
International Journal of Game Theory manuscript No.
(will be inserted by the editor)

The Computational Complexity of Evolutionarily
Stable Strategies

K. Etessami1, A. Lochbihler2

1 Laboratory for Foundations of Computer Science, School of Informatics, University of
Edinburgh, Edinburgh EH9 3JZ, Scotland, UK, e-mail:kousha@inf.ed.ac.uk

2 Fakultät für Mathematik und Informatik, Universität Passau, 94030 Passau, Germany,
e-mail:lochbihl@fmi.uni-passau.de

The date of receipt and acceptance will be inserted by the editor

Abstract The concept ofevolutionarily stable strategies(ESS) has been cen-
tral to applications of game theory in evolutionary biology, and it has also had an
influence on the modern development of game theory. Aregular ESS is an im-
portant refinement the ESS concept. Although there is a substantial literature on
computing evolutionarily stable strategies, the precise computational complexity
of determining the existence of an ESS in a symmetric two-player strategic form
game has remained open, though it has been speculated that the problem isNP-
hard. In this paper we show that determining the existence ofan ESS is bothNP-
hard andcoNP-hard, and that the problem is contained inΣ

p

2 , the second level of
the polynomial time hierarchy. We also show that determining the existence of a
regular ESS is indeedNP-complete. Our upper bounds also yield algorithms for
computing a (regular) ESS, if one exists, with the same complexities.

Key words computational complexity – game theory – evolutionarily stable stra-
tegies – evolutionary biology – Nash equilibria

1 Introduction

Game theoretic methods have been applied for a long time to study phenomena
in evolutionary biology, most systematically since the pioneering work of May-
nard Smith in the 1970’s and 80’s ([SP73,May82]). Since thenevolutionary game
theoryhas been used to understand a diverse range of sometimes counter-intuitive
phenomena in biology, and it has also had an important influence on the modern
development of game theory (see, e.g., [vD91,Wei97,HS98]). For an overview of
evolutionary game theory and a sampling of its many applications in zoology and
botany, see the survey by Hammerstein and Selten [HS94]. They mention among
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other applications, analysis of animal fighting and mating,offspring sex ratios, and
flower size.

A central concept in evolutionary game theory is the notion of an evolutionarily
stable strategy (ESS) in a symmetric two-player strategic form game, introduced
by Maynard Smith and Price ([SP73]). An ESS is a particular kind of mixed (ran-
domized) strategy, where the probabilities in the mixed strategy are now viewed
as denoting percentages in a population exhibiting different possible behaviors.
To be an ESS, a mixed strategys must first constitute a Nash equilibrium,(s, s),
when played against itself. This means thats is a “best response” to itself, i.e., that
the expected payoff for a player who playss againsts is the maximum possible
payoff of any strategy againsts. Secondly, to be an ESS,s must in a precise sense
be “impervious to invasion” by other strategies. Specifically, it must be the case
that if a different strategyt is also a best response tos, then the expected payoff of
playings againstt must be strictly greater than the payoff of playingt againstt.

It was shown already by Nash [Nas51] that every symmetric strategic form
game contains a symmetric Nash equilibrium(s, s). However, not all symmet-
ric 2-player games contain an ESS: rock-paper-scissors gives a simple counter-
example (see below). Thus, one may ask: what is the computational complexity of
determining whether an ESS exists in a 2-player strategic game (with, say, rational
payoffs)? And, if an ESS does exist, what is the complexity ofactually computing
one? The complexity of computing an arbitrary Nash equilibrium for a 2-player
strategic form game is a well-known open problem (see, e.g.,[Pap01]). It is com-
putable inNP (as a function), but neither known to beNP-hard nor known to be
computable in polynomial time. However,NP-hardness is known for computing
Nash equilibria that satisfy any of several additional desirable conditions, such as
equilibria that optimize “social welfare”, and this is so even for symmetric games
([GZ89,CS03]). It has thus been speculated that finding an ESS may also beNP-
hard, but no proof was known.

A regularESS is an important refinement of the ESS concept. This is an ESS,
s, where the “support set” ofs, i.e., the set of pure strategies that are played
with non-zero probability ins, already contains all pure strategies that are best
responses tos. There are several equivalent definitions of regular ESSs. Harsanyi
[Har73b] introduced regular equilibria as a refinement of the Nash equilibrium
concept, and showed that “almost all” strategic form games contain only regular
equilibria, where “almost all” here means that the games with irregular equilib-
ria constitute a set of measure zero in a suitably defined measure space on games.
There are other, weaker refinements of Nash equilibria, suchas “quasi-strict” equi-
librium, also introduced by Harsanyi [Har73a]. For symmetric 2-player games, it
turns out that the definition of a regular ESS coincides with that of an ESS that is a
quasi-strict Nash equilibrium. Other equivalent formulations of regular ESSs make
the notion rather robust (see, e.g., [vD91,Sel83,Bom86]).See van Damme’s excel-
lent book [vD91] for a comprehensive treatment of refinements of Nash equilibria,
and their ramifications for evolutionarily stable strategies.

As a simple example of ESSs, consider a parametrized (not necessarily zero-
sum) version of rock-papers-scissors, which has the payoffbi- matrix:
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



(a, a) (1,−1) (−1, 1)
(−1, 1) (a, a) (1,−1)
(1,−1) (−1, 1) (a, a)





with the parametera ∈ R. One can show that, fora < 1, there is exactly one
symmetric Nash equilibrium, namelys = (1

3 , 1
3 , 1

3 ), and that fora ≥ 1 there
are precisely three additional symmetric NEs: the pure strategiess1 = (1, 0, 0),
s2 = (0, 1, 0), ands3 = (0, 0, 1). Note that any strategyt is a best response tos.
Hence, fors to be an ESS, playings againstt must yield higher utility, which isa3
for all t, than playingt against itself. The payoff fort against itself can, fora ≥ 0,
be at mosta with equality holding ifft ∈ {s1, s2, s3}, and fora < 0, it can be
at mosta3 with equality holding ifft = s. Thus,s is an ESS iffa < 0. If so, s is
regular because its support contains all pure strategies. When we look at the pure
strategiess1 to s3, we must distinguish betweena > 1 anda = 1. Fora > 1, si is
the only best response tosi, thereforesi is a regular ESS too (1 ≤ i ≤ 3). In the
casea = 1, the extended support ofsi is {i, j} wherej = ((i + 1) mod 3) + 1.
Playingsj against itself gives payoff1 whereas playingsi againstsj gives payoff
−1. Thus,si is not an ESS fori ∈ {1, 2, 3}, whena = 1. All in all, we have
one regular ESS fora < 0, no ESS for0 ≤ a ≤ 1 and three regular ESSs for
a > 1. These games have no non-regular ESSs. If, however, the payoff for (s3, s3)
was changed to(b, b) instead of(a, a) with b < −1 anda = 1, thens1 would
be the only non-regular ESS. This is because(s1, s1) is a symmetric NE and for
any best responset = (t1, 0, 1 − t1) to s1, we have that the payoff of playing
s1 againstt is 2t1 − 1 and that of playingt againstt is t21 + b(1 − t1)

2. Now,
2t1 − 1 > t21 + b(1 − t1)

2 for all 0 ≤ t1 < 1 iff b < −1. Of course, this analysis
of ESSs only applies to these special parametrized rock-paper-scissors games.

