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Abstract The concept okvolutionarily stable strategieESS) has been cen-
tral to applications of game theory in evolutionary biolpggd it has also had an
influence on the modern development of game theoryedular ESS is an im-
portant refinement the ESS concept. Although there is a antist literature on
computing evolutionarily stable strategies, the prec@mputational complexity
of determining the existence of an ESS in a symmetric twggylatrategic form
game has remained open, though it has been speculated éhatothiem iSNP-
hard. In this paper we show that determining the existen@dSS is botiNP-
hard anccoNP-hard, and that the problem is containe®i§, the second level of
the polynomial time hierarchy. We also show that deterngrilre existence of a
regular ESS is indeeNP-complete. Our upper bounds also yield algorithms for
computing a (regular) ESS, if one exists, with the same cerifis.

Key words computational complexity — game theory — evolutionarigbde stra-
tegies — evolutionary biology — Nash equilibria

1 Introduction

Game theoretic methods have been applied for a long timeutlty ggthenomena
in evolutionary biology, most systematically since theng@ering work of May-

nard Smith in the 1970’s and 80’s ([SP73,May82]). Since noiutionary game
theoryhas been used to understand a diverse range of sometimdsicouuitive

phenomena in biology, and it has also had an important inflel@m the modern
development of game theory (see, e.g., [vD91, Wei97,HS®8}) an overview of
evolutionary game theory and a sampling of its many apptioatin zoology and
botany, see the survey by Hammerstein and Selten [HS94Y. fleation among
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other applications, analysis of animal fighting and mataftgpring sex ratios, and
flower size.

A central conceptin evolutionary game theory is the notiberoevolutionarily
stable strategy (ESS) in a symmetric two-player strategimfgame, introduced
by Maynard Smith and Price ([SP73]). An ESS is a particuladlof mixed (ran-
domized) strategy, where the probabilities in the mixedtetyy are now viewed
as denoting percentages in a population exhibiting diffepossible behaviors.
To be an ESS, a mixed strategynust first constitute a Nash equilibriurs, s),
when played against itself. This means that a “best response” to itself, i.e., that
the expected payoff for a player who playsgainsts is the maximum possible
payoff of any strategy against Secondly, to be an ESSmust in a precise sense
be “impervious to invasion” by other strategies. Specifical must be the case
that if a different strategyis also a best responsedpthen the expected payoff of
playing s against must be strictly greater than the payoff of playihagainst:.

It was shown already by Nash [Nas51] that every symmetritesiic form
game contains a symmetric Nash equilibrigss). However, not all symmet-
ric 2-player games contain an ESS: rock-paper-scissoesgvsimple counter-
example (see below). Thus, one may ask: what is the compngttomplexity of
determining whether an ESS exists in a 2-player strategiseg@avith, say, rational
payoffs)? And, if an ESS does exist, what is the complexitgatfially computing
one? The complexity of computing an arbitrary Nash equilitor for a 2-player
strategic form game is a well-known open problem (see, f2gp01]). It is com-
putable inNP (as a function), but neither known to b#-hard nor known to be
computable in polynomial time. HowevedP-hardness is known for computing
Nash equilibria that satisfy any of several additional ddsie conditions, such as
equilibria that optimize “social welfare”, and this is sceevfor symmetric games
([GZz89,CS03)). It has thus been speculated that finding & B8y also b&P-
hard, but no proof was known.

A regularESS is an important refinement of the ESS concept. This is &) ES
s, where the “support set” of, i.e., the set of pure strategies that are played
with non-zero probability ins, already contains all pure strategies that are best
responses te. There are several equivalent definitions of regular ES@ss&hyi
[Har73b] introduced regular equilibria as a refinement & tash equilibrium
concept, and showed that “almost all” strategic form ganwegain only regular
equilibria, where “almost all” here means that the game# wiegular equilib-
ria constitute a set of measure zero in a suitably defined uneapace on games.
There are other, weaker refinements of Nash equilibria, as¢huasi-strict” equi-
librium, also introduced by Harsanyi [Har73a]. For symriee®-player games, it
turns out that the definition of a regular ESS coincides witit bf an ESS that is a
quasi-strict Nash equilibrium. Other equivalent formidas of regular ESSs make
the notion rather robust (see, e.g., [vD91, Sel83, Bom&&e van Damme’s excel-
lent book [vD91] for a comprehensive treatment of refinermefitNash equilibria,
and their ramifications for evolutionarily stable stratgi

As a simple example of ESSs, consider a parametrized (nessedly zero-
sum) version of rock-papers-scissors, which has the pdoyoffiatrix:
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(a,a) (1,-1) (-1,1)
(-1,1) (a,a) (1,-1)
(1,-1) (-1,1) (a,a)

with the parametet. € R. One can show that, far < 1, there is exactly one
symmetric Nash equilibrium, namely = (1,1, %), and that fora > 1 there
are precisely three additional symmetric NEs: the pureegiass' = (1,0,0),
s? = (0,1,0), ands® = (0,0, 1). Note that any strategyis a best response to
Hence, fors to be an ESS, playingagainst must yield higher utility, which is;
for all t, than playing against itself. The payoff faragainst itself can, fos > 0,
be at mostz with equality holding ifft € {s!, s%, s3}, and fora < 0, it can be
at mostg with equality holding ifft = s. Thus,s is an ESS iffa < 0. If so, s is
regular because its support contains all pure strategibgnWe look at the pure
strategies® to s%, we must distinguish between> 1 anda = 1. Fora > 1, s' is
the only best response 16, therefores is a regular ESS toal(< ¢ < 3). In the
casen = 1, the extended support ef is {i, j} wherej = ((i + 1) mod 3) + 1.
Playings’ against itself gives payoff whereas playing® againsts’ gives payoff
—1. Thus, s is not an ESS foi € {1,2,3}, whena = 1. All in all, we have
one regular ESS fo# < 0, no ESS for0 < a < 1 and three regular ESSs for
a > 1. These games have no non-regular ESSs. If, however, théffary s, s)
was changed t¢b, b) instead of(a,a) with b < —1 anda = 1, thens® would
be the only non-regular ESS. This is beca(ise s!) is a symmetric NE and for
any best response = (t1,0,1 — t1) to s, we have that the payoff of playing
s! againstt is 2t; — 1 and that of playing againstt is t? + b(1 — ¢1)%. Now,
2t — 1> t2 4+ b(1 —t1)? forall 0 < ¢; < 1iff b < —1. Of course, this analysis
of ESSs only applies to these special parametrized rockspsgpssors games.

