state and X ∈ �, is structured as
follows. Let again the two moves of the TM T for q and X be (pk, Yk, Dk), k = 1, 2.
For each i = 1, .., n, k = 1, 2, and Z ∈ �, the component has again a set of nodes

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–4 K. Etessami and M. Yannakakis

u[q, X , i, k, Z], v[q, X , i, k, Z], and a set of boxes b [q, X , i, k, Z] mapped to C(pk, Z),
and has in addition one more node w[q, X]. The entry of the component C(q, X) has
edges to each of the nodes u[q, X , i, 1, Z], every node u[q, X , i, 1, Z] has an edge to
the call port of the corresponding box b [q, X , i, 1, Z], the return port of each such box
has an edge to the corresponding node v[q, X , i, 1, Z], and each of these has an edge
to node w[q, X]. Node w[q, X] has edges to all the nodes u[q, X , i, 2, Z], every node
u[q, X , i, 2, Z] has an edge to the call port of the corresponding box b [q, X , i, 2, Z], the
return port of each such box has an edge to the corresponding node v[q, X , i, 2, Z], and
each of these has an edge to the exit of the component.

Component C(q, X), where q is a halting (accepting or rejecting) state and X ∈ � has
an edge from its entry to a node u[q, X] and from u[q, X] to the exit of the component.

The transitions of the automaton B are as follows. The initial state s0 of B
transitions on input u0 to the set of states {(q0x1, 1), (x2, 2), . . . , (xn, n)}. There are no
other transitions out of s0. The final state f transitions to itself on every input.

Let q be an existential or universal state and suppose that the two moves of the TM
T when it is in state q and reads X are (pk, Yk, Dk), k = 1, 2. On input u[q, X , i, k, Z],
a state (δ, j) of B has exactly one transition, as follows: If j = i and δ
= qX then it
transitions to f ; else, if j = i and δ = qX then it transitions to state (Yk, i); else, if
((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) and δ = Z then it transitions to
(pk Z , j); else, if ((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) and δ
= Z then it
transitions to f ; else, it transitions to itself, (δ, j). On input v[q, X , i, k, Z], a state (δ, j)
of B has the following transition: If j = i then it transitions to (qX , i); else, if ((j = i + 1
and Dk = R) or (j = i − 1 and Dk = L)) then it transitions to (Z , j); else, it transitions
to itself, (δ, j). All states have a self-loop on input w[q, X], v0, as well as for all the
vertices that are entries and exits of boxes.

Let q be a halting state of the TM. On input u[q, X], a state (δ, j) of B transitions to
itself if δ ∈ � or (δ = qX and q is accepting), and it transitions to f otherwise.

This concludes the definition of the RMC A and the Büchi automaton B. Note that
A has a bounded number of components (independent of the length of the input x),
and every component has one entry and one exit. Note also that all the transitions of
B are deterministic except for the transition of the initial state s0 on input u0.

Consider a path of the RMC, and look at the corresponding set P of states of B at
each step. At u0, the set P contains one state (δ, i) for each i = 1, . . . , n corresponding
to the initial configuration of the TM. From then on, it is easy to check that P always
contains at most one state (δ, i) for each i, and either these states form a configuration
of the TM or P contains f . Once f is included in P, then it will stay there forever and
any continuation of the path will be accepted by B.

Let us call a path of the RMC valid if the set P at the end (and during the path)
does not contain f . Consider the game tree G of the game corresponding to the TM T
on the given input x: The nodes of the tree are the configurations reached by the TM
in its computation, the root is the initial configuration, the children of each node are
the two successor configurations, and the leaves correspond to halting configurations.
An existential strategy corresponds to a subtree GE of G that contains one child of
each (reachable) existential configuration (nodes that are not reachable any more from
the root are not included in GE). We consider the two children of each node as being
ordered according to the indexing (k = 1, 2) of the two moves of the configuration.

We claim that every valid path of the RMC corresponds to a prefix of the depth-first-
search traversal of an existential game tree GE, where all the leaves in the prefix are
accepting; and conversely every such prefix of a DFS traversal corresponds to a valid
path. Note that when a valid path is at the entry of an existential component C(q, X),
in order for it to continue to be valid it must move to a node u[q, X , i, k, Z] such that i is
the current position of the head, q and X must be the current state and symbol at cell

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–5

i, and Z must be the symbol in the tape cell where the head moves next according to
move k = 1 or 2 of the TM. That is, there are precisely two valid choices corresponding
to the two possible moves of the existential player. The transitions of B are defined so
that the states of the new current set P form the next configuration as the path of the
RMC moves to the box corresponding to the move of the TM. When the path exits the
box, if it is still valid, then the set P is the same as when the path entered the box.
After the node v[q, X , i, k, Z], the set P is updated to restore the configuration as it
was when the component C(q, x) was called. For a universal component C(q, X) there
is only one correct choice if the path is to remain valid. If the path exits the component
remaining valid, it means that it never went through a rejecting component, in other
words, the corresponding subtree of GE that was traversed has only accepting leaves.

If x is accepted by the TM T, then the existential player has a winning strategy,
hence there is a valid path of the RMC that reaches node v0 of C0 and stays there
forever. Thus, with positive probability the RMC follows this path which is not
accepted by B. On the other hand, if x is not accepted by the TM T, then every
path becomes eventually invalid (either because it reaches a rejecting component or
because one of its transitions does not correspond to a TM move) and hence is accepted
by B; thus the probability of acceptance is 1.

We are done with the proof that checking PA (L(B)) = 1 is EXPTIME-hard. By
Theorem 16, the problem is also EXPTIME-complete.

We now sketch how a variation of the same proof shows that probabilistic emptiness
(PA (L(B)) > 0?) is also EXPTIME-complete.

For each component except C0, add a direct path from entry to exit en → r → ex
through a new node r where the first edge has probability > 1/2. Every state of the
Büchi automaton B, goes to f on these intermediate nodes. (The purpose of these
paths is to make sure that every component exits with probability 1 - but these are
not valid paths). Remove the self loop of v0, add new nodes y0,z0 to C0, and edges
v0 → y0 → z0 → u0 with probability 1. Also add a new state g to B which is the only
accepting state (f is not accepting anymore). On input y0, all states of B die (have no
transition) except for f that goes to g. On z0, g goes to the initial state s0.