In this paper we show that determining the existence of an ESSin a given
symmetric 2-player strategic form game with rational payoffs is bothNP-hard and
coNP-hard under polynomial-time many-one reductions, and thusthat it is not in
NP, nor in coNP, unlessNP=coNP. Furthermore, as an upper bound, we show
that determining the existence of an ESS is contained inΣ

p

2 , the second level of
the polynomial time hierarchy. (See section 2.1 for background on computational
complexity.) On the other hand, we show that determining theexistence of a reg-
ular ESS isNP-complete. Our upper bounds also yield algorithms to compute a
(regular) ESS, if one exists, with the same complexities. From our bounds it also
follows that computing the number of (regular) ESSs is#P-hard (#P-complete,
respectively).

Our NP-hardness result for ESSs provides a reduction fromSAT that yields
a 1-1 correspondence between satisfying assignments of a CNF boolean formula
and the ESSs in the game to which it is reduced. This is reminiscent of, but sub-
stantially different from, the reduction of Conitzer and Sandholm [CS03] for Nash
equilibria. Furthermore, these ESSs will all be regular, and thereforeNP-hardness
for regular ESSs also follows. ForcoNP-hardness of the ESS problem, we provide
a reduction fromcoCLIQUE to the ESS problem. In doing so, we make essential
use of a classic characterization of maximum clique size viaquadratic programs,
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due to Motzkin and Straus [MS65]. From our hardness results,we also easily de-
rive an inapproximability result for (regular) ESSs.

Our upper bounds combine criteria for the existence of ESSs based on quadratic
forms, together with known results about the complexity of quadratic program-
ming decision problems. There is a substantial literature on computing evolution-
arily stable strategies, and on its connections to mathematical programming (see,
e.g., [Bom92,BP89,Bom02], and see [MWC+97] for a different computational
perspective based on dynamics). In particular, Bomze [Bom92] developed criteria
for ESSs, based on copositivity of a matrix over a cone, and uses these to pro-
vide an algorithm for enumerating all ESSs in a game. His criteria build on earlier
criteria for ESSs developed by Haigh ([Hai75]) and Abakuks ([Aba80]). Bomze’s
enumeration algorithm uses a recursive elimination procedure that involves some
complications including a possible numerical blowup issue(see Section 4 for an
explanation). We were thus unable to deduce ourΣ

p

2 upper bounds for ESSs di-
rectly from Bomze’s algorithms. We instead provide a self-contained development
of all the criteria we need, directly building variants of the Haigh-Abakuks cri-
teria and Bomze’s criteria, and we then employ a result by Vavasis [Vav90] on
the computational complexity of the quadratic programmingdecision problem, to
obtain ourΣp

2 upper bounds for ESSs. For regular ESSs, ourNP upper bound
follows from simpler modifications of the Haigh-Abakuks criteria, together with
basic facts from matrix theory.

The plan of the paper is as follows. Section 2 provides definitions and gives
some brief background on computational complexity theory.Section 3 provides
hardness results for both ESSs and regular ESSs. Section 4 provides our upper
bounds for both. We conclude in Section 5.

2 Definitions and Notation

For an × n-matrixA, and subsetsI, J ⊆ {1, . . . , n}, let AI,J denote the subma-
trix of A defined by deleting the rows with indexes not inI and deleting columns
with indexes not inJ . Likewise, for (row) vectorx, definexI := xI,{1} (x{1},I ),
viewingx as an× 1-matrix (1×n-matrix, respectively). LetAT denote the trans-
pose ofA. Likewise, forxT . Unless stated otherwise, we assume all vectors are
column vectors. A real symmetricn×n-matrixA is positive definiteif xT Ax > 0
for all x ∈ Rn − {0}. Recall the determinant criterion for positive definiteness:
a symmetric matrixA is positive definite if and only ifdet(AI,I) > 0 for all
I = {1, . . . , i}, 1 ≤ i ≤ n, wheredet denotes the determinant of a square
matrix (see, e.g., [LT85]). Thus, in particular, positive definiteness of a rational
symmetric matrix can be detected in polynomial time. A real symmetric matrix
A is callednegative definiteif (−A) is positive definite. Note, for anyA andx,
xT Ax = xT A′x, whereA′ := 1

2 (A + AT ) is a symmetric matrix. We thus say a
generaln × n matrix A is positive (negative) definiteif A′ is positive (negative)
definite, and we can use the determinant criterion onA′ to detect this.

We now recall some basic definitions of game theory (see, e.g., [OR94]). A
finite two-player strategic form game Γ = (S1, S2, u1, u2) is given by finite
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sets of strategiesS1 andS2 and utility, orpayoff, functionsu1 : S1 × S2 7→ R
andu2 : S1 × S2 7→ R for player one and two, respectively. Such a game is
called symmetric if S1 = S2 =: S and u1(i, j) = u2(j, i) for all i, j ∈ S.
We are only concerned with symmetric 2-player games in this paper, so we write
(S, u1) as shorthand for(S, S, u1, u2), with u2(j, i) = u1(i, j) for i, j ∈ S. For
simplicity assumeS = {1, . . . , n}, i.e., pure strategies are identified with integers
i, 1 ≤ i ≤ n.

In what follows we only consider finite symmetric two-playerstrategic form
games. Thepayoff matrix AΓ = (ai,j) of Γ = (S, u1) is given byai,j = u1(i, j)
for i, j ∈ S. (Note thatAΓ is not necessarily symmetric, even ifΓ is a sym-
metric game.) Amixed strategy s = (s(1), . . . , s(n))T for Γ = (S, u1) is a
vector that defines a probability distribution onS. Thus,s ∈ X , whereX =
{
s ∈ Rn

≥0 :
∑n

i=1 s(i) = 1
}

denotes the set of mixed strategies inΓ . s is called
pure iff s(i) = 1 for somei ∈ S. In that case we identifys with i. For brevity,
we generally use “strategy” to refer to a mixed strategys, and indicate otherwise
when the strategy is pure. In our notation, we alternativelyview a mixed strategys
as either a vector(s1, . . . , sn)T , or as a functions : S 7→ R, depending on which
is more convenient in the context.

Theexpected payofffunction,Uk : X×X 7→ R for playerk ∈ {1, 2} is given
by Uk(s, t) =

∑

i,j∈S s(i)t(j)uk(i, j), for all s, t ∈ X . Note thatU1(s, t) =

sT AΓ t andU2(s, t) = sT AT
Γ t. Let s be a strategy forΓ = (S, u1). A strategy

t ∈ X is a best responseto s if U1(t, s) = maxt′∈X U1(t
′, s). The support

supp(s) of s is the set{i ∈ S : s(i) > 0} of pure strategies which are played
with non-zero probability. Theextended support ext-supp(s) of s is the set
{i ∈ S : U1(i, s) = maxx∈X U1(x, s)} of all pure best responses tos.

A pair of strategies(s, t) is a Nash equilibrium (NE) for Γ if s is a best
response tot andt is a best response tos. Note that(s, t) is a NE if and only if
supp(s) ⊆ ext-supp(t) andsupp(t) ⊆ ext-supp(s). A NE (s, t) is symmetric
if s = t. It was shown already in [Nas51] that every symmetric game contains a
symmetric NE.

Definition 1 A mixed strategys ∈ X in a 2-player symmetric gameΓ is anevo-
lutionarily stable strategy (ESS) of Γ if:

1. (s, s) is a symmetric Nash equilibrium ofΓ , and
2. if t ∈ X is any best response tos andt 6= s, thenU1(s, t) > U1(t, t).