In this paper we show that determining the existence of an BSESgiven
symmetric 2-player strategic form game with rational p&yof bothNP-hard and
coNP-hard under polynomial-time many-one reductions, and thasit is not in
NP, nor incoNP, unlessNP=coNP. Furthermore, as an upper bound, we show
that determining the existence of an ESS is containeijnthe second level of
the polynomial time hierarchy. (See section 2.1 for backgtbon computational
complexity.) On the other hand, we show that determiningetkistence of a reg-
ular ESS isNP-complete. Our upper bounds also yield algorithms to comjput
(regular) ESS, if one exists, with the same complexitiesnour bounds it also
follows that computing the number of (regular) ESS¢tis-hard ¢P-complete,
respectively).

Our NP-hardness result for ESSs provides a reduction f@# that yields
a 1-1 correspondence between satisfying assignments ofFabBblean formula
and the ESSs in the game to which it is reduced. This is regeénisof, but sub-
stantially different from, the reduction of Conitzer anch8aolm [CS03] for Nash
equilibria. Furthermore, these ESSs will all be regulad HrereforeNP-hardness
for regular ESSs also follows. FooNP-hardness of the ESS problem, we provide
a reduction frontoCLIQUE to the ESS problem. In doing so, we make essential
use of a classic characterization of maximum clique sizegquiadratic programs,
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due to Motzkin and Straus [MS65]. From our hardness reswisalso easily de-
rive an inapproximability result for (regular) ESSs.

Our upper bounds combine criteria for the existence of E&Sedhon quadratic
forms, together with known results about the complexity o&dratic program-
ming decision problems. There is a substantial literaturea@mputing evolution-
arily stable strategies, and on its connections to mathealgirogramming (see,
e.g., [Bom92,BP89,Bom02], and see [MW@7] for a different computational
perspective based on dynamics). In particular, Bomze [Bfjrdéveloped criteria
for ESSs, based on copositivity of a matrix over a cone, ares tisese to pro-
vide an algorithm for enumerating all ESSs in a game. Higgatbuild on earlier
criteria for ESSs developed by Haigh ([Hai75]) and AbakJk&a80]). Bomze's
enumeration algorithm uses a recursive elimination prapethat involves some
complications including a possible numerical blowup isésee Section 4 for an
explanation). We were thus unable to deduce B§rupper bounds for ESSs di-
rectly from Bomze’s algorithms. We instead provide a selfiained development
of all the criteria we need, directly building variants oktkaigh-Abakuks cri-
teria and Bomze’s criteria, and we then employ a result byases/[Vav90] on
the computational complexity of the quadratic programndegision problem, to
obtain ourX% upper bounds for ESSs. For regular ESSs, KBrupper bound
follows from simpler modifications of the Haigh-Abakuksteria, together with
basic facts from matrix theory.

The plan of the paper is as follows. Section 2 provides déimitand gives
some brief background on computational complexity theSgction 3 provides
hardness results for both ESSs and regular ESSs. Sectioovitips our upper
bounds for both. We conclude in Section 5.

2 Definitions and Notation

Foran x n-matrix A4, and subset$, J C {1,...,n}, let A; ; denote the subma-
trix of A defined by deleting the rows with indexes not/iand deleting columns
with indexes not inJ. Likewise, for (row) vectorr, definer; := x; (1) (z{1},1),
viewing z as an x 1-matrix (1 x n-matrix, respectively). LeAA” denote the trans-
pose ofA. Likewise, forz”. Unless stated otherwise, we assume all vectors are
column vectors. A real symmetricx n-matrix A is positive definiteif z7 Az > 0
forall z € R™ — {0}. Recall the determinant criterion for positive definitesies
a symmetric matrixA is positive definite if and only itlet(A; ;) > 0 for all
I ={1,...,i}, 1 < i < n, wheredet denotes the determinant of a square
matrix (see, e.g., [LT85]). Thus, in particular, positivefiditeness of a rational
symmetric matrix can be detected in polynomial time. A rgahmetric matrix
A is callednegative definiteif (—A) is positive definite. Note, for anyl andz,
2T Az = 27 Az, whered’ := 1(A + AT) is a symmetric matrix. We thus say a
generaln x n matrix A is positive (negative) definité A’ is positive (negative)
definite, and we can use the determinant criteriom6to detect this.

We now recall some basic definitions of game theory (see, [©R94]). A
finite two-player strategic form game I = (51, S2,u1,u2) is given by finite
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sets of strategie§; and.S; and utility, or payoff functionsu; : S; x Sy — R
anduy : S1 x Sz — R for player one and two, respectively. Such a game is
calledsymmetric if S; = So =: S andwu;(i,5) = uo(j,4) forall i,j € S.
We are only concerned with symmetric 2-player games in thjsep, so we write
(S,uq1) as shorthand fotS, S, u1, us2), with uz(j,4) = u1(4, j) fori,5 € S. For
simplicity assumes = {1,...,n}, i.e., pure strategies are identified with integers
i,1<i1<n.

In what follows we only consider finite symmetric two-playstrategic form
games. Th@ayoff matrix Ap = (a; ;) of I' = (S,u1) is given bya, ; = u1 (i, j)
fori,j € S. (Note thatAr is not necessarily symmetric, evenliif is a sym-
metric game.) Amixed strategy s = (s(1),...,s(n))? for I' = (S,u) is a
vector that defines a probability distribution ¢h Thus,s € X, whereX =
{s e R%,: Y7, s(i) = 1} denotes the set of mixed strategies/ins is called
pure iff s(i) = 1 for somei € S. In that case we identify with . For brevity,
we generally use “strategy” to refer to a mixed strateggnd indicate otherwise
when the strategy is pure. In our notation, we alternativedyv a mixed strategy
as either a vectq(sy, . .., s,)’, or as a functioss : S — R, depending on which
is more convenient in the context.

Theexpected payoffunction,U;, : X x X — R for playerk € {1, 2} is given
by Uk(s,t) = >, jes s(O)t(j)ux(i, ), for all s, € X. Note thatUi(s,t) =
sTArt andUs(s,t) = sT ALt. Let s be a strategy fol” = (S, u;). A strategy
t € X is abest responseto s if Ui(t,s) = maxyecx Ui(t, s). The support
supp(s) of s is the set{i € S : s(i) > 0} of pure strategies which are played
with non-zero probability. Theextended supportext-supp(s) of s is the set
{i € S:Uy(i,s) = maxzex Ui (z, s)} of all pure best responses o

A pair of strategieqs,t) is a Nash equilibrium (NE) for I" if s is a best
response t@ andt is a best response to Note that(s, t) is a NE if and only if
supp(s) C ext-supp(t) andsupp(t) C ext-supp(s). A NE (s,t) is symmetric
if s = t. It was shown already in [Nas51] that every symmetric ganrdgaios a
symmetric NE.

Definition 1 A mixed strategy € X in a 2-player symmetric gamg is an evo-
lutionarily stable strategy (ESS) of I if:

1. (s, s) is a symmetric Nash equilibrium &f, and
2. ift € X is any best response toandt # s, thenU; (s, t) > Uy (¢, t).

An ESSs is regular if supp(s) = ext-supp(s).