By the previous proof, (1) if input x is accepted by the TM T, the old RMC had a path
p from the initial vertex to v0 such that the corresponding set of states of the automa-
ton at the end (for all possible runs) did not include f . (2) If x is not accepted by the TM
T, then for every trajectory of the old RMC, the automaton has a run that gets to f .

Because of the new paths to the exits that we have added, every component exits
with probability 1 (this follows from basic facts about RMCs, see Etessami and
Yannakakis [2009]). Hence, infinitely often (i.o.), the trajectory will go to u0, traverse
a path, come out at v0, go to y0,z0, back to u0, and again all over. If the state set of the
Büchi automaton includes f when the path arrives at v0, then it will go next to g, then
reset to the initial state and start again. Therefore, if x is not accepted by the TM T,
this will happen every time, hence g will appear i.o. and the probability of acceptance
PA (L(B) = 1.

If x is accepted by the TM T, and in some iteration the RMC follows the path p as
above then the automaton will die when the path reaches y0. Every time the process
returns to u0 and tries again, there is positive probability that it will follow the path
p, so eventually this will happen at some point with probability 1. When it happens,
the automaton will die and hence will not accept the trajectory. Thus, in this case
PA (L(B)) = 0.

Next, we briefly sketch how we actually only need a fixed RMC, whose size does not
depend on the size of the input tape of the TM. Here is the modification. Drop the tape
cell index i from the u and v nodes of A, and add a self loop to these nodes; that is, the u
and v nodes have now the form u[q, X , k, Z], v[q, X , k, Z] for q ∈ Q, X , Z ∈ �, k = 1, 2.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–6 K. Etessami and M. Yannakakis

Basically, the RMC is going to guess what is the correct index i of the cell with the
tape head, which will be the number of times it loops at the node u (and v). The Büchi
automaton states keep track of how many times the RMC goes around the loop at
the current vertex u[q, X , k, Z] or v[q, X , k, Z]. In other words, the BA states have
now, besides extended tape symbol δ ∈ � and cell number i = 1, . . . , n, another counter
j = 0, 1, . . . , n for the number of iterations of the self-loop at the current u or v vertex
of the RMC. If the RMC performs the wrong number of iterations at the current vertex
(stays too long or leaves too early) then the BA transitions to f and the game is in
effect over. In particular if the BA is at state (qX , i, j) and the counter j tries to exceed
i without the RMC leaving the current vertex u[...], or if it leaves u[...] before j reaches
i, then the the BA goes to f . If the RMC leaves the current vertex u[...] exactly at the
correct time, then (qX , i, i) makes the right transition to the appropriate state (Y, i, 0)
corresponding to the Turing machine move. For the other states (δ, i, j) of the BA, first
if δ has a state and is not qX then go to f right away; otherwise, if the state is (δ, l, i)
when the RMC moves out of u[...] and l
= i, the state assumes that the RMC moved
at the right time (i.e., tape head is at cell i) and acts accordingly: for example if the
head is supposed to move left and new state = p, new symbol (in new position)= Z ,
then (δ, l, i) transitions to (δ, l, 0) if l
= i − 1, to f if l = i − 1 but δ
= Z , and to (pZ , l, 0)
otherwise. The moves at v[...] that restore the state are similar.

THEOREM 23. For a fixed Büchi automaton B, given a bounded RMC, A, and a
rational value p ∈ [0, 1], we can decide whether PA (L(B)) ≥ p in time polynomial
in |A|.

PROOF. If the Büchi automaton B is fixed, then the deterministic automaton B′
has bounded size. Taking the product with a bounded RMC A results in another
bounded RMC A ⊗ B′ (note that the number of entries and exits of A gets multiplied
by the number of states of B′). The termination probabilities of a bounded RMC are in
general irrational, but, as shown in Etessami and Yannakakis [2009], we can answer
in polynomial time comparison questions concerning them, using a procedure for the
existential theory of the reals with a bounded number of variables.

We summarize below the method from Etessami and Yannakakis [2009]. First
the bounded RMC (A ⊗ B′ in this case) is preprocessed to identify and remove the
vertex-exit pairs with 0 probability. Now use variables x(en,ex) only for the set D of
entry-exit pairs (en, ex) of the components of A ⊗ B′ that have nonzero probability;
note that there is a bounded number d of such pairs. Let x′ be the restriction of the
variable vector x of vertex-exit probabilities to these variables x(en,ex) for (en, ex) ∈ D.
Then the exit probabilities for all the vertex-exit pairs (u, ex) can be expressed as
rational functions of these entry-exit variables. Specifically, for every vertex-exit
pair (u, ex) (including the entry-exit pairs) we can construct in polynomial time two
polynomials f(u,ex)(x′), g(u,ex)(x′) such that q∗

(u,ex) = f(u,ex)(q′∗)/g(u,ex)(q′∗), where q′∗ is the
restriction of the vector q∗ to the set D of (nonzero) entry-exit pairs. The polynomials
f(u,ex)(x′), g(u,ex)(x′) have rational coefficients of polynomial bit size, and have total
degree at most n, the number of vertices. As shown in Etessami and Yannakakis
[2009], the vector q′∗ is the (unique) minimal nonzero solution to the following set
C(x′) of constraints: f(en,ex)(x′) = g(en,ex)(x′) · x(en,ex) and x(en,ex) > 0 for all entry-exit pairs
(en, ex) ∈ D, and

∑
ex x(en,ex) ≤ 1 for all entries en of each component of the RMC. This

solution q′∗ of C(x′) can be extended to compute the vector q∗ for all vertex-exit pairs
(u, ex) using the equations q∗

(u,ex) = f(u,ex)(q′∗)/g(u,ex)(q′∗). Furthermore the constraint
set C′(x) has the property that if we take any other solution r′ of C(x′) and extend
it similarly to all vertex-exit pairs, it results in a vector r that is a fixed point of
the original set x = P(x) and hence is r ≥ q∗. We can therefore determine whether
q∗

(u,ex) ≤ c for some vertex exit pair (u, ex) and rational c by adding to the constraint set

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–7

C(x′) the variable x(u,ex) and constraints f(u,ex)(x′) = g(u,ex)(x′) · x(u,ex), and x(u,ex) ≤ c, and
invoking an algorithm for the existential theory of the reals with a bounded number
of variables. Similarly, we can determine if a vertex u is deficient in polynomial time
by adding to C(x′) variables xu,ex for all exits ex ∈ Exi of the component of u and
adding constraints f(u,ex)(x′) = g(u,ex)(x′) · x(u,ex) for all ex ∈ Exi, and the constraint∑

ex∈Exi
x(u,ex) < 1.