An ESSs is regular if supp(s) = ext-supp(s).

2.1 Background from computational complexity

For the benefit of readers unfamiliar with computational complexity theory we
briefly review some of its basic concepts and definitions. Forproper treatments
please see, e.g., the books [GJ79,Pap94].

A yes/no decision problem can be described by a set of stringsL (i.e., a
language) over a finite alphabetΣ, by using a fixed encoding scheme. Namely,
L ⊆ Σ∗ contains exactly those stringsw ∈ Σ∗ that encode problem instances for
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which the decision answer is “yes”. Of course, there are manypossible encoding
schemes for the same problem, some more concise than others.The encodings we
use for problems we consider in this paper are standard, and will either be made
explicit or will be clear from the context. Turing Machines (TMs) are a universal
model of computation, and can be used as acceptors of languages. A determinis-
tic Turing Machine (DTM),M , is said to accept an input stringw ∈ Σ∗ iff the
computation ofM on inputw halts in a designated accepting state, and otherwise
it is said to rejectw. A non-deterministic Turing Machine (NTM) is said to ac-
cept an inputw iff there exists at least one computation ofM on w that halts in
an accepting state. For a decision problemL, we say that a TMM decidesL, or
acceptsL, if on all inputsw all computations ofM halt, and furthermore for every
w ∈ Σ∗, M acceptsw if and only if w ∈ L. For a functionf : N 7→ N, we say
that a TM,M , is f(n)-time bounded, if forw ∈ Σ∗ every computation ofM on
w takes no more thanf(n) steps to halt, wheren = |w| is the length of the string
w. A decision problemL is said to have (non-deterministic) time complexity at
mostf if there exists af(n)-time bounded (non-deterministic) Turing machineM
that decidesL. Let DTIME(f) (NTIME(f)) denote the set of all languages with
(non-deterministic) time complexity at mostf .

Standard complexity classes likeP andNP consist of a set of decision prob-
lems, i.e., a set of languages, namely those that are accepted by Turing machines
with given resource constraints. The complexity classes weconsider in this pa-
per are as follows:P =

⋃
{DTIME(f)|f a polynomial inn} is the set of all

languagesL for which a polynomial-time bounded DTM exists that decidesL.
NP =

⋃
{NTIME(f)|f(n) a polynomial inn} is the non-deterministic analog of

P. Equivalently,L ∈ NP iff there is a polynomial-time DTMM and a polynomial
p(n) such that for allx ∈ Σ∗, x ∈ L iff there exists ay ∈ Σp(|x|) such thatM
accepts the pair(x, y). coNP = {Σ∗ − L|L ⊆ Σ∗ ∧ L ∈ NP} is the class of
complements of languages inNP. Σp

2 is the second level of the polynomial-time
hiearchy, and can be defined as the set of all languagesL for which there exists
a polynomial-time DTM,M , and polynomialsp1(n) andp2(n) such that for all
x ∈ Σ∗, x ∈ L iff there exists ay ∈ Σp1(|x|) such that for allz ∈ Σp2(|x|), M
accepts the triple(x, y, z).

By contrast to these classes of decision problems,#P is a complexity class for
counting problems. These classes consist of a set of functionsg : Σ∗ 7→ N. A
counting problemg is in #P iff there exists a polynomial-time bounded NTM,M ,
such that the number of accepting computations ofM on inputw is equal tog(w).

For a decision complexity classC, a decision problem (encoded as language
L ⊆ Σ∗) is said to beC-hard iff there is a polynomial-time many-one (a.k.a.,
Karp) reduction from every problemL′ in C to L. A polynomial-time many-one
reduction fromL′ ⊆ Γ ∗ to L ⊆ Σ∗, is a functionf : Γ ∗ 7→ Σ∗ computable in
polynomial time by a DTM such thatx ∈ L′ iff f(x) ∈ L. If such a reduction ex-
ists, we say thatL′ is (many-one P-time) reducible toL and denote it byL′ ≤p L.
If L ∈ C andL is C-hard we say thatL is C-complete. Note that polynomial-
time many-one reductions are transitive, i. e. ifL ≤p L′ andL′ ≤p L′′, then also
L ≤p L′′. Hence, to show thatL is C-hard it is sufficient to showL′ ≤p L for some
already known C-hard problemL′. Appropriate notions of reduction, hardness,
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and completeness also exist for counting classes such as#P. In particular, a “par-
simonious” polynomial-time many-one reduction,f , from one counting problem,
g to another counting problemh is one that preserves the number of solutions, i.e.,
g(x) = h(f(x)). There are#P-complete problems under such reductions, such as
#SAT (see below). For more details see, e.g., [Pap94,Val79].

In this paper, we look at the following decision and countingproblems: let
ESS (REG-ESS) denote the decision problem of whether a symmetric 2-player
gameΓ , specified by a rational payoff matrixAΓ for player 1, has at least one
(regular) evolutionarily stable strategy. The encoding used for rational values is the
standard one: numerator and denominator are given in binary. Let #ESS (#REG-
ESS) denote the counting problem of computing how many (regular) ESSs the
gameΓ has.

Our reductions will involve some standard known complete problems for var-
ious complexity classes. Here we recall some of them. As usual, an undirected
graphG = (V, E) has verticesV and a symmetric edge setE ⊂ V × V where
(i, j) ∈ E ⇒ (j, i) ∈ E, and(i, i) 6∈ E, for all i, j ∈ V . Let AG denote the sym-
metric adjacency matrix of undirected graphG. A clique C ⊆ V of G = (V, E)
is a subset ofV such that(C × C) − E = {(i, i) | i ∈ C}. Let ω(G) de-
note the maximum cardinality of a clique inG. Let coCLIQUE = {(G, c) | c ∈
N andω(G) < c}. ThuscoCLIQUE denotes the decision problem of, given an
undirected graphG and c ∈ N, determining whetherG does nothave a clique
of sizec. coCLIQUE is coNP-complete. The satisfiability problemSAT (#SAT)
asks whether there exists a satisfying assignment (or how many satisfying assign-
ments there are, respectively) for a given Boolean formula in conjunctive normal
form. SAT is NP-complete and#SAT is #P-complete.

3 Hardness results

3.1 ESS is coNP-hard

We first show thatESS is coNP-hard by providing a polynomial-time (many-
one) reduction fromcoCLIQUE to ESS. In doing so, we make essential use of
the following classic result due to Motzkin and Straus [MS65].

Theorem 1 [MS65]LetG = (V, E) be an undirected graph with maximum clique

sized. Let∆1 =
{

x ∈ R|V |
≥0 :

∑|V |
i=1 xi = 1

}

. Thenmaxx∈∆1
xT AGx = d−1

d
.

Note that one direction of this theorem is immediate: given acliqueC of size
d of G, if we choosex to be the vector in whichxi = 1/d if and only if ver-
tex i is in the cliqueC, then it is easily checked thatxT AGx = d−1

d
, and thus

maxx ∈ ∆1x
T AGx ≥ d−1

d
.

Corollary 1 LetG = (V, E) be an undirected graph with maximum clique sized

and letl ∈ R≥0. Let ∆l =
{

x ∈ R|V |
≥0 :

∑|V |
i=1 xi = l

}

. ThenxT AGx ≤ d−1
d

l2

for all x ∈ ∆l.
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n − 1
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Fig. 1 The payoff matrix for player 1 in the gameΓk(G).