2.1 Background from computational complexity

For the benefit of readers unfamiliar with computational ptexity theory we
briefly review some of its basic concepts and definitions. proper treatments
please see, e.g., the books [GJ79,Pap94].

A yes/no decision problem can be described by a set of stringse., a
languagé over a finite alphabel’, by using a fixed encoding scheme. Namely,
L C X contains exactly those stringsc X* that encode problem instances for



6 K. Etessami, A. Lochbihler

which the decision answer is “yes”. Of course, there are npsgible encoding
schemes for the same problem, some more concise than dfhersncodings we
use for problems we consider in this paper are standard, dlhditier be made
explicit or will be clear from the context. Turing MachineB\s) are a universal
model of computation, and can be used as acceptors of laaguAgleterminis-
tic Turing Machine (DTM),M, is said to accept an input string € X* iff the
computation of\/ on inputw halts in a designated accepting state, and otherwise
it is said to rejectw. A non-deterministic Turing Machine (NTM) is said to ac-
cept an inputw iff there exists at least one computation/df on w that halts in
an accepting state. For a decision problenwe say that a TMV/ decidesL, or
acceptd,, if on all inputsw all computations of\f halt, and furthermore for every
w € X*, M acceptsw if and only if w € L. For a functionf : N — N, we say
that a TM, M, is f(n)-time bounded, if fonv € X* every computation of\/ on

w takes no more thayfi(n) steps to halt, where = |w| is the length of the string
w. A decision probleml is said to have (non-deterministic) time complexity at
mostf if there exists & (n)-time bounded (non-deterministic) Turing machive
that decided.. Let DTIME( f) (NTIME( f)) denote the set of all languages with
(non-deterministic) time complexity at mogt

Standard complexity classes likeandNP consist of a set of decision prob-
lems, i.e., a set of languages, namely those that are acceptéuring machines
with given resource constraints. The complexity classesamesider in this pa-
per are as followsP = [J{DTIME(f)|f a polynomial inn} is the set of all
languaged. for which a polynomial-time bounded DTM exists that decides
NP = [J{NTIME(f)|f(n) a polynomial inn} is the non-deterministic analog of
P. Equivalently,L € NP iff there is a polynomial-time DTMV/ and a polynomial
p(n) such that for alle € £*, = € L iff there exists ay € X7(=D) such that\/
accepts the paifz,y). coNP = {¥* — L|L C ¥* A L € NP} is the class of
complements of languagesNP. X% is the second level of the polynomial-time
hiearchy, and can be defined as the set of all languades which there exists
a polynomial-time DTM,M, and polynomial®, (n) andpz(n) such that for all
x € X*, z € L iff there exists ay € XP1(*) such that for al € Xr2(=D) pr
accepts the tripléz, y, 2).

By contrast to these classes of decision problétRss a complexity class for
counting problems. These classes consist of a set of fursggia X* — N. A
counting probleny is in #P iff there exists a polynomial-time bounded NT¥,
such that the number of accepting computation&/obn inputw is equal tag(w).

For a decision complexity class, a decision problem (encoded as language
L C X*)is said to beC-hard iff there is a polynomial-time many-one (a.k.a.,
Karp) reduction from every probler’ in C to L. A polynomial-time many-one
reduction fromL’ C I'* to L C X*, is a functionf : I'* — X* computable in
polynomial time by a DTM such that € L' iff f(x) € L. If such a reduction ex-
ists, we say thaL’ is (many-one P-time) reducible foand denote it by.” <,, L.

If L € C andL is C-hard we say thal is C-complete Note that polynomial-
time many-one reductions are transitive, i.eLiK, L’ andL’ <, L”, then also
L <, L".Hence, to show thdt is C-hard it is sufficient to show’ <,, L for some
already known C-hard problery’. Appropriate notions of reduction, hardness,
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and completeness also exist for counting classes su#R ds particular, a “par-
simonious” polynomial-time many-one reductigf),from one counting problem,

g to another counting problemis one that preserves the number of solutions, i.e.,
g(x) = h(f(z)). There aretP-complete problems under such reductions, such as
#SAT (see below). For more details see, e.g., [Pap94, Val79].

In this paper, we look at the following decision and countprgblems: let
ESS (REG-ESS) denote the decision problem of whether a symmetric 2-playe
gamel, specified by a rational payoff matrid for player 1, has at least one
(regular) evolutionarily stable strategy. The encodingdif®r rational values is the
standard one: numerator and denominator are given in bihatyESS (#REG-
ESS) denote the counting problem of computing how many (regU#8Ss the
gamel has.

Our reductions will involve some standard known completgbpgms for var-
ious complexity classes. Here we recall some of them. Asluanaundirected
graphG = (V, E) has verticed” and a symmetric edge sé&t C V x V where
(i,7) € E = (j,1) € F,and(i,7) ¢ E, forall:,j € V. Let Ag denote the sym-
metric adjacency matrix of undirected gragh A clique C C V of G = (V, E)
is a subset of such that(C x C) — E = {(i,i) | i € C}. Letw(G) de-
note the maximum cardinality of a clique @. Let coCLIQUE = {(G,¢) | c €
N andw(G) < c¢}. ThuscoCLIQUE denotes the decision problem of, given an
undirected grapliy andc € N, determining whetheé does_nothave a clique
of sizec. coCLIQUE is coNP-complete. The satisfiability proble®AT (#SAT)
asks whether there exists a satisfying assignment (or hawy isetisfying assign-
ments there are, respectively) for a given Boolean formuleoinjunctive normal
form. SAT is NP-complete andtSAT is #P-complete.

3 Hardness results
3.1 ESSiscoNP-hard

We first show thaESS is coNP-hard by providing a polynomial-time (many-
one) reduction frontoCLIQUE to ESS. In doing so, we make essential use of
the following classic result due to Motzkin and Straus [ME65

Theorem 1 [MS65]LetG = (V, E) be an undirected graph with maximum clique

sized. LetA; = {I S RLVO‘ : Zl‘;‘l T, = 1}. Thenmax,eca, 27 Agz = %_

Note that one direction of this theorem is immediate: givetigue C' of size
d of G, if we chooser to be the vector in whicke; = 1/d if and only if ver-
tex i is in the cliqueC, then it is easily checked that’ Aqz = %, and thus
maxz € AjaT Aga > %.

Corollary 1 LetG = (V, E) be an undirected graph with maximum clique size
and letl € R>q. LetA, = {a: € R'ZVO‘ : Zl‘;‘l o l}. ThenzTAga < <212
forall x € A;.
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1 2 . . . cn—1 n a b c
1 1 0 0
2 1 0 0
n—1 1 0 0
n 1 0 0
o K& 00 (k1 1 0 o0
k k k
b 1 1 1 0 o 0
c 1 1 1 0 0 0

Fig. 1 The payoff matrix for player 1 in the ganié,(G).