Construct now the Markov chain M′
A ,B, which is the conditioned summary chain

of the RMC A ⊗ B′. We know its set of states, which are the deficient states of the
RMC A ⊗ B′, and its transitions. We do not compute explicitly the values of the
transition probabilities, which are irrational numbers, but rather compute them
symbolically as rational functions of the vector x′ of the entry-exit probabilities of the
RMC A ⊗ B′. Namely, note that the nonexit probability ne(u) of a vertex u of A ⊗ B′
is ne(u) = 1 − ∑

ex∈Exi
f(u,ex)(x′)/g(u,ex)(x′). The polynomials f(u,ex)(x′), g(u,ex)(x′) have total

degree n, so ne(u) is a rational function fu(x′)/gu(x′) where fu, gu are polynomials of
total degree ≤ dn = O(n), also with rational coefficients of polynomial bit-size, and
fu, gu can be easily constructed in polynomial time. It follows from the definition of the
conditioned summary chain M′

A ,B that the transition probabilities are also rational
functions of x′ that can be constructed in polynomial time.

We determine the accepting states and accepting edges, and thus the accepting
bottom SCCs of the chain M′

A ,B. As in the proof of Theorem 21, we define a revised
Markov chain M′′

A ,B by removing all accepting bottom SCCs and replacing them
with a new absorbing node v∗; all transitions going to accepting bottom SCCs are
directed now to v∗. The desired probability PA (L(B)) is equal to the probability that
a trajectory of M′′

A ,B starting at the initial state u∗ = (v0, {q0}) hits v∗. If we had the
transition probabilities explicitly, we would compute this probability PA (L(B)) by
setting up and solving a linear system of equations. By Cramer’s rule, PA (L(B)) is
equal to the ratio of the determinants of two matrices, det(F)/det(G), whose entries are
the transition probabilities, and the constants 0,1. Now the transition probabilities
are represented symbolically by rational functions in x′, so the probability PA (L(B))
is equal to the ratio det(F(x′))/det(G(x′)) of the determinants of two matrices F(x′),
G(x′) whose entries are ratios of polynomials of total degree O(n). Clearing the
denominators in the matrix F(x′), we can write it as F(x′) = F1(x′)/ f2(x′) where f2(x′)
is the product of all the denominators (a polynomial of total degree O(n3)) and F1(x′)
is a matrix whose entries are polynomials of total degree at most O(n3). Since x′ has
a fixed number d of variables, each of these polynomials has at most O(n3d) terms and
can be computed explicitly in polynomial time. We have det(F(x′)) = det(F1(x′))/(f2(x))n.
The numerator det(F1(x′)) is a polynomial f1(x′) of total degree at most O(n4) and has
at most O(n4d) terms. As in Etessami and Yannakakis [2009] we can compute f1(x′)
explicitly using interpolation, by substituting a sufficient number of tuples for the
variables (e.g., O(n4) values for each variable) and solving a linear system of equations
to compute the coefficients of all the possible O(n4d) terms of f1(x′). The denomina-
tor (f2(x))n is also a polynomial of total degree O(n4) and can be computed easily.
Similarly det(G(x′)) can be computed as the ratio g1(x′)/g2(x′) of two polynomials, and
hence PA (L(B)) = f1(x′)g2(x′)/ f2(x′)g1(x′) = f (x′)/g(x′) is expressed as the ratio of two
polynomials f (x′), g(x′) of total degree O(n4).

We can then test whether PA (L(B)) ≥ p by invoking a procedure for the existential
theory of the reals with bounded number of variables on the set of constraints consist-
ing of the system C(x′) for the RMC A ⊗ B′ defined above, constraints (fu(x′))2 > 0 for
all deficient vertices u of the RMC A ⊗ B′ (recall ne(u) = fu(x′)/gu(x′), thus (fu(x′))2 > 0
iff ne(u)
= 0), t · g(x′) = f (x′) where t is a new variable that stands for PA (L(B)), and
t ≥ p. The constraints C(x′) and (fu(x′))2 > 0 for deficient vertices u ensure that there

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–8 K. Etessami and M. Yannakakis

is a unique solution which is q′∗, the vector of entry-exit probabilities of A ⊗ B′, and
the constraints t · g(x′) = f (x′), t ≥ p imply that PA (L(B)) ≥ p.

LEMMA 31. Suppose that C satisfies the three conditions of Theorem 30. For every
probable pair (u, t) with u ∈ K, the following are true for each i = 1, . . . , n.

(1) There is a node (u, t′) of C such that t and t′ agree in the first i coordinates.
(2) There is a finite path α(u, t, i) of M′′

A starting at u such that the type of almost all
trajectories of the RMC from u that do not exit u’s component, whose summary image
has prefix α(u, t, i), agrees with t in the first i coordinates.

PROOF. We use induction on i. The basis, i = 1 is trivial: ϕ1 is a proposition and
part (1) is satisfied by any node (u, t′) of C with first component u. Note that C has
such a node since every path of K is the projection of a path of C (by condition (2) and
Lemma 29). As for part (2), we let α(u, t, 1) be the trivial path that consists of node u.

For the induction step, the lemma follows trivially if ϕi is a proposition, or node i of
the parse tree of ϕ is labeled with a Boolean connective, or if it is labeled with U and
the value of ti is determined uniquely by property (3) of consistency, in other words,
ϕi = ϕ jUϕl and tl = 1 or ti = tj = 0. In these cases, if we have a probable pair (u, t) and
a node (u, t′) of C such that t and t′ agree in the first i − 1 coordinates, then they must
agree also in the ith coordinate. Also, we may let α(u, t, i) = α(u, t, i − 1). There are two
remaining cases.