Proof For l = 0, ∆0 = {0} and thus0T AG0 = 0. Supposel > 0. Let x ∈ ∆l

and sety = 1
l
x. Theny ∈ ∆1, and by Theorem 1,xT AGx = (ly)T AG(ly) =

l2yT AGy ≤ l2 d−1
d

. ⊓⊔

Definition 2 For an undirected graphG = (V, E) and k ∈ N define the game
Γk(G) = (S, u1) where

– S = V ∪ {a, b, c} are the strategies for the players wherea, b, c /∈ V .
– The payoffs (to player 1) are given by:

– u1(i, j) = 1 for all i, j ∈ V with (i, j) ∈ E.
– u1(i, j) = 0 for all i, j ∈ V with (i, j) /∈ E.
– u1(z, a) = 1 for all z ∈ S − {b, c}.
– u1(a, i) = k−1

k
for all i ∈ V .

– u1(y, i) = 1 for all y ∈ {b, c} andi ∈ V .
– u1(y, a) = 0 for all y ∈ {b, c}.
– u1(z, y) = 0 for all z ∈ S andy ∈ {b, c}.

In other words, the payoff matrix for player 1 looks like the matrix depicted in
Figure 1 (where the submatrixAG denotes the adjacency matrix of the graphG).

The idea behind this matrix is that onlya can be a ESS (dependent onk < d).
a is not an ESS iff there is no cliqueC of size (at least)k in G because playing
all strategies fromC with equal probability is a best response toa that violates the
stability requirement fora being an ESS.
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Theorem 2Let G = (V, E) be an undirected graph.Γk(G) has an ESS iff G has
no clique of sizek. Thus,ESS is coNP-hard.

Proof Let G = (V, E) be an undirected graph with maximum clique sized. We
consider the gameΓk(G). We first show that any ESSs of Γk(G) must satisfy
supp(s)∩ {b, c}, supp(s) * V , ands(a) = 1. Next, we show that(a, a) is in fact
a NE and thata is an ESS iffd < k.

Supposes is an ESS ofΓk(G). Thensupp(s) ∩ {b, c} = ∅, because if not
let t 6= s be a strategy witht(i) = s(i) for i ∈ V , t(y) = s(b) + s(c) and
t(y′) = 0 wherey, y′ ∈ {b, c} such thaty 6= y′ ands(y) = min {s(b), s(c)}.
Sinceu1(b, z) = u1(c, z) for all z ∈ S,

U1(t, s) =
∑

i∈V

t(i)
︸︷︷︸

=s(i)

U1(i, s) + (t(b) + t(c))
︸ ︷︷ ︸

=s(b)+s(c)

U1(b, s)
︸ ︷︷ ︸

=U1(c,s)

= U1(s, s)

and sot is a best response tos. An identical argument shows thatU1(s, t) =
U1(t, t), but this is a contradiction tos being an ESS. Furthermore,supp(s) * V ,
because if not, by Theorem 1

U1(s, s) =
∑

i,j∈V

s(i)s(j)u1(i, j) = xT AGx ≤
d − 1

d
< 1 = U1(b, s)

wherex = (s(v1), . . . , s(v|V |))
T ∈ ∆1 and so(s, s) is not a NE.

Thuss(a) > 0. Suppose for contradictions(a) < 1. Since(s, s) is a NE,a is
a best response tos anda 6= s. ThenU1(s, a) =

∑

z∈supp(s) s(z)u1(z, a) = 1 =

U1(a, a), which is a contradiction tos being an ESS. Therefore the only possible
ESS ofΓk(G) is a. (a, a) is a symmetric NE becauseu1(z, a) ≤ 1 = u1(a, a) for
all z ∈ S. (Noticesupp(a) 6= ext-supp(a), thusa is never regular.)

Supposed < k. Let t 6= a be a best response toa. Thensupp(t) ⊆ V ∪ {a}.
Let r =

∑

i∈V t(i). Sor > 0 andt(a) = 1 − r. So using Corollary 1:

U1(t, t) − U1(a, t) =
∑

i,j∈V

t(i)t(j)u1(i, j)

︸ ︷︷ ︸

≤ d−1

d
r2

+r · t(a)1 + t(a) · r
k − 1

k
+ t(a)2 · 1

−

(

r ·
k − 1

k
+ t(a) · 1

)

≤
d − 1

d
r2 −

k − 1

k
r2 + r(1 − r) + (1 − r)2 − (1 − r)

=

(
d − 1

d
−

k − 1

k

)

r2 =
r2

dk
(d − k) < 0

Soa is an ESS. Now supposed ≥ k. Let C ⊆ V be a clique ofG of sizek.
Thent with t(i) = 1

k
for i ∈ C andt(j) = 0 for j ∈ S − C is a best response to

a andt 6= a, butU1(t, t) =
∑

i,j∈C t(i)t(j)u1(i, j) = 1
k2 · (k − 1)k · 1 = k−1

k
=

U1(a, t), soa is not an ESS. ⊓⊔
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3.2 ESS andREG-ESS are bothNP-hard

We now showESS is NP-hard by providing a polynomial-time (many-one) re-
duction fromSAT to ESS. Moreover, the same reduction shows thatREG-ESS
is NP-hard. First, two key lemmas that construct our matrix gadgets:

Lemma 1 Let n ∈ N andk ∈ R≥0. LetA = (ai,j) be then × n-matrix in which
all entries are 1 except all diagonal entries which are all 0.Consider the mapping
f : Rn 7→ R, f(x) = xT Ax. Then, the only maximum off subject to

∑n
i=1 xi = k

is x∗ =
(

k
n
, k

n
, . . . , k

n

)T
with f( k

n
, . . . , k

n
) = n−1

n
k2.

Proof Notef(x) =
∑n

i=1 xi

∑n
j=1
j 6=i

xj . Since
∑n

j=1 xj = k,

f(x) =
n∑

i=1

xi(k − xi) = k
n∑

i=1

xi −
n∑

i=1

x2
i = k2 −

n∑

i=1

x2
i .

Let 〈x, y〉 =
∑

i xiyi denote the standard inner product of vectorsx andy. Let
1 = (1, . . . , 1)T denote the all 1 vector of length n. We thus want to minimize
〈x, x〉 =

∑n
i=1 x2

i , subject to〈x,1〉 = k. It is easy to see thatx∗ is the unique such
minimum. For completeness, we provide a proof. Suppose〈y,1〉 = 〈x∗,1〉 = k.
Note, for any vectorx, 〈x, x∗〉 = k

n
〈x,1〉. Now,

〈y, y〉 − 〈x∗, x∗〉 = 〈y, y〉 − 〈x∗, x∗〉 + 2
k

n
〈x∗,1〉 − 2

k

n
〈y,1〉

= 〈y, y〉 + 〈x∗, x∗〉 − 2〈y, x∗〉 = 〈y − x∗, y − x∗〉 ≥ 0

Moreover,〈y − x∗, y − x∗〉 = 0 if and only if y = x∗. Thus,x∗ is the unique
minimum. ⊓⊔

Lemma 2 Letn ∈ N andk ∈ R≥0. LetB = (bi,j) be the2n × 2n-matrix where,
for i, j ∈ {1, . . . , 2n}:

bi,j =







0 if i = j

−2 if j = i + 1 andi is odd

−2 if i = j + 1 andi is even

1 otherwise

In other words, the matrixB looks as follows:

B =
















0 −2 1 1 · · · 1 1 1
−2 0 1 1 · · · 1 1 1
1 1 0 −2 · · · 1 1 1
1 1 −2 0 · · · 1 1 1
...