Proof Forl = 0, Ay = {0} and thus0” A0 = 0. Supposé > 0. Letz € 4,
and sety = {z. Theny € Ay, and by Theorem 137 Agz = (ly)T Ac(ly) =
PyTAgy < 12%. O

Definition 2 For an undirected graplG = (V, E) andk € N define the game
I'v(G) = (S, u1) where

— 8 =V U/{a,b,c} are the strategies for the players whergh, c ¢ V.
— The payoffs (to player 1) are given by:

—wuy(i,j) = 1forall i, j € V with (i,j) € E.

—uy(i,j) =0foralli,j € V with (i, j) ¢ E.

—ui(z,a) =1forall z € S — {b,c}.
—uy(a,i) =22 forallie V.

—ui(y,i) = 1forally € {b,c} andi € V.
—u1(y,a) =0forall y € {b,c}.

—uy(z,y) =0forall z € Sandy € {b, c}.

In other words, the payoff matrix for player 1 looks like thatrix depicted in
Figure 1 (where the submatrit; denotes the adjacency matrix of the gra@h

The idea behind this matrix is that ondycan be a ESS (dependentbrc d).
a is not an ESS iff there is no cliqué of size (at least} in G because playing
all strategies front' with equal probability is a best responseaitthat violates the
stability requirement fot being an ESS.
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Theorem 2Let G = (V, E) be an undirected grapt’;(G) has an ESS iff G has
no clique of sizé&. Thus,ESS is coNP-hard.

Proof Let G = (V, E) be an undirected graph with maximum clique sizé\e
consider the gamé}, (G). We first show that any ESS of I (G) must satisfy
supp(s) N {b, c}, supp(s) € V, ands(a) = 1. Next, we show thafa, a) is in fact
a NE and that is an ESS iffd < k.

Supposes is an ESS ofl ,(G). Thensupp(s) N {b,c¢} = 0, because if not
lett # s be a strategy witht(i) = s(i) fori € V, t(y) = s(b) + s(c) and
t(y') = 0 wherey,y’ € {b,c} such thaty # vy’ ands(y) = min {s(b), s(c)}.
Sinceu (b, z) = ui(c, z) forall z € S,

Uir(t,s) =Y (i) Ur(i, ) + (t(b) + t(c)) Ur (b, 5) = Ur(s, 5)
'LGV : H—/H,—/
=s(i) =s(b)+s(c) =Ui(c,s)

and sot is a best response ta An identical argument shows that, (s, t)
Ui(t,t), but this is a contradiction te being an ESS. Furthermoreipp(s) ¢ V
because if not, by Theorem 1

d—1
Ui(s,s) = Y s(i)s(j)ur (i, §) = 2" Agz < —— <1=Uibs)
i,jEV

wherez = (s(v1),...,s(vyv|))’ € Ay and so(s, s) is not a NE.

Thuss(a) > 0. Suppose for contradictios{a) < 1. Since(s, s) is a NE,a is
a best response toanda # s. ThenUi(s, a) = 3, cqupp(s) S(2)ur(z,a) =1 =
Ui(a,a), which is a contradiction te being an ESS. Therefore the only possible
ESS of['x(G) is a. (a, a) is a symmetric NE becausg (z,a) <1 = uy(a,a) for
all z € S. (Noticesupp(a) # ext-supp(a), thusa is never regular.)

Supposel < k. Lett # a be a best response &0 Thensupp(t) C V U {a}.
Letr = > ..y t(i). Sor > 0 andt(a) = 1 — r. So using Corollary 1:

Ui(t,t) — Ur(a,t) = Z t()t(5)u (i, ) +r - t(a)l + t(a) - rk ; ! +t(a)?-1
i,jEV
P
—(r- A +t(a)~1)
d—1 4, k-1, )
< I +r(l—r)+ (1 -7 —=(1-17)
d—1 k—1 9 r2
—(T‘T>” =gk <0

Soa is an ESS. Now supposke> k. LetC' C V be a clique ofGG of sizek.
Thent with ¢(i) = + fori € C andt(j) = 0 for j € S — C'is a best response to
aandt # a, butUs (t,t) = 32, .o t(@)t(Gur(i, j) = 72 - (k — Dk -1 = 521 =
Ui(a,t), soais notan ESS. O
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3.2 ESS andREG-ESS are bothNP-hard

We now showESS is NP-hard by providing a polynomial-time (many-one) re-
duction fromSAT to ESS. Moreover, the same reduction shows tREG-ESS
is NP-hard. First, two key lemmas that construct our matrix gastge

Lemma lletn € Nandk € Rx¢. LetA = (a, ;) be then x n-matrix in which
all entries are 1 except all diagonal entries which are aldhnsider the mapping
f:R"— R, f(z) = 27 Az. Then, the only maximum gfubjecttod ;" , z; = k
st = (5 & EYTwith p(E L k) = noLp2,

n'n’ S ’'n
Proof Notef(gj) = Z?:l X Z;;;i Tj. SinceZ?zl T; = kl

n

f(x) :zn:fl?i(k—xi) :kzn:xi—z:xf =k? —ixf
i=1 i=1 i=1

=1

Let (x,y) = >, z;y; denote the standard inner product of vecterandy. Let
1 = (1,...,1)T denote the all 1 vector of length n. We thus want to minimize
(z,z) =Y, x7, subjectto(x, 1) = k. Itis easy to see that* is the unique such

minimum. For completeness, we provide a proof. Supgose) = (z*,1) = k.

Note, for any vector, (z,z*) = £(z,1). Now,

(o) — (o a%) = (o) — (0,0 + 20 1) — 02y 1)
=y + (" 2") =2y, 2") = (y—a",y—2") =20

Moreover,{y — z*,y — z*) = 0 if and only if y = «*. Thus,z* is the unique
minimum. O

Lemma2Letn € Nandk € Rxq. LetB = (b; ;) be the2n x 2n-matrix where,
fori,j e {1,...,2n}:

0 ifi=j

—2 if j=1i+ 1andiis odd
-2 ifi=j41andiiseven
1 otherwise

In other words, the matri¥3 looks as follows:

0-211-.--111

-20 1 1---11 1

11 0 -2---11 1

11 -20---11 1
B =

1 1 1 1 1 1

111 1.---10 =2
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Consider the mapping : Ré"o — R, f(x) = 27 Bx. Then,

z* = (x},23,...,75,) € R¥ is a global maximum of subject ttoZl z, =k
if and only if it satisfies:s, ., + %, , = £ andz},,  23;,,, = 0forall 0 < i < n.
In that case f(z*) = 21 £2.