Case 1. i is labeled with the next operator. Suppose that ϕi = ©ϕ j. Let (u, t) be a
probable pair and take any typical trajectory X of the RMC starting at u that does not
exit u’s component and has type t. Consider the summary image ρ(X) of X , let v be
the second node of ρ(X) and s the type of the suffix of X from (this occurrence of) v on.
Since u ∈ K, K is a bottom SCC of M′

A , and there is an edge u → v, it follows that also
v ∈ K.

Subcase 1.1. Suppose first that u is not a call port. Then v is simply the second
vertex of the trajectory X . Clearly, v is in the same component of the RMC as u, the
trajectory does not exit v’s component and since it is typical, the pair (v, s) is probable.
By the induction hypothesis, there is a node (v, s′) of C such that s and s′ agree in the
first i − 1 coordinates. By condition (2) of the theorem and Lemma 29, (v, s′) has an
incoming edge from a node (u, t′) of C with first component u. This node (u, t′) fulfils
the required property 1: the first i coordinates of t′ are determined from the first i − 1
coordinates of s′ in the same way that the corresponding coordinates of t are determined
from s, and note that ti = sj and t′i = s′

j, hence ti = t′i. For part 2, we let α(u, t, i) be u → v

followed by α(v, s, i − 1).

Subcase 1.2. Suppose that u is a call port u = (b , en). The second node v of ρ(X) is
either the entry en of the component of A corresponding to the box b , or it is a return
port v = (b , ex) of the box. In the first case, the argument is exactly the same as above;
note that the suffix of X from v = en on does not exit v’s component and (v, s) is a
probable pair. So suppose that v = (b , ex) is a return port of the box b , and let π be the
prefix of X from u to v. The type t at u is the type that is backwards implied by the
path π and the type s. Again, (v, s) is a probable pair and thus C contains a node (v, s′)
where s′ agrees in the first i− 1 coordinates with s. The equivalence class of the path π
corresponds to one of the parallel summary edges of M′′

A , say edge a, from u to v. From
Lemma 29 it follows that C contains a corresponding edge (u, t′) → (v, s′), such that t′
is the type that is backwards implied from the path π and s′. Since s and s′ agree in
the first i − 1 coordinates, the same is true for all the types implied at corresponding
nodes of the path π , and thus also at u, the first node of the path, as well as at the

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–9

second node of the path π . Since ti and t′i are equal to the respective coordinates l at
the second node, it follows that t and t′ agree in the first i coordinates. As for part 2, we
let α(u, t, i) be the summary edge a from u to v (corresponding to the path π) followed
by the path α(v, s, i − 1).

Case 2. Node i is labeled with the Until operator. Suppose that ϕi = ϕ jUϕl, and that
tj = 1, tl = 0 (we took care of the other possibilities for t). Take a typical trajectory X
of the RMC starting at u that does not exit u’s component and has type t. Let X =
〈ε, u〉x1x2 . . ., and let Y = ρ(X) = uy1y2... be its summary image. We will distinguish
cases according to the value of ti.

Subcase 2.1. ti = 1. Let m be the smallest index such that the suffix xmxm+1 . . . of
X satisfies ϕl; such an index m exists by the definition of U , and for all k < m, the
corresponding suffix from xk on satisfies ϕ j. Suppose first that the summary image
Y = ρ(X) includes the node corresponding to xm, in other words, xm = 〈β, v〉 and all
subsequent xq, q > m include the context β. Let s = tm be the type of the suffix of X
from xm on. Since the trajectory is typical, (v, s) is a probable pair, and the summary
chain contains a path π ′ from u to v (namely, the summary image of the prefix of X up
to xm). Therefore, v is in the same bottom SCC K as u. By the induction hypothesis,
C contains a node (v, s′) such that s′ agrees with s in the first i − 1 coordinates. From
Lemma 29, the path π ′ from u to v in K is the projection of a path in C from some node
(u, t′) to (v, s′). It follows then that t and t′ agree in the first i coordinates (they agree on
coordinate i because all nodes (z, q) along the path have q j = 1 and the final node has
s′
l = sl = 1). We let the path α(u, t, i) be π ′ followed by the path α(v, s, i − 1).

Suppose that the image trajectory Y = ρ(X) in the summary chain does not include
the node corresponding to xm, in other words, it is shortcut by a summary edge (w, v),
where w = (b , en), v = (b , ex) for some box b . That is, for some indices p < m, q > m,
we have xp = 〈β,w〉, xq = 〈β, v〉 and all states of the trajectory X between xp and xq
include the context βb . Let r = tp, s = tq. Again v ∈ K and the pair (v, s) is probable. By
the induction hypothesis, C contains a node (v, s′) such that s that agrees with s′ in the
first i − 1 coordinates. From Lemma 29, the SCC C contains a path from some node
(u, t′) to (v, s′) with projection the path π ′ of M′′

A from u to v corresponding to the prefix
of X up to xq. If we consider this prefix of X up to xq, substitute s′ for the type at xq

in place of s, and then infer backwards the types t′k at the preceding states xk, k < q,
obviously all the types t′k will agree in the first i − 1 coordinates with tk. This implies
in particular that the type at xm will have the lth coordinate t′ml = 1. Since the jth
coordinate in all the preceding states is 1, it follows that t′i = 1, hence t′ agrees with
t in the first i coordinates. We let again the path α(u, t, i) be π ′ followed by the path
α(v, s, i − 1).

Subcase 2.2. ti = 0. Recall that tj = 1, tl = 0. We consider two further subcases.