. . .
...

1 1 1 1 · · · 0 1 1
1 1 1 1 · · · 1 0 −2
1 1 1 1 · · · 1 −2 0















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Consider the mappingf : R2n
≥0 7→ R, f(x) = xT Bx. Then,

x∗ = (x∗
1, x

∗
2, . . . , x

∗
2n) ∈ R2n

≥0 is a global maximum off subject to
∑2n

i=1 xi = k

if and only if it satisfiesx∗
2i+1 +x∗

2i+2 = k
n

andx∗
2i+1x

∗
2i+2 = 0 for all 0 ≤ i < n.

In that case,f(x∗) = n−1
n

k2.

Proof Note that

f(x) =

n−1∑

i=0













n−1∑

j=0
j 6=i

(x2i+1 + x2i+2)(x2j+1 + x2j+2)







− 4x2i+1x2i+2







Suppose, for contradiction, thatx∗ is a global maximum but that for somei ∈
{0, . . . , n − 1}, x∗

2i+1 > 0 andx∗
2i+2 > 0. Let x′ be identical tox∗ except that

x′
2i+1 = x∗

2i+1 + x∗
2i+2, andx′

2i+2 = 0. Note thatx′ satisfies the constraints
∑2n

j=1 x′
j = k, andx′ ≥ 0. However,f(x′) > f(x∗), because(x′

2j+1 + x′
2j+2) =

(x∗
2j+1 + x∗

2j+1) for all j = 0, . . . , n − 1, but4x∗
2i+1x

∗
2i+1 > 4x′

2i+1x
′
2i+2 = 0.

Contradiction. Therefore at any global maximumx∗, x∗
2i+1x

∗
2i+2 = 0, for all

i = 0, . . . , n − 1. Consider such a vectorx∗. Let I be the set of indices such
that for eachi = 0, . . . , n − 1, exactly one of2i + 1 and 2i + 2 is in I and
such thatx∗

j = 0 for every indexj that is not inI. Note that for any suchx∗,
f(x∗) = (x∗)T Bx∗ = (x∗)T

I BI,Ix
∗
I . Note thatBI,I has exactly the form of

matrix A of Lemma 1, and that〈x∗
I ,1〉 = k. Therefore, by Lemma 1 the unique

maximum of(x)T BI,Ix, subject to〈x,1〉 = k, is x∗
I = ( k

n
, . . . , k

n
)T . From this

the statement of Lemma 2 follows.⊓⊔

Definition 3 Let Φ be a Boolean formula in Conjunctive Normal Form (CNF),
V = {x1, . . . , xn} the set of its variables,L = {x1,¬x1, x2,¬x2, . . . , xn,¬xn}
the set of literals overV , andC = {c1, . . . , cr} ⊆ 2L − {∅} the set of clauses of
Φ (the empty clause is not allowed). The functionv : L 7→ V gives the variable
corresponding to a literal, e.g.v(x1) = v(¬x1) = x1. Define the functionχ :
C × L 7→ {n−1

n
,−1} as follows:

χ(c, l) =

{
n−1

n
if l 6∈ c

−1 if l ∈ c

Define the gameΓ (Φ) = (S, u1) where:

– S = L ∪ C are the strategies for player 1 and 2 and
– the payoffs are given by

– u1(l1, l2) = 1 for all l1, l2 ∈ L with v(l1) 6= v(l2).
– u1(l, l) = 0 for all l ∈ L.
– u1(l,¬l) = −2 for all l ∈ L.
– u1(l, c) = −1 for all l ∈ L and allc ∈ C.
– u1(c, l) = χ(c, l) for all c ∈ C andl ∈ L.
– u1(c, c

′) = −1 for all c, c′ ∈ C.
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-1

-1

¬x1

x1

cr

χ(c, l)

c1

crc1¬xnxnx1 ¬x1

xn

¬xn

BL

C

L C

Fig. 2 The payoff matrix for player 1 in the gameΓ (Φ).

In other words, the payoff matrix for player 1 is the matrix depicted in Figure 2.
There, the submatrixB is the matrix defined in Lemma 2, the submatrices marked
by “−1” denote matrices all of whose entries are−1, and the submatrix marked
by “χ(c, l)” denotes a(|C| × |L|)-matrix whose(c, l)-entry isχ(c, l).

Let (l1, . . . , ln), with li ∈ {xi,¬xi}, correspond to a truth assignment to the vari-
ables inV .

Theorem 3LetΦ be a CNF Boolean formula withn variables. If(l1, . . . , ln) cor-
responds to a satisfying assignment forΦ, then the mixed strategys with s(li) = 1

n

for 1 ≤ i ≤ n ands(y) = 0 for y ∈ S − {l1, . . . , ln} is a regular ESS for the
gameΓ (Φ). Conversely, ifs is an ESS forΓ (Φ), thens has the above form and
(l1, . . . , ln) corresponds to a satisfying assignment ofΦ (and thuss is also a reg-
ular ESS).

Proof LetΦ be a CNF Boolean formula withn variables. We consider the strategic
gameΓ (Φ). The idea behindΓ (Φ) is that only strategies which correspond to truth
assignments to the variables inV are potentially an ESS. Such a strategys does
not satisfy a clausec (and thusΦ) iff playing c is a best response tos that violates
the stability condition fors.

Let s be an ESS. First, we show thatsupp(s) ∩ C = ∅. Assume not. Then,
there is a clausec ∈ C such thats(c) > 0. If s(c) = 1, then any literall of c is
a best response tos sinceU1(l, s) = u1(l, c) = −1 = u1(c, c) = U1(s, s), but
U1(l, l) = u1(l, l) = 0 > −1 = u1(c, l) = U1(c, l), a contradiction tos being
an ESS. So suppose0 < s(c) < 1. Sinces is a NE, we know thatc 6= s is a best
response tos and

U1(s, c) =
∑

x∈S

s(x)u1(x, c)
︸ ︷︷ ︸

=−1

= −1 = u1(c, c) = U1(c, c)



The Computational Complexity of Evolutionarily Stable Strategies 13

contradictings being an ESS. Next, we show thatv(supp(s)) = V , i.e. for each
variable at least one corresponding literal is played. Assume not. Then, there is a
literal l ∈ L such thats(l) = 0 ands(¬l) = 0. Enumerating the literals in such a
way thatl2i+1 = xi andl2i+2 = ¬xi for all 0 ≤ i < n, let B = (bi,j)1≤i,j≤2n be
the2n× 2n-matrix wherebi,j = u1(l

i, lj) ands′ = (s(l1), . . . , s(l2n))T . NoteB

is the matrix B in Lemma 2. So by Lemma 2,n−1
n

≥ s′T Bs′ =
∑2n

i,j=1 s′ibi,js
′
j =

∑2n

i,j=1 s(li)s(lj)u1(l
i, lj) = U1(s, s). But,U1(l, s) = 1 ·

∑

l∈supp(s) s(l) = 1 >
n−1

n
≥ U1(s, s), sos is not a NE.