Proof Note that

n—1 n—1

f((E) = Z Z(x2i+l + $2i+2)($2lj+1 + =T2j+2) - 4$2i+1x2i+2
=0 7=0
J#i

Suppose, for contradiction, that is a global maximum but that for somieec
{0,...,n =1}, 23,,, > 0 andz3; , > 0. Let2’ be identical tax* except that
Th o = Ty + x5, andxh,, , = 0. Note thatz’ satisfies the constraints
S22 2 =k, andz’ > 0. However,f(z) > f(x*), becauséz), ., + a4, 5) =
(23,41 +x5;,q) forall j =0,...,n — 1, butdas, 23, | > 4wy, 1755 = 0.
Contradiction. Therefore at any global maximum, x3; 235, , = 0, for all

i = 0,...,n — 1. Consider such a vectar*. Let I be the set of indices such
that for eachi = 0,...,n — 1, exactly one of2i + 1 and2i + 2 is in I and
such thatr; = 0 for every index; that is not inI. Note that for any such™,
f(z*) = (@*)TBaz* = (2*)T By ;o%. Note thatB;,; has exactly the form of
matrix A of Lemma 1, and thatz},1) = k. Therefore, by Lemma 1 the unique
maximum of(z)” By ;z, subject to(z, 1) = k, isa} = (£,..., £)T. From this
the statement of Lemma 2 follows O

Definition 3 Let @ be a Boolean formula in Conjunctive Normal Form (CNF),
V ={x1,...,z,} the set of its variabled, = {x1, ~x1, 22, "@a, ..., Tpn, "Tpn}
the set of literals oveV/, andC = {ci,...,c.} C 2 — {0} the set of clauses of
& (the empty clause is not allowed). The function . — V gives the variable
corresponding to a literal, e.qu(x1) = v(—z1) = x;. Define the functiory :

C x L— {®1 -1} as follows:

f=lifide
X(C’l)—{—1 iflec

Define the gamé'(®) = (.S, u1) where:

— S = L UC are the strategies for player 1 and 2 and
— the payoffs are given by
—Ul(ll, ZQ) =1 for all ll, lo € L with ’U(ll) }é ’U(ZQ).
—ui(l,l)=0foralll € L.
—uy(l,~l) =—2foralll € L.
(Il,¢)=—1foralll € Landallc € C.
—u1(e,l) = x(e, 1) forall c € C andl € L.
(c,d)=—1forall e, € C.
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L C
Ty Xy -0 2Ty Ty, G . - - . Cp

T
-

L B -1
Tn
T
C1

c | xel) -1
Cr

Fig. 2 The payoff matrix for player 1 in the ganie(®).

In other words, the payoff matrix for player 1 is the matrixpizted in Figure 2.
There, the submatri® is the matrix defined in Lemma 2, the submatrices marked
by “—1" denote matrices all of whose entries arel, and the submatrix marked
by “x(c,1)” denotes a(|C| x |L|)-matrix whos€c, [)-entry isx(c, ).

Let (I1,...,1,), withl; € {z;, —x;}, correspond to a truth assignment to the vari-
ablesinV.
Theorem 3Let® be a CNF Boolean formula with variables. If(4, ..., {,) cor-

responds to a satisfying assignmentdothen the mixed strategywith s(/;) = 1

forl <i<nands(y) =0fory € S—{l4,...,l,} is a regular ESS for the
gamel'(®). Conversely, ifs is an ESS fod'(®), thens has the above form and
(I1,...,1,) corresponds to a satisfying assignmentafand thuss is also a reg-
ular ESS).

Proof Let® be a CNF Boolean formula with variables. We consider the strategic
gamel’(®). The idea behind’(®) is that only strategies which correspond to truth
assignments to the variableslihare potentially an ESS. Such a strateggoes
not satisfy a clause (and thusp) iff playing c is a best response tathat violates
the stability condition fos.

Let s be an ESS. First, we show thatpp(s) N C' = (. Assume not. Then,
there is a clause € C such thats(c) > 0. If s(¢) = 1, then any literal of cis
a best response tosincelU; (I, s) = ui(l,¢) = —1 = ui(c¢,¢) = Uy(s, s), but
Ur(l,1) = ui(l,1) = 0 > =1 = wuy(e,l) = Ui(e, 1), a contradiction tos being
an ESS. So suppos$e< s(c) < 1. Sinces is a NE, we know that # s is a best
response te and

Ui(s,e) = Z s(x)uy(z,c) = =1 =wui(c,c) = Ur(e, ¢)

zeS -1
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contradictings being an ESS. Next, we show thatupp(s)) = V, i.e. for each
variable at least one corresponding literal is played. Assmot. Then, there is a
literal I € L such thats(I) = 0 ands(—l) = 0. Enumerating the literals in such a
way that/?+1! = T; andl? 2 = Z; forall0 <i<n,letB = (bi,j)lgi,j§2n be
the2n x 2n-matrix whereb; ; = u1(I*,17) ands’ = (s(I}),...,s(>*"))T. Note B

is the matrix B in Lemma 2. So by LemmaZt > s'7Bs' = 2?3:1 8ibi,js; =

Z?Z‘:l s(I)s()ur(I*,17) = Ur(s, s). But, Us(l, s) = 1 32 cqupp(s) 1) = 1>
2=l > U (s, s), sosis nota NE.

Next, we show that ifs is an ESS, then there arepairwise different liter-
als (ly,...,1,) such thats(l;) = % andl; # —l; for1 < 4,5 < n. Suppose
not. Sincev(supp(s)) = V, we can pickn pairwise different literalgl}, ..., 1)
such thatl] € supp(s) andlj # —I} for 1 < i,j < n. Sett(l}) = + for
1 <i<mnandi(z) =0foralli e S—{l,...,l,,}. Since(s, s) is a NE, ev-
eryl € supp(s) is a best response tgi.e.U1(l,s) = Ui (s, s). Hencel (¢, s) =
S tU) Y ses s(ui(ly4) = 5 Y01, Ui(lf,s) = Ui(s, s), sot is a best re-
sponse t@. Then

Up(s,t) = > s(Otlua (1) = > t(l")s(Dur(l',1) = Us(t, s)
LI'eL I’leL (1)
n—1

=U(s,s) <

n

and

(2)

"1 |1 "1 -1
ok FRLEDOFEE B
=
j#i

soUi(s,t) < Ui(t,t), contradictings being an ESS.

What remains to be shown is thasifs a mixed strategy such thafl;) = < for
n differentl; € Lwith{; # —l; forall1 <, j < nthensisan ESSiff(i1,...,l,)
is a satisfying assignment fdr (and thats is then in fact a regular ESS). Suppose
s is such a mixed strategy. First, we show thats) is a symmetric NE. We know
from equation 2 that/; (s, s) = 2. LetL* = {l1,...,l,}. Playing any of the
I € L* gives payoffU;(l,s) = L -0+ L(n — 1) -1 = 2=1, Playing any of the
l € L — L* gives payoffU;(I,s) = L - (=2) + L (n — 1) - 1 < 2=L. Playing any
of thec € C gives payoffat most/; (c, s) = in- 21 = 2= Therefore(s, s) is
a symmetric NE.