Subcase 2.2.1. There is a typical trajectory X = 〈ε, u〉x1x2 . . ., starting at u that
does not exit u’s component, has type t, and some suffix of X from some state xm on
satisfies ϕ j = ϕl = 0. The arguments are very similar to the case ti = 1. Consider the
summary image Y = ρ(X). Either it contains the node corresponding to xm or the node
is shortcut by a summary edge. Consider the second case; the first case is similar and
simpler. For some indices p < m, q > m, we have xp = 〈β, u〉, xq = 〈β, v〉 and all states
of the trajectory X between xp and xq include the context βb . Let r = tp, s = tq. Again
v ∈ K and the pair (v, s) is probable, so by the induction hypothesis, there is a node
(v, s′) ∈ C such that s′ agrees with s in the first i − 1. There is a path in C from some
node (u, t′) to (v, s′) with projection the path π ′ of K from u to v that is the summary

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–10 K. Etessami and M. Yannakakis

image of the prefix of X up to xq. Again we can infer backwards the types and conclude
that t, t′ agree in the first i coordinates.

Subcase 2.2.2. For every typical trajectory X , starting at u that does not exit u’s
component and has type t, every suffix of X satisfies ϕ j = 1 or ϕl = 1. Consider such
a typical trajectory X = 〈ε, u〉x1x2 Suppose that there is an index m such that the
suffix xm.... satisfies ϕl = 1, and let m be the smallest such index. Since ϕl = 0 for
smaller indices k < m, it follows that ϕ j = 1 for them, hence from the semantics of the
Until operator it follows that trajectory X satisfies ϕi, contradicting the assumption
that ti = 0. Therefore, it must be the case that every suffix xm.... satisfies ϕl = 0
and hence ϕ j = 1. We will argue that for any v ∈ K, every probable pair (v, s) has
sl = 0, sj = 1, and there is no edge w → v of K that is the projection of a probable
summary edge into (v, s) with label l.

Let (v, s) be a probable pair with v ∈ K and consider the finite path α(v, s, i − 1).
Every trajectory of the summary chain M′′

A starting at u will contain this path as a
subpath with probability 1. In other words, for almost every trajectory X of the RMC
that starts at u and does not exit u’s component, its summary image ρ(X) will contain
this path. Since the type of almost all trajectories whose ρ image has prefix α(v, s, i−1)
agrees with s in the first i − 1 coordinates, and since every suffix of X satisfies ϕl = 0
and ϕ j = 1, it follows that sl = 0 and sj = 1.

Suppose that there is a probable summary edge (w, r) → (v, s) whose label includes
l, and with projection the edge a = w → v of K. Let π be a u − v path of the RMC
corresponding to the summary edge. We know that rl = sl = 0 and rj = sj = 1. Consider
the path consisting of the summary edge a followed by the path α(v, s, i − 1). Every
trajectory of the summary chain M′′

A starting at u will contain this path as a subpath
with probability 1. Thus, almost every nonexiting trajectory X of the RMC starting
at u will have an image ρ(X) that contains this path. Let X = 〈ε, u〉x1x2 . . . be such
a typical trajectory of type t where xp gets mapped to w in the summary chain, xq is
mapped to v, and the subpath π = xp . . . xq is mapped to the summary edge a = w → v.
We may assume wlog (it happens a.s.) that the type of the suffix from xq on agrees
with s in the first i − 1 coordinates. If we infer the types along the path π backwards
from xq, some intermediate state xm of the path will have tml = 1 because the summary
edge includes label l, and clearly this label depends only on the first i − 1 coordinates
of s. By our assumption, no suffix of the trajectory satisfies ϕ j = ϕl = 0. It follows that
the whole trajectory satisfies ϕi = ϕlUϕ j, contradicting our assumption that ti = 0. We
conclude that there is no probable summary edge (w, r) → (v, s) in G with label l where
w, v ∈ K.

In the same way that we showed that if one node of a SCC of G is probable then
all the nodes are probable, we can argue that the same property is true if we restrict
attention to the first i− 1 coordinates of the types. This implies that for all nodes (v, s′)
of C we have s′

l = 0 and s′
j = 1. Also, no summary edge (w, r′) → (v, s′) is labeled l.

(Since l ≤ i − 1, if there was a w − u path π that yielded such a l-labeled summary
edge, then the above argument would still apply by restricting types to the first i − 1
coordinates). By condition (3) of Theorem 30, it follows that all nodes (v, s′) of C have
their ith coordinate s′

i = 0. So we may let (u, t′) be the node of C that agrees with (u, t)
in the first i − 1 coordinates. We may take α(u, t, i) = α(u, t, i − 1).

THEOREM 33. The qualitative problem of determining whether a given RMC A sat-
isfies a LTL formula ϕ with probability 1 (i.e., whether PA (ϕ) = 1) is EXPTIME-hard
(thus EXPTIME-complete). Furthermore, this holds even if the RMC is fixed and each
component has one entry and one exit.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–11

PROOF. We reduce from the acceptance problem for alternating linear space
bounded Turing Machines. As is well known, ASPACE(S(n)) = ∪c>0DTIME(cS(n)). There
is a fixed linear space bounded alternating Turing machine, T, such that the problem
of deciding whether T acccepts a given input of length n is EXPTIME-complete. We
can assume wlog that T has one tape, and uses space n. The tape initially contains the
given input x. Recall that an alternating TM has four types of states: existential, uni-
versal, accepting and rejecting. We assume wlog that the TM has two possible moves
from each existential and universal state, and it halts when it is in an accepting or
rejecting state. Let � be the tape alphabet, Q the set of states and � = � ∪ (Q × �) the
extended tape alphabet. A configuration of the TM is expressed as usual as a string
of length n where the ith symbol is (q, X) ∈ (Q × �) (we will usually write qX instead
of (q, X)) if the head is on the tape cell i, the state is q and the tape symbol is X , and
otherwise the ith symbol is the tape symbol X in cell i. The type of a configuration
(existential, universal, etc.) is determined by the type of the state. A computation is
a sequence of configurations starting from the initial one, according to the transition
rules of the TM. We assume wlog that all computations of the TM halt.

There is a natural game associated with an alternating TM between two players, an
existential player E and a universal player U. The positions of the game correspond to
the configurations. Player E moves at the existential configurations and player U at
the universal ones. Accepting configurations are winning positions for player E, and
rejecting configurations for player U. An input x is accepted by the TM iff the existen-
tial player E has a winning strategy from the initial configuration corresponding to x.

We will construct a RMC, A, and a LTL formula ϕ so that A satisfies ϕ with prob-
ability 1 iff x is not accepted by T, in other words, E does not have a winning strategy.