Next, we show that ifs is an ESS, then there aren pairwise different liter-
als (l1, . . . , ln) such thats(li) = 1

n
and li 6= ¬lj for 1 ≤ i, j ≤ n. Suppose

not. Sincev(supp(s)) = V , we can pickn pairwise different literals(l′1, . . . , l
′
n)

such thatl′i ∈ supp(s) and l′i 6= ¬l′j for 1 ≤ i, j ≤ n. Set t(l′i) = 1
n

for
1 ≤ i ≤ n andt(i) = 0 for all i ∈ S − {l′1, . . . , l

′
n}. Since(s, s) is a NE, ev-

ery l ∈ supp(s) is a best response tos, i.e.U1(l, s) = U1(s, s). HenceU1(t, s) =
∑n

i=1 t(l′i)
∑

j∈S s(j)u1(l
′
i, j) = 1

n

∑n

i=1 U1(l
′
i, s) = U1(s, s), so t is a best re-

sponse tos. Then

U1(s, t) =
∑

l,l′∈L

s(l)t(l′)u1(l, l
′) =

∑

l′,l∈L

t(l′)s(l)u1(l
′, l) = U1(t, s)

=U1(s, s) ≤
n − 1

n

(1)

and

U1(t, t) =
n∑

i=1

t(l′i)







t(l′i)u1(l
′
i, l

′
i) +

n∑

j=1
j 6=i

t(l′j)u1(l
′
i, l

′
j)







=

n∑

i=1

1

n







1

n
· 0 +

n∑

j=1
j 6=i

1

n
· 1







=
n − 1

n

(2)

soU1(s, t) ≤ U1(t, t), contradictings being an ESS.
What remains to be shown is that ifs is a mixed strategy such thats(li) = 1

n
for

n differentli ∈ L with li 6= ¬lj for all 1 ≤ i, j ≤ n thens is an ESS iff(l1, . . . , ln)
is a satisfying assignment forΦ (and thats is then in fact a regular ESS). Suppose
s is such a mixed strategy. First, we show that(s, s) is a symmetric NE. We know
from equation 2 thatU1(s, s) = n−1

n
. Let L∗ = {l1, . . . , ln}. Playing any of the

l ∈ L∗ gives payoffU1(l, s) = 1
n
· 0 + 1

n
(n − 1) · 1 = n−1

n
. Playing any of the

l ∈ L − L∗ gives payoffU1(l, s) = 1
n
· (−2) + 1

n
(n − 1) · 1 < n−1

n
. Playing any

of thec ∈ C gives payoff at mostU1(c, s) = 1
n
n · n−1

n
= n−1

n
.Therefore,(s, s) is

a symmetric NE.
Suppose(l1, . . . , ln) is not a satisfying assignment. Then, there is a clausec

such that none of its literals is played. Therefore,U1(c, s) =
∑

l∈L∗ s(l)u1(c, l) =
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∑

l∈L∗ s(l)n−1
n

= n−1
n

. Soc is a best response tos andc 6= s. ThenU1(c, c) =
−1 =

∑

l∈L∗ s(l)u1(l, c) = U1(s, c), so s is not an ESS. Conversely, suppose
(l1, . . . , ln) is a satisfying assignment. Then, every clause contains a literal that is
played. Hence, for allc ∈ C,

U1(c, s) =
∑

l∈L∗

s(l)u1(c, l) = (−1)
∑

l∈L∗∩c

s(l) +
n − 1

n

∑

l∈L∗−c

s(l)

<
n − 1

n
= U1(s, s).

Thussupp(s) = ext-supp(s) = L∗. So, supposet is a best response tos. Then
supp(t) ⊆ ext-supp(s) = L∗. As in equation (1), we getU1(s, t) = U1(t, s) =
U1(s, s) = n−1

n
. LetA = (ai,j)1≤i,j≤n be then×n-matrix whereai,j = u1(li, lj)

and lett′ = (t(l1), . . . , t(ln))T . Note thatA is the matrixA in Lemma 1, so by
Lemma 1

n − 1

n
≥ t′T At′ =

n∑

i,j=1

t′iai,jt
′
j =

n∑

i,j=1

t(li)t(lj)u1(li, lj) = U1(t, t)

with equality holding only ift(li) = 1
n

for all 1 ≤ i ≤ n. Hence, we have that
t 6= s impliesU1(s, t) > U1(t, t). Therefore,s is an ESS, and it is regular because
supp(s) = ext-supp(s). ⊓⊔

Corollary 2 ESS and REG-ESS are NP-hard. (Moreover,#ESS and #REG-
ESS are#P-hard.)

Proof Clearly, Γ (Φ) can be constructed fromΦ in P-time. Theorem 3 shows
(l1, . . . , ln) is a satisfying assignment forΦ iff s with s(li) = 1

n
for 1 ≤ i ≤ n and

s(y) = 0 for y ∈ S − {l1, . . . , ln} is an ESS forΓ (Φ), and that these are the only
possible ESSs. Moreover, it shows that in this cases is a regular ESS. Therefore,
bothESS andREG-ESS areNP-hard.
The number of (necessarily regular) ESSs inΓ (Φ) is the number of satisfying as-
signments ofΦ. Counting satisfying assignments of a CNF formula is#P-hard
([Val79]). ⊓⊔

3.3 Inapproximability of ESSs

We now address whether an ESS, if one exists, can be efficiently “approximated”.
Care is needed to define this, since no ESS may exist. One formulation is a poly-
nomial time algorithm that, given the game andǫ > 0, outputs a mixed strategy
s such thatif there exists a (regular) ESS, then there exists a (regular) ESS s∗

such that‖s∗ − s‖ < ǫ, under some norm‖ · ‖. For concreteness, let‖s‖ =
maxi∈{1,...,n} |si| be theL∞ norm (any normLj, j ≥ 1, is fine too). Call this a
P-time ǫ-approximation of (regular) ESSs.
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Corollary 3 There is no polynomial time1
m

-approximation algorithm for finding
an ESS in a gameΓ = (S, u1) wherem = |S|, nor for finding a regular ESS inΓ ,
unlessP = NP.

Proof Suppose there was such an algorithm. For a boolean formulaΦ, we run
that algorithm on the gameΓ (Φ) = (S, u1) from definition 3 with|S| = m =
2|V | + |C|, where|V | = n is the number of variables ofΦ, and|C| is the number
of clauses. This would yield a strategys such that if there exists a (regular) ESS
in Γ (Φ), then there existss∗ with ‖s∗ − s‖ < 1

m
. Thus|s∗i − si| < 1

m
for all

1 ≤ i ≤ m. Note however that by Theorem 3, the only candidate (regular) ESSs
s∗ in that game have, in every coordinate, either probability1

|V | = 1
n

> 2
m

or

probability0. Thus if si > 1
m

, then the only possible candidate fors∗i is s∗i = 1
n

,
and if si < 1

m
, then the only possible candidate iss∗i = 0. If si = 1

m
, then

neither is a candidate and hences is not within distance< 1
m

of any ESS, therefore
no ESS exists. So, we can build the candidates∗, check that the probabilities in
it sum to1, and that it corresponds to a truth assignment to variables,meaning
exactly one of the two pure strategies corresponding to the two literals for each
variable has non-zero probability, and no other strategy has non-zero probability.
We then check whether this is a satisfying assignment ofΦ. If so,Φ is satisfiable,
otherwiseΦ is not. Thus we would have solvedSAT in P-time using our purported
approximation algorithm. (An obvious variant of this corollary can be phrased for
randomized polynomial time1

m
-approximation of ESSs.)⊓⊔

Note that corollary 3 does not rule out the possibility of polynomial timeǫ-
approximation algorithms, for arbitrarily small but fixed constantsǫ > 0, as the
sizem goes to infinity.