Suppos€y, ..., 1) is not a satisfying assignment. Then, there is a clause
such that none of its literals is played. Therefdrg(c, s) = >, ;. s(Dui(c, 1) =
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Sier-s(l):=L = =1 Socis a best response toandc # s. ThenUi (c,c) =

-1 = ZZEL* s(Dui(l,¢) = Ui(s,c), sos is not an ESS. Conversely, suppose
(l1,...,1,) is a satisfying assignment. Then, every clause contairterallthat is
played. Hence, for alt € C,

Uiie,s) = Y s@uie) = (-1) 3 5(1)+”;1 S s

leL* leL*Nec leL*—c

-1
I = Ui (s, s).

n

Thussupp(s) = ext-supp(s) = L*. So, supposeis a best response to0 Then
supp(t) C ext-supp(s) = L*. As in equation (1), we gét(s,t) = Ui (¢, s) =
U, (S, S) = anl LetA = (ai_’j)lgi_’jgn be then x n-matrix Whereli_’j = ul(li, ZJ)
and lett’ = (t(Iy),...,t(l,))". Note thatA is the matrixA in Lemma 1, so by
Lemmal

n

Lo ym gy = Z thai ity = Y tl)t(l)ua(li, 1) = Us(t,t)

1,7=1 1,7=1

TL
n

with equality holding only ift(l;) = 1 forall 1 < i < n. Hence, we have that
t # simpliesU; (s,t) > Ui(t,t). Therefores is an ESS, and it is regular because

supp(s) = ext-supp(s). O

Corollary 2 ESS and REG-ESS are NP-hard. (Moreover#ESS and #REG-
ESS are#P-hard.)

Proof Clearly, I'(®) can be constructed fror® in P-time. Theorem 3 shows
(I1,...,1,) is a satisfying assignment fériff s with s(l;) = % forl1 <i<nand
s(y)=0fory € S —{ly,...,1,} is an ESS fod'(®), and that these are the only
possible ESSs. Moreover, it shows that in this cagea regular ESS. Therefore,
bothESS andREG-ESS areNP-hard.

The number of (necessarily regular) ESST{®) is the number of satisfying as-
signments ofp. Counting satisfying assignments of a CNF formula#izhard
([Val79]). O

3.3 Inapproximability of ESSs

We now address whether an ESS, if one exists, can be effictamproximated”.
Care is needed to define this, since no ESS may exist. One fatioruis a poly-
nomial time algorithm that, given the game and- 0, outputs a mixed strategy
s such thatif there exists a (regular) ESS, then there exists a (reguag £
such that||s* — s|| < ¢, under some nornf - ||. For concreteness, léfs| =
max;eq1,.. ) |5i| b€ theL, norm (any normL;, j > 1, is fine too). Call this a
P-time e-approximation of (regular) ESSs.
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Corollary 3 There is no polynomial tim%-approximation algorithm for finding
an ESSinagamE = (S, u;) wherem = |S|, nor for finding a regular ESS ift,
unlessP = NP.

Proof Suppose there was such an algorithm. For a boolean forthulae run
that algorithm on the gamE(®) = (5, u1) from definition 3 with|S| = m =
2|V] + |C|, where|V| = n is the number of variables df, and|C| is the number
of clauses. This would yield a strategysuch that if there exists a (regular) ESS
in I"(®), then there exists* with ||s* — s| < L. Thus|s; — s;| < L for all

1 < i < m. Note however that by Theorem 3, the only candidate (rey&@a5s
s* in that game have, in every coordinate, either probab'ﬁky =1> 2Zor

probability0. Thus ifs; > L, then the only possible candidate fgris s7 = 1,
and if s; < L, then the only possible candidatess = 0. If s; = -1, then
neither is a candidate and hends not within distancec # of any ESS, therefore
no ESS exists. So, we can build the candiddtecheck that the probabilities in
it sum to1, and that it corresponds to a truth assignment to variabhesning
exactly one of the two pure strategies corresponding toweliterals for each
variable has non-zero probability, and no other strategyrttm-zero probability.
We then check whether this is a satisfying assignment. of so, @ is satisfiable,
otherwise? is not. Thus we would have solv&AT in P-time using our purported
approximation algorithm. (An obvious variant of this cdesy can be phrased for
randomized polynomial tim%-approximation of ESSs.)O

Note that corollary 3 does not rule out the possibility ofypamial timee-
approximation algorithms, for arbitrarily small but fixedrestants > 0, as the
sizem goes to infinity.

4 Upper bounds
4.1 REG-ESSisinNP

In [Hai75], Haigh claimed to show that a strategys an ESS forl" = (5, u)

if and only if (s, s) is a NE and thgm — 1) x (m — 1)-matrix C = (¢; ;) is
negative definite, wherer = |ext-supp(s)| ande; ; = u1(4,7) + u1(m, m) —
w1 (i,m)—uq(m, j) fori, j € ext-supp(s)—{m} (where, w...0.g.ext-supp(s) =
{1,...,m}). In [Aba80], Abakuks pointed out that there is an error ia thnly
if” part of Haigh's claim. Namely, Abakuks showed that théste&nce of an ESS
only implies the negative definiteness of the matiixf in addition s(m) > 0
and| ext-supp(s)| — |supp(s)| < 1. As we will see, the Haigh-Abakuks crite-
ria can be used to show thREG-ESS is in NP. By a suitable modification of
these criteria, we can obtain necessary and sufficient tondifor the existence
of arbitrary ESSs which will allow us to show th&8S is in 3% . Essentially iden-
tical conditions, based on copositivity of matrices ovepoae;, were developed by
Bomze and used by him in an algorithm for enumerating all E8&ggame (com-
pare Theorem 6 below with [Bom92]'s Theorem 3.2, whose pretiés on the
substantial developments in the book [BP89]). Bomze’s esmation algorithm,
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however, uses a recursive elimination procedure that irg$ome complications
including a possible numerical difficulty. Namely, we coulot preclude the pos-
sibility that iterating the procedure outlined in Theorer 8f [Bom92] may cause
an exponential blow-up in numerical values. We were thuslese deduce our
upper bounds foESS directly from Bomze’s algorithms. We will instead give
a self-contained development of the criteria we shall ustly lementary proofs
building directly on the work of [Hai75] and [Aba80], and welkthen (in the
case ofESS) rely on a well known result by Vavasis about the complexity o
the quadratic programming decision problem ([Vav90]), tipleé applications of
which allows us to obtain our upper bounds ESS.

Lemma 3 (cf. [Aba80], Lemma 1)Letm € N, z € RT, with Yo x; = 1. Let

sz{yeR’gO:Zﬁlyizl}—{gc}and
Zz:{zeRm:Zglzi:O,VI§i§m::ci:():>zi20}—{0}

LetB € R™ ™ Then:TBz < 0forall z € Z, iff (y — )T B(y — ) < 0 for all
y €Y.