Let us first mention that the only thing that will matter about A, is its “structure,”
in other words, which edges have nonzero probability. We thus describe these edges
without defining the probabilities explicitly: any probabilites that sum to 1 will do.

The construction of the RMC A is similar to the construction in the proof of
Theorem 17. The RMC A has an initial component C0 and a component C(q, X) for
each state q ∈ Q and tape symbol X ∈ �. Let q0 be the initial state of the TM T, and
let x = x1 · · · xn be the input. Component C0 of A has an edge from its entry to a node
u0, an edge from u0 to a box b0 that is mapped to C(q0, x1) and an edge from the exit
of the box to an absorbing node v0 that has a self-loop.

Component C(q, X), where q is an existential state and X ∈ �, is structured as
follows. Suppose that the two moves of the TM when it is in state q and reads X
are (pk, Yk, Dk), k = 1, 2, where pk ∈ Q is the next state, Yk is the symbol written
over X , and Dk = L/R (left/right) is the direction of the head movement. For each
k = 1, 2, and Z ∈ �, the component has a set of nodes u[q, X , k, Z], v[q, X , k, Z],
and a set of boxes b [q, X , k, Z], each mapped to component C(pk, Z). The entry
en[q, X] of the component C(q, X) has edges to each of the nodes u[q, X , k, Z], every
node u[q, X , k, Z] has an edge to itself and to the call port of the corresponding box
b [q, X , k, Z], the return port of each such box has an edge to the corresponding node
v[q, X , k, Z], and each of these nodes has an edge to itself and to the exit ex[q, X] of the
component.

Component C(q, X), where q is a universal state and X ∈ �, is structured as follows.
Let again the two moves of the TM for q and X be (pk, Yk, Dk), k = 1, 2. For each
k = 1, 2, and Z ∈ �, the component has again a set of nodes u[q, X , k, Z], v[q, X , k, Z],
and a set of boxes b [q, X , k, Z] mapped to C(pk, Z), and has in addition one more
node w[q, X]. The entry of the component C(q, X) has edges to each of the nodes
u[q, X , 1, Z], every node u[q, X , 1, Z] has an edge to itself and to the call port of the
corresponding box b [q, X , 1, Z], the return port of each such box has an edge to the
corresponding node v[q, X , 1, Z], and each of these has an edge to itself and to node

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–12 K. Etessami and M. Yannakakis

w[q, X]. Node w[q, X] has edges to all the nodes u[q, X , 2, Z], every node u[q, X , 2, Z]
has an edge to itself and to the call port of the corresponding box b [q, X , 2, Z], the
return port of each such box has an edge to the corresponding node v[q, X , 2, Z], and
each of these has an edge to itself and to the exit of the component.

Component C(q, X), where q is a halting (accepting or rejecting) state and X ∈ �
has an edge from its entry to a node u[q, X], which has an edge to itself and to a node
v[q, X], and v[q, X] has an edge to itself and to the exit of the component.

We will construct a LTL formula ϕ such that player E has a winning strategy σ
on input x iff there is a path πσ of the RMC A from the initial state to v0 after which
the process stays at v0 forever and the path violates ϕ. Before describing ϕ, we will
describe how the path πσ is constructed from the winning strategy σ of E.

Consider the game tree G of the game corresponding to the TM on the given input
x: The nodes of the tree are the configurations reached by the TM in its computation,
the root is the initial configuration, the children of each node are the two successor
configurations, and the leaves correspond to halting configurations. An existential
strategy σ corresponds to a subtree Gσ of G that contains one child of each (reachable)
existential configuration (nodes that are not reachable any more from the root are not
included in Gσ). We consider the two children of each node as being ordered according
to the indexing (k = 1, 2) of the two moves of the configuration. If σ is a winning
strategy of player E then all the leaves of Gσ are accepting configurations.

Perform a depth-first-search traversal α = (a1, a2, ...) of the existential game tree Gσ .
We map this traversal to the path πσ of the RMC A as follows. Initially, πσ starts at the
initial entry node moves to u0, enters the box b0 and it is thus in state 〈b0, en[q0, x1]〉.

In the general step l, suppose that the traversal α is at a node al (initially, a1
is the root of the tree), and moves next to al+1 which is either a child of al or its
parent. Suppose that al is an existential node and al+1 is its child, corresponding to
the kth move (k = 1 or 2) of the existential configuration cl of the TM corresponding
to node al. Let q be the state of the TM in configuration cl, and let i be the index of
the cell where the tape head is and let X be the symbol at cell i. Then the path πσ

constructed so far is at this point at a state 〈β, en[q, X]〉 where the context β consists
of a sequence of boxes corresponding to the sequence of configurations on the path
of the tree Gσ from the root to the current node al. The path πσ of the RMC moves
from the entry en[q, X] of component C(q, X) to u[q, X , k, Z] where Z is the symbol
in the current configuration cl of the new cell (i − 1 or i + 1) to which the head will
move next according to the kth move of the TM. The path stays at u[q, X , k, Z] for
i steps, and then it moves to the entry of the box b [q, X , k, Z]. The new state of the
trajectory πσ becomes 〈βb [q, X , k, Z], en[pk, Z]〉, ready to simulate the next step of the
traversal α.

If the current node al of the DFS traversal α corresponds to a universal configura-
tion cl and the next node al+1 is its first child, then the path πσ is extended similarly
from the entry node of the appropriate component. If al+1 is the second child of al, then
the path is at this point at a state 〈β,w[q, X]〉, where the context β again consists of
a sequence of boxes corresponding to the sequence of configurations on the path of the
tree Gσ from the root to the current node al, and q, X are respectively the state and
tape symbol under the head of the current configuration cl. From there the path is
extended similarly by moving to the appropriate successor u[q, X , 2, Z], staying there
for i steps (where i is the index of the cell of the tape head) and entering then the box
b [q, X , 2, Z], ready for the next step.