4 Upper bounds

4.1 REG-ESS is in NP

In [Hai75], Haigh claimed to show that a strategys is an ESS forΓ = (S, u1)
if and only if (s, s) is a NE and the(m − 1) × (m − 1)-matrix C = (ci,j) is
negative definite, wherem = | ext-supp(s)| andci,j = u1(i, j) + u1(m, m) −
u1(i, m)−u1(m, j) for i, j ∈ ext-supp(s)−{m} (where, w.l.o.g.,ext-supp(s) =
{1, . . . , m}). In [Aba80], Abakuks pointed out that there is an error in the “only
if” part of Haigh’s claim. Namely, Abakuks showed that the existence of an ESS
only implies the negative definiteness of the matrixC if in addition s(m) > 0
and | ext-supp(s)| − | supp(s)| ≤ 1. As we will see, the Haigh-Abakuks crite-
ria can be used to show thatREG-ESS is in NP. By a suitable modification of
these criteria, we can obtain necessary and sufficient conditions for the existence
of arbitrary ESSs which will allow us to show thatESS is in Σ

p

2 . Essentially iden-
tical conditions, based on copositivity of matrices over a cone, were developed by
Bomze and used by him in an algorithm for enumerating all ESSsof a game (com-
pare Theorem 6 below with [Bom92]’s Theorem 3.2, whose proofrelies on the
substantial developments in the book [BP89]). Bomze’s enumeration algorithm,
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however, uses a recursive elimination procedure that involves some complications
including a possible numerical difficulty. Namely, we couldnot preclude the pos-
sibility that iterating the procedure outlined in Theorem 3.3 of [Bom92] may cause
an exponential blow-up in numerical values. We were thus unable to deduce our
upper bounds forESS directly from Bomze’s algorithms. We will instead give
a self-contained development of the criteria we shall use, with elementary proofs
building directly on the work of [Hai75] and [Aba80], and we will then (in the
case ofESS) rely on a well known result by Vavasis about the complexity of
the quadratic programming decision problem ([Vav90]), multiple applications of
which allows us to obtain our upper bounds forESS.

Lemma 3 (cf. [Aba80], Lemma 1)Letm ∈ N, x ∈ Rm
≥0 with

∑m
i=1 xi = 1. Let

Yx =
{
y ∈ Rm

≥0 :
∑m

i=1 yi = 1
}
− {x} and

Zx = {z ∈ Rm :
∑m

i=1 zi = 0, ∀1 ≤ i ≤ m : xi = 0 ⇒ zi ≥ 0} − {0}

LetB ∈ Rm×m. ThenzT Bz < 0 for all z ∈ Zx iff (y − x)T B(y − x) < 0 for all
y ∈ Yx.

Lemma 1 in [Aba80] says the following: ifY =
{
y ∈ Rm

≥0 :
∑m

i=1 yi = 1
}

andZ = {z ∈ Rm : z 6= 0,
∑m

i=1 zi = 0} andB is a realm × m-matrix, then

– zT Bz < 0 for all z ∈ Z implies that(x − y)T B(x − y) < 0 for all y ∈ Y
with y 6= x and

– if at most one component ofx is zero then(x−y)T B(x−y) < 0 for all y ∈ Y
with y 6= x implies thatzT Bz < 0 for all z ∈ Z.

Lemma 3, which we now prove, is a variation of Abakuks’ Lemma 1.

Proof SupposezT Bz < 0 for all z ∈ Zx. Let y ∈ Yx. Then y − x 6= 0,
∑m

i=1 (yi − xi) =
∑m

i=1 yi −
∑m

i=1 xi = 1 − 1 = 0 and for all1 ≤ i ≤ m with
xi = 0 we getyi −xi = yi ≥ 0, hencey−x ∈ Zx and so(y−x)T B(y−x) < 0.
Conversely, suppose(y − x)T B(y − x) < 0 for all y ∈ Yx. Let z ∈ Zx.

Set λ = min
{

xi

|zi|
: 1 ≤ i ≤ m, xi > 0, zi 6= 0

}

. Then λ > 0. Choosey =

x + λz 6= x. Theny ≥ 0 becausex ≥ 0 and if zi < 0 then xi > 0 and
yi = xi − λ|zi| ≥ xi −

xi

|zi|
|zi| = 0 for 1 ≤ i ≤ m. Note that

m∑

i=1

yi =
m∑

i=1

xi + λ
m∑

i=1

zi = 1 + λ · 0 = 1

Hencey ∈ Yx and thuszT Bz =
(

1
λ

(y − x)
)T

B
(

1
λ

(y − x)
)

= 1
λ2 (y−x)T B(y−

x) < 1
λ2 0 = 0. ⊓⊔

Lemma 4 [Hai75] Let C = (ci,j)i,j
be a realm × m-matrix, m ≥ 2. Let D =

(di,j) be the(m−1)×(m−1)-matrix given bydi,j = ci,j+cm,m−ci,m−cm,j. Let
x ∈ Rm such that

∑m

i=1 xi = 0 and setx′ = x{1,...,m−1}. ThenxT Cx = x′T Dx′.
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Proof A proof for this lemma was given by Haigh in [Hai75]. For completeness,
we provide it here. Letx ∈ Rm such that

∑m

i=1 xi = 0, i. e.xm = −
∑m−1

i=1 xi.
Then

xT Cx =

m−1∑

i=1

m−1∑

j=1

xici,jxj + xm





m−1∑

j=1

cm,jxj +

m−1∑

i=1

xici,m



 + x2
mcm,m

=

m−1∑

i=1

m−1∑

j=1

(xici,jxj + (−xi)cm,jxj + xici,m(−xj) + (−xi)cm,m(−xj))

=
m−1∑

i=1

m−1∑

j=1

xi (cij + cmm − cmj − cim)xj = x′T Dx′

⊓⊔

Lemma 5 [Hai75] Let (s, s) be a symmetric NE for the gameΓ = (S, u1) and let
M = ext-supp(s), with m = |M |. Let x = sM andC = (AΓ )M,M . Let Yx be

defined as in Lemma 3. Thens is an ESS if and only if(y − x)T C(y − x) < 0 for
all y ∈ Yx.

Proof A proof for this can be found in [Hai75]. For completeness, weprovide it
here, too. Lett be any best response tos. Consider

U1(t, t) − U1(s, t) =tT AΓ t − sT AΓ t = (t − s)T AΓ (t − s + s)

=(t − s)T AΓ (t − s) + tT AΓ s − sT AΓ s
︸ ︷︷ ︸

=U1(t,s)−U1(s,s)=0

=(t − s)T AΓ (t − s)

Note thatt(z) = s(z) = 0 for z ∈ S−M . Lety = tM . Then(t−s)T AΓ (t−s) =
(y − x)T C(y − x).

Supposes is an ESS. Then for anyy′ ∈ Yx, let t′ ∈ X with t′(z) = y′(z)
for z ∈ M andt′(z) = 0 for z ∈ S − M . Thent′ 6= s is a best response tos,
becausesupp(t) is contained inM = ext-supp(s). Thus,(y′ − x)T C(y′ − x) =
(t′ − s)T AΓ (t′ − s) = U1(t

′, t′) − U1(s, t
′) < 0.