Lemma 1 in [Aba80] says the following: ¥ = {y € RZ; : > 5 =1}
andZ = {z € R™:2#0,>.", z, = 0} andB is a realm x m-matrix, then

- 2Bz < 0forall z € Z implies that(z — y)"B(zx —y) < 0forally € Y
with y # x and

— if at most one component afis zero ther(z —y) T B(x —y) < Oforally € Y
with y # z implies that:” Bz < 0 forall z € Z.

Lemma 3, which we now prove, is a variation of Abakuks’ Lemma 1

Proof Suppose:’Bz < 0 forall z € Z,. Lety € Y,. Theny — = # 0,
Sy —m) =Y i — >z, =1—1=0andforalll <i <m with
r; =0wegety; —x; = y; > 0,hencey —z € Z, and so(y — z)" B(y — z) < 0.
Conversely, supposy — )" B(y —x) < Oforally € Y,. Letz € Z,.

Set\ = min{””i :1§i§m,xi>0,zi5£0}. ThenA > 0. Choosey =

[2:]
x + Az # x. Theny > 0 becauser > 0 and if z; < 0 thenz; > 0 and
Yi = o — Mzi| > — |“E—l‘|zl| = 0for1 <14 < m. Note that

iyi:ixi+)‘izi:1+)\-021
=1 i=1 i=1

Hencey € Y, andthus”Bz = (5 (y — x))T B(3(y—2)) =+=y—2)"B(y-
1)< 50=0. O

Lemma 4 [Hai75] LetC' = (c;;), ; be a realm x m-matrix,m > 2. LetD =
(d; ;) bethe(m—1)x (m—1)-matrix given byl; ; = ¢; j+¢m, m—Cim—Cm, ;. Let
x € R™suchthafy"" | ; = 0andset’ = (1 _,—1}. Thenw' Ca = 2'" Da’.

.....
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Proof A proof for this lemma was given by Haigh in [Hai75]. For comtdness
we provide it here. Let: € R™ such thaf) " 1T =0,l.e.xy, = —Z . L.
Then

m—1 m—1

3
L
3
L

T 2
z Cx = E ZiCi ;T + Ty E Cm,;T; + E TiCim | + ThCm,m

i=1 j=1 j=1 i=1
m—1m—1

=03 @icijag + (—2)em @5 + Tici m(—25) + (—i)cmm(—1;))
i=1 j=1
m—1m—1

T /

= x; (Cij + Cmm — Cmj — Cim) T; = &'~ Dx

i=1 j=1
O

Lemma 5 [Hai75] Let (s, s) be a symmetric NE for the ganfe= (S, u;) and let
M = ext-supp(s), withm = |[M]|. Letx = sy andC = (Ar),, - LetY; be
defined as in Lemma 3. Thers an ESS if and only ify — )7 C(y — z) < 0 for
ally e Y.

Proof A proof for this can be found in [Hai75]. For completeness, revide it
here, too. Let be any best response éoConsider

Ui(t,t) —Us(s,t) =tTApt — sTApt = (t — )T Ap(t — s + 5)
=(t — S)TAF(t —s)+ tTArs — sTArs
=(t—s)TAp(t—s)

Note that(z) = s(z) = 0forz € S— M. Lety = tp;. Then(t—s)T Ap(t—s) =
(y —2)"Cly — ).

Supposss is an ESS. Then for any’ € Y,, lett’ € X with ¢/(z) = /'(2)
forz € M andt/(z) = 0forz € S — M. Thent’ # s is a best response tQ
becauseupp(t) is contained il = ext-supp(s). Thus,(y’ — 2)TC(y' —z) =
(t' —s)TAp(t' —s) = Ui (t',t') — Us(s,t') < 0.

Conversely, supposg — 2)7C(y — z) < 0 for all y € Y,. For any best
response # s to s, sety” = ty. Theny” € Y, and soU,(¢t,t) — Ui(s,t) =
(' —2)TCy" —x) <0. O

Lemma 6 (cf. [Bom92], Thm 3.2)Let(s, s) be a NE forl” with M = ext-supp(s),

andm = |M| > 2. Identify M with {1,...,m} such thats(m) > 0 and let
T =sy. LetC = (AF)M,M- DefineD as in Lemma 4. Let

We={weR™":(Vie{l,....m—1}:2; =0=w; >0)} — {0}

Thens is an ESS if and only " Dw < 0 for all w € W,,.



18 K. Etessami, A. Lochbihler

Proof Let Y, andZ, be defined as in Lemma 3. From Lemma 5 we know that
Ui(t,t) — Ui(s,t) < 0 for all best responses # s to s is equivalent to(y —

)T C(y—x) < 0fory € Y, which itself is equivalent te” Cz < 0 forall z € Z,

by Lemma 3. Now suppose that Dw < 0forallw € W,. Letz € Z,. Setw’ =
z{1,...,m—1}- Thenw' € W, and so with Lemma 4, we gef Cz = w'" Dw' < 0.
Conversely, suppose that Cz < 0 forall 2z € Z,. Letw € W,. Setz! = w;, for
1<i<m-—1landz, =—>""w. Thens = (2,,...,2/,)T € Z, because

s(m) > 0 and so with Lemma 4, we get’ Dw = 2/7C2' < 0. O

Proposition 1 1f s is an ESS(t,t) a symmetric NE, ansipp(¢) C ext-supp(s),
thent = s.

Proof Suppose # s. Sincesupp(t) C ext-supp(s), t is a best response to s, but
since(t,t) is a NE,U; (s, t) < Ui (t,t). Contradiction tos being an ESS. O

Theorem 4REG-ESS is in NP.

Proof Given a gamel” = (S,u1) (n = |S|) with rational payoffs, guess the
extended support sét/ C S of a (purported) regular ESSfor I" and letm =
|M]|. Identify S with {1,...,n} suchthatM = {1,...,m}. Find a symmetric NE
(s, s) of I' with supp(s) € M by solving (inP-time) the following linear program
in variablessy, . . ., s,, w, wheres = (s1,...,5,):

— Uy(i,s) =wforalli € M; andU,(i,s) <wforalli € S — M.
- Z?:l s; = 1;ands; > 0foralli € M;ands; =0foralli e S — M.

Let s be an arbitrary solution. By proposition 14fis an ESS then is the only
solution to the system above. Thus it doesn’t matter whaitsl we find (if we
don't find any, then there is no NE and no ESS with support set@hgck that
supp(s) = ext-supp(s) = M. This can be done iR-time, by trying each pure
strategy outsideupp(s) againsts.