If al is a leaf, then the path loops i times at u[q, X] and at v[q, X] and then proceeds
to the exit of the current component C(q, X) and returns to the return port of the
innermost box b [q′, X ′, k, X] from the context. Note that al+1 is the parent of al in the
tree, and the corresponding configuration has state q′, tape head symbol X ′ and the

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–13

head is at some cell j. The path πσ then proceeds to v[q′, X ′, k, X], stays there for j
steps and then moves on to its successor, which is either the node w[q′, X ′] (if cl+1 is a
universal configuration and al was its first child) or the exit node ex[q′, X ′].

In general, if the next step al → al+1 of the DFS traversal is a backtracking step
from a node to its parent, the path πσ of the RMC is extended in a similar way. At
the end, when the traversal α returns to the root of the tree, the path πσ reaches the
return port of the box b0 of the top component C0, and from there it goes to v0.

We will construct a LTL formula ξ which says that the path of the RMC is of the
form πσ just described, corresponding to a DFS traversal α of an accepting existential
strategy tree Gσ . We let ϕ = ¬ξ . Then PA (ϕ) < 1 iff PA (ξ) > 0 iff there is such a path
πσ iff E has a winning strategy, in other words, iff the TM accepts the input x.

For simplicity, we have one proposition for each node of the RMC. The formula ξ is
a conjunction of several subformulas. First, we want the path to reach v0, and we do
not want it to go through a rejecting state. So, let ξ1 = (∧q,X ¬u[q, X])Uv0 where the
conjunction ranges over all pairs (q, X) with q a rejecting state and X ∈ �.

Second, we build a formula ξ2 that ensures that the tape head starts from cell 1
and moves correctly in each step. The position of the tape head is represented by
the number of iterations at a vertex u[] or at a vertex v[]. Let u be the disjunction
of all the u[] propositions (not u0), and similarly let v be the disjunction of all the v[]
propositions (not v0). The expression ψi = (¬u)∧ (

∧i
j=1 © ju)∧ (¬©i+1 u) says that in the

next step the path moves to a u[] node and stays there for exactly i steps. Similarly we
can define an expression ψ ′

i for v. For the initialization part, the formula ¬uUψ1 says
that the head starts at cell 1, and is included in ξ2. The formula �[(¬u∧©u) → ∨n

i=1ψi]
says that the path never loops more than n times at a node u[], and is also included in
ξ2, and similarly we include a corresponding formula for v.

For a state-symbol pair (q, X), suppose that the kth transition (k = 1, 2) of the
TM from (q, X) is (pk, Yk, Dk), where Dk is L or R, say for concreteness that Dk = L.
Then, if the path is at a vertex u[q, X , k, Z] and stays for i steps there, which means
that the head is at cell i, we want to ensure that the next time the path goes to
a u[] node, it stays there for i − 1 steps. Let χ (i, L) = ψi ∧ ©i+1(¬uUψi−1)). We
include in ξ2 the formula �[(¬u ∧ ©∨

Z u[q, X , k, Z]) → ∨n
i=1 χ (i, L)]. We define an

analogous expression χ (i, R) for right moves and include in ξ2 an analogous formula
for transitions where the head moves right.

Similar formulas are defined and included in ξ2 for the v nodes to ensure that they
restore the correct head position during the backtracking when we return from a
recursive call. Note that the tag [q, X , k, Z] of the box (and the subsequent v node)
tells us which way the head moved when we entered the box, so that we move it in the
opposite direction to restore its position.

If q is a universal state, then we include a formula in ξ2 to ensure that the number
of iterations at a node v[q, X , 1, Z] is the same as the number of iterations at the next
node u[q, X , 2, Z ′]. For q a halting state, we have a subformula in ξ2 that matches
the number of iterations at the u[q, X] node with those at the next v[q, X] node. The
formula ξ2 is the conjunction of all these subformulas.

Finally, we have a formula ξ3 which ensures that in every cell i the tape symbol is
initially the input symbol xi and thereafter it is only changed when the head is at that
cell. That is, (1) the first time that the head is at cell i (i.e., when ψi holds for the first
time, if ever) the tape symbol is xi; this can be expressed as �[¬ψiU ((ψi ∧©u[xi]) ∨ v0)],
where u[xi] is the disjunction of all the u[] propositions with tape symbol X = xi. (2) If
a step puts a symbol Y at cell i (this happens either at a u[] node that moves to a new
configuration or at a v[] node that restores an old configuration), then the next time
that the head moves to cell i (if there is a next time) it finds the same symbol Y there.
First construct a formula put(Y, i), which is the disjunction of all ψi ∧ ©u[q, X , k, Z],

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

12:App–14 K. Etessami and M. Yannakakis

where the kth transition of (q, X) is (pk, Y, Dk), and of all ψ ′
i ∧ ©v[q, Y, k, Z], for all

q, k, Z . Then we have �[put(Y, i) → ©i+1(¬ψiU ((ψi ∧ ©u[Y]) ∨ v0)].
The formula ξ is the conjunction of ξ1, ξ2 and ξ3.
A trajectory of the RMC satisfies ξ iff it has as a prefix the path πσ for a winning

strategy σ of the existential player.

LEMMA 34. Probabilities P′(u, t) satisfy constraints 2a–2c.

PROOF. (2a) is obvious: Every trajectory that starts at u and does not exit must have
some type, and the types t for which (u, t) is not probable (for which we did not include
variables) have probability 0.

For (2b), consider the typical trajectories X that start at u and do not exit u’s com-
ponent. Then Y = ρ(X) is a trajectory of M′

A . With probability p′
u,v the second vertex

is v, the trajectory does not exit the component of v (which is the same as that of u),
and the trajectory from v on has type s with probability P′(v, s); the type of X will be t
iff there is an edge (u, t) → (v, s) in H.

For (2c), consider again the typical trajectories X that start at u = (b , en) and do not
exit u’s component, and let Y = ρ(X). There are two kinds of such trajectories. The
first kind consists of those that never exit the box b , that is, they enter the component
corresponding to b at the entry node en and never reach an exit. This happens with
probability p′

u,en. The subsequent trajectory from en does not exit its component, and
has type s will probability P′(en, s); the type of the whole trajectory X will be t iff there
is an edge (u, t) → (en, s) in H. The second kind of trajectories X consists of those that
eventually exit the box b at some return port v = (b , ex), (i.e., v is the second node of the
image trajectory Y = ρ(X) in M′

A), but then the rest of X from v does not reach the exit
of the component of v (which is the same as the component of u). This happens with
probability p′

u,v. The rest of the trajectory from v has type s with probability P′(v, s).
Then X has type t if the u − v path that was followed to exit the box b implies back t
from s; this happens with probability p′

u,v fu,v,t,s.