Conversely, suppose(y − x)T C(y − x) < 0 for all y ∈ Yx. For any best
responset 6= s to s, sety′′ = tM . Theny′′ ∈ Yx and soU1(t, t) − U1(s, t) =
(y′′ − x)T C(y′′ − x) < 0. ⊓⊔

Lemma 6 (cf. [Bom92], Thm 3.2)Let(s, s) be a NE forΓ withM = ext-supp(s),
and m = |M | ≥ 2. Identify M with {1, . . . , m} such thats(m) > 0 and let
x = sM . LetC = (AΓ )M,M . DefineD as in Lemma 4. Let

Wx =
{
w ∈ Rm−1 : (∀i ∈ {1, . . . , m − 1} : xi = 0 ⇒ wi ≥ 0)

}
− {0}

Thens is an ESS if and only ifwT Dw < 0 for all w ∈ Wx.



18 K. Etessami, A. Lochbihler

Proof Let Yx andZx be defined as in Lemma 3. From Lemma 5 we know that
U1(t, t) − U1(s, t) < 0 for all best responsest 6= s to s is equivalent to(y −
x)T C(y−x) < 0 for y ∈ Yx which itself is equivalent tozT Cz < 0 for all z ∈ Zx

by Lemma 3. Now suppose thatwT Dw < 0 for all w ∈ Wx. Letz ∈ Zx. Setw′ =
z{1,...,m−1}. Thenw′ ∈ Wx and so with Lemma 4, we getzT Cz = w′T Dw′ < 0.
Conversely, suppose thatzT Cz < 0 for all z ∈ Zx. Let w ∈ Wx. Setz′i = wi for
1 ≤ i ≤ m − 1 andz′m = −

∑m−1
i=1 wi. Thenz′ = (z′1, . . . , z

′
m)T ∈ Zx because

s(m) > 0 and so with Lemma 4, we getwT Dw = z′T Cz′ < 0. ⊓⊔

Proposition 1 If s is an ESS,(t, t) a symmetric NE, andsupp(t) ⊆ ext-supp(s),
thent = s.

Proof Supposet 6= s. Sincesupp(t) ⊆ ext-supp(s), t is a best response to s, but
since(t, t) is a NE,U1(s, t) ≤ U1(t, t). Contradiction tos being an ESS. ⊓⊔

Theorem 4REG-ESS is in NP.

Proof Given a gameΓ = (S, u1) (n = |S|) with rational payoffs, guess the
extended support setM ⊆ S of a (purported) regular ESSs for Γ and letm =
|M |. IdentifyS with {1, . . . , n} such thatM = {1, . . . , m}. Find a symmetric NE
(s, s) of Γ with supp(s) ⊆ M by solving (inP-time) the following linear program
in variabless1, . . . , sn, w, wheres = (s1, . . . , sn)T :

– U1(i, s) = w for all i ∈ M ; andU1(i, s) ≤ w for all i ∈ S − M .
–

∑n

i=1 si = 1; andsi ≥ 0 for all i ∈ M ; andsi = 0 for all i ∈ S − M .

Let s be an arbitrary solution. By proposition 1 ifs is an ESS thens is the only
solution to the system above. Thus it doesn’t matter what solution we find (if we
don’t find any, then there is no NE and no ESS with support set M). Check that
supp(s) = ext-supp(s) = M . This can be done inP-time, by trying each pure
strategy outsidesupp(s) againsts.

Note that if |M | = 1 then the pure strategys is the only best response to
itself, and thuss is a regular ESS. Suppose|M | ≥ 2, and letx = sM . Let D and
Wx be defined as in Lemma 6. By Lemma 6,s is an ESS iffwT (−D)w > 0
for all w ∈ Wx. SetD′ = 1

2

(
D + DT

)
. D′ is a symmetric matrix, and note that

wT D′w = wT Dw for all w. Note thatWx = Rm−1−{0} becausesupp(s) = M .
Hences is an ESS if and only if(−D′) is positive definite. Positive definiteness
of a symmetric matrix can be checked inP-time via the determinant criterion (see
section 2). Therefore checking whether there is an ESSs for Γ with supp(s) =
ext-supp(s) = M for the guessed setM can be done in polynomial time. Thus
REG-ESS is in NP. ⊓⊔

Corollary 4 #REG-ESS is #P-complete.

Proof #P-hardness was established in Corollary 2. The proof of Theorem 4 gives
an NP-algorithm for deciding whether a game has a regular ESS. Each accept-
ing computation yields a different support set and thus a different regular ESS.
Therefore,#REG-ESS is in #P. ⊓⊔
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4.2 ESS is in Σ
p

2

We next showESS is in Σ
p

2 . Vavasis established the following result on quadratic
programming (see also, e.g., [MK87]).

Definition 4 Let QP denote the following decision version of the quadratic pro-
gramming problem: given an × n-matrix H and am × n-matrix A, both with
integer coefficients,K ∈ Q, c ∈ Zm, andb ∈ Zm, is there a vectorx ∈ Rn with
Ax ≥ b such thatxT Hx + cT x ≤ K?

Theorem 5 [Vav90] QP is in NP.

Theorem 6ESS is in Σ
p

2 .

Proof Given a gameΓ = (S, u1) (n = |S|) with rational payoffs, guess the
extended support setM ⊆ S for an ESSs for Γ and setm = |M |. As in the proof
of Theorem 4, compute a symmetric NE(s, s) with supp(s) ⊆ M . Check that
ext-supp(s) = M (again, this check isP-time). Setl = m − | supp(s)|. If l = 0
then proceed as in the algorithm in Theorem 4.

Supposel > 0, and thusm ≥ 2. Let x = sM . Let D andWx be defined
as in Lemma 6. By Lemma 6,s is an ESS if and only ifwT (−D)w > 0 for
all w ∈ Wx. In other words,s is not an ESS iff there existsw ∈ Wx such that
wT (−D)w ≤ 0. This is the case iff there existsw 6= 0 such thatwi ≥ 0 for all i
such thatxi = 0, such thatwT (−D)w ≤ 0. This is the case iff

there exists aw such thatwi ≥ 0 for all i wherexi = 0, and such that
for somej ∈ {1, . . . , m − 1}, wj ≥ 1 or −wj ≥ 1, and such that
wT (−D)w ≤ 0.

To see the last claim, note that ifwT (−D)w ≤ 0, then for any constantc > 0,
(cw)T (−D)(cw) = c2wT (−D)w ≤ 0. Thus, forw 6= 0 wherewT (−D)w ≤ 0,
we can choose a constantc > 0 large enough so that either for some positive
coefficientwj , cwj ≥ 1 or for some negative coefficientwj , −(cwj) ≥ 1. Thus
the vector(cw) will satisfy the desired conditions.

Now, we can check these conditions by solving2(m − 1) quadratic program-
ming decision problems. Namely, we check for all1 ≤ j ≤ m − 1 and for each
σ ∈ {+1,−1}, whether there exists aw ∈ Rm−1 satisfyingwT (−D)w ≤ 0,
and satisfying the linear constraints:wi ≥ 0 for eachi such thatxi = 0, and
σwj ≥ 1. As described, the matrix(−D) is a rational matrix, and theQP prob-
lem was formulated in terms of integer matrices. However, wecan easily “clear
denominators” in(−D), finding the least common multipleλ > 0 of the denom-
inators of entries ofD and settingH = −λD (this can be done inP-time). Then
H is a(m− 1)× (m− 1)-matrix with integer entries