Note that if[M| = 1 then the pure strategy is the only best response to
itself, and thuss is a regular ESS. Suppog®/| > 2, and letx = s,,. Let D and
W, be defined as in Lemma 6. By Lemmabis an ESS iffw” (-D)w > 0
forall w € W,. SetD’ = 1 (D + D). D’ is a symmetric matrix, and note that
w? D'w = w? Dw for all w. Note tha#¥,, = R™~!—{0} becauseupp(s) = M.
Hences is an ESS if and only if—D’) is positive definite. Positive definiteness
of a symmetric matrix can be checkedRrtime via the determinant criterion (see
section 2). Therefore checking whether there is an E&8 I" with supp(s) =
ext-supp(s) = M for the guessed sét/ can be done in polynomial time. Thus
REG-ESSisinNP. O

Corollary 4 #REG-ESS is #P-complete.

Proof #P-hardness was established in Corollary 2. The proof of Témot gives
an NP-algorithm for deciding whether a game has a regular. Eagh accept-
ing computation yields a different support set and thus tedint regular ESS.
Therefore#fREG-ESS is in#P. O
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4.2ESSisin X8

We next shovESS is in 3% Vavasis established the following result on quadratic
programming (see also, e.g., [MK87]).

Definition 4 Let QP denote the following decision version of the quadratic pro-
gramming problem: given a x n-matrix H and am x n-matrix A, both with
integer coefficientdl € Q, ¢ € Z™, andb € Z™, is there a vector: € R™ with

Az > bsuchthatr’ Hx + Tz < K?

Theorem 5 [Vav90] QP is in NP.
Theorem 6ESS is in X5.

Proof Given a gamel” = (S,u1) (n = |S]|) with rational payoffs, guess the
extended support satf C S foran ESSs for I and setn = |M|. As in the proof
of Theorem 4, compute a symmetric NE s) with supp(s) C M. Check that
ext-supp(s) = M (again, this check i®-time). Setl = m — |supp(s)]. If I =0
then proceed as in the algorithm in Theorem 4.

Supposd > 0, and thusm > 2. Letx = sy,. Let D and W, be defined
as in Lemma 6. By Lemma 6, is an ESS if and only ifw? (—=D)w > 0 for
all w € W,. In other wordss is not an ESS iff there exists € W, such that
w? (=D)w < 0. This is the case iff there exists # 0 such thatw; > 0 for all i
such thatr; = 0, such that” (—D)w < 0. This is the case iff

there exists av such thatw; > 0 for all 7 wherex; = 0, and such that
for somej € {1,...,m — 1}, w; > 1 or —w; > 1, and such that
wl (=D)w < 0.

To see the last claim, note thatuif’ (—D)w < 0, then for any constant > 0,
(cw)T (=D)(cw) = 2w? (-=D)w < 0. Thus, forw # 0 wherew” (—D)w < 0,
we can choose a constant> 0 large enough so that either for some positive
coefficientw;, cw; > 1 or for some negative coefficient;, —(cw;) > 1. Thus
the vector(cw) will satisfy the desired conditions.

Now, we can check these conditions by solvit{gn — 1) quadratic program-
ming decision problems. Namely, we check foralK j; < m — 1 and for each
o € {+1,—1}, whether there existsa € R™~! satisfyingw? (-D)w < 0,
and satisfying the linear constraints; > 0 for eachi such thatz; = 0, and
ow; > 1. As described, the matrig—D) is a rational matrix, and th@P prob-
lem was formulated in terms of integer matrices. However,cae easily “clear
denominators” i —D), finding the least common multiphe > 0 of the denom-
inators of entries o) and settingd = —AD (this can be done iR-time). Then
Hisa(m — 1) x (m — 1)-matrix with integer entries, and” Hw < 0 if and only
if w?'(—D)w <0, foranyw € R™1.

Thus, checking that thisis notan ESS can be done MP. Thus, to determine
the existence of an ESS involves existentially guessingppat set)M , finding s
with support sefM such tha{s, s) is a NE (using linear programming), and then
checking that is an ESS irtoNP, by checking (irNP) thats is not an ESS. Thus
ESSisinX}. O
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(We remark that it follows from the proof of Theorem 6 tH&SS is in the count-
ing class#NP, a class defined in [Val79].)

5 Concluding remarks

We have shown that thESS problem is bothNP-hard andcoNP-hard under
many-one reductions, and thus notN? nor in coNP unlessNP = coNP, and
that it is contained irk%, the second level of the polynomial-time hierarchy. On
the other hand, we have shoREG-ESS is NP-complete.

Our results leave open whether the gen&aB problem isX}-complete or
belongs to some “intermediate” class abdire andcoNP but belowX}. Natural
decision problems in such a position are relatively ranedieg theESS problem
an intriguing complexity-theoretic status.

In arecent note, Nisan [Nis06] has slightly strengthenadauvdness theorem
for general ESSs by showing that i8S problem is hard for the complexity class
coDP.! coDP consists of those languages which are the union dfRtanguage
and acoNP language (see [PY82,Pap94] for background on this clasd)P
clearly contains bottNP andcoNP, and is contained irE}. Nisan’s hardness
proof can be viewed as a strengthening of Theorem 2, our dudNdEress result
for general ESSs. Like our proof of Theorem 2, his proof uhesMotzkin-Straus
characterization of clique size in an essential way. A haodbjem forcoDP is to
decide for a given grapty’ and givenk, whether the maximum clique size 6fis
not exactlyk (i.e., a "yes” instance is a graghiwhose maximum clique size is not
k). Nisan reduces this problem to the gené&8IS problem. Nisan also observes
as a consequence of his proof that deciding whether a giveadrstrategy is
an ESS icoNP-complete. But this latter fact already follows from our ubs.
Namely, the proof of Theorem 2 gives a reduction from co@ituESS such that
there is a clique of size k in the original graph iff the specific pure strategyn
the resulting game is not an ESS. Thus, it follows that chregkihethera is an
ESS in such games o NP-hard. Moreover, @oNP upper bound for checking
whether a given mixed strategy is an ESS follows from the paforheorem
6, our X% upper bound for general ESSs. In that proof we observe timag a
given extended support set is guessed, a symmetri¢sNg with that extended
support can be computed in P-time if it exists (and it musstexind be unique if
s is an ESS), and we showed that one can then also check whdthan ESS in
coNP. Now, if we are givens to begin with, we can clearly first check in P-time
whether(s, s) is an NE, and then check whether it is an ES8@NP. Note also
that thecoDP-hardness result does not make redundantNi#hardness result
for ESSs, because otitP-hardness result also shows that deciding the existence
of regular ESSs is already NP-hard. As we show in Theorem 4, unlike géner
ESSs, checking the existence of regular ESSs can be doN® iand thus is
not coNP-hard norcoDP-hard, under standard complexity assumptions). It also

! The results of our present paper were made available in 28@h &CCC tech report
[ELO4], and Nisan’s note was made available in 2006 as an Eté€itreport [Nis06].
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follows from the proof of Theorem 4 that checking whether\aegistrategy is a
regular ESS can be doneltime.

It remains an intriguing open problem to determine what clexity class cap-
tures the precise computational complexity of the gerie&s problem.
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