LEMMA 35. The system (2) of linear equations in the variables z(u, t) has a unique
solution.

PROOF. From the summary chain M′
A we form a refined chain M′′

A as described in
the previous section, where we replace every summary edge u → v of M′

A by a set
of parallel edges, one for each equivalence class of u − v paths, and we distribute the
transition probability of the edge u → v among these parallel edges proportionately
to the probability of the paths of the RMC that they represent. Then p′

u,v fu,v,t,s is the
sum of transition probabilities on the parallel edges of M′′

A corresponding to the classes
where s at v maps back to t at u.

Let us also introduce parallel edges and edge weights in the graph H: Replace every
summary edge (u, t) → (v, s) of H by a set of parallel edges, one for each equivalence
class of u − v paths that imply back t at u from s at v. Let H′ be the resulting multi-
graph. Now every edge a′ of H′ corresponds to a unique edge a of M′′

A ; give weight to
edge a′ equal to the transition probability on edge a of M′′

A . The edge weights of H′
do not make H′ into a Markov chain because weights out of a node may not sum to
1. Note that every path of H′ corresponds to (we’ll say, projects onto) a unique path of
M′′

A . Furthermore, for every node (v, s) of H′ and every edge a = u → v of M′′
A , the

graph H′ contains a unique corresponding edge a′ into (v, s); the head of the edge is a
node (u, t) for some t.

The proof of the lemma uses a similar technique to that of Proposition 5.11 in
Courcoubetis and Yannakakis [1995]. Write the system of equations (2b–2c) as
z = Bz where z is the vector of variables z(u, t) and B is the coefficient matrix of the

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

Model Checking of Recursive Probabilistic Systems 12:App–15

right-hand side. The rows and columns of B are indexed by the probable pairs, and
the entry B[(u, t), (v, s)] is equal to the sum of the weights of the edges (u, t) → (v, s)
of H′. If α is a finite path (sequence of edges) of M′′

A or H′, then we denote by w(α)
the product of the probabilities (or weights) of the edges along the path α and call it
the weight of α. Consider the jth power Bj of B. Then Bj[(u, t), (v, s)] is the sum of the
weights of the paths α′ of length j of H′ from (u, t) to (v, s). Every such path projects to
a unique path α of M′′

A from u to v, and α has the same weight.
A trajectory of the (refined) summary Markov chain M′′

A starting at any node u hits
with probability 1 eventually a bottom SCC K. Recall from Lemma 31 that if v is any
node of K and s any type such that (v, s) is probable, then there is a finite path α(v, s, n)
such that any trajectory of M′′

A from v with prefix α(v, s, n) has type s with probability
1. A trajectory from u that hits K will eventually with probability 1 contain the path
α(v, s, n) as a subpath. If β is finite a path of M′′

A from a node u that hits a bottom
SCC K and includes a subpath α(v, s, n) for some v ∈ K and type s such that (v, s) is
probable, then we will say that β is determined. We assign to such a β a unique type
t, which is the type that is backwards implied by the prefix from u to the occurrence
of v right before the subpath α(v, s, n) and the type s at v. Clearly, H′ contains a path
corresponding to β starting at (u, t) (the path goes on to (v, s) and continues from there).
Furthermore, H′ has no path corresponding to β starting at any other node (u, t′) for
any other type t′
= t. The reason is that such a path would have to go to a node (v, s′)
with s′
= s followed by a path corresponding to α(v, s, n); but then (v, s′) cannot be a prob-
able pair, because almost all trajectories of M′′

A from v with prefix α(v, s, n) have type s.
Let dj(u, t, v) be the sum of the weights (probabilities) of the paths β of M′′

A of
length j from u to v that are determined of type t. Let dj (u, t) =

∑
v dj (u, t, v), let

dj(u) =
∑

t dj(u, t), and let ε j(u) = 1 − dj(u). The last quantity ε j(u) is the probability
that a path of M′′

A of length j starting at u is not determined. Thus, by the definition
and our discussion above, ε j(u) → 0 as j → ∞.

Consider a path β from u to v of length j that is determined of type t, in other words,
β contributes weight w(β) to dj(u, t, v). As we said above, no node (u, t′) with t′
= t has a
path corresponding to β. For every node (v, s) of H′ there is a path ending at (v, s) that
corresponds to β; this path has to start at (u, t). Therefore β contributes weight w(β)
to Bj[(u, t), (v, s)] for every s, and does not contribute to any Bj[(u, t′), (v, s) with t′
= t.
Therefore, for any s we have dj(u, t, v) ≤ Bj[(u, t), (v, s)].

Conversely, consider a path β of M′′
A that contributes its weight to Bj[(u, t), (v, s)],

in other words, β is the projection of a path in H′ of length j from (u, t) to (v, s).
If β is determined then its type must be t and its weight is included in dj(u, t, v).
The set of paths of length j that are not determined have total weight ε j(u).
Therefore, Bj[(u, t), (v, s)] ≤ dj(u, t, v) + ε j(u). Since lim j→∞ ε j(u) = 0, it follows that
lim j→∞(Bj[(u, t), (v, s)] − dj(u, t, v)) = 0.

Note that if a path β is determined then so are all its extensions and they have
the same type t. Therefore, dj(u, t) is a nondecreasing function of j, and since it is
bounded from above by 1, it has a limit d∞(u, t). If z is any solution to the system
(2) then for any j it satisfies z = Bjz. Thus, z(u, t) =

∑
(v,s) Bj[(u, t), (v, s)]z(v, s) =

∑
(v,s)(B

j[(u, t), (v, s)] − dj(u, t, v))z(v, s) +
∑

(v,s) dj(u, t, v)z(v, s). As j tends to ∞, the
first term tends to 0 and the second term tends to d∞(u, t). It follows that z(u, t) =
d∞(u, t).

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 12, Publication date: April 2012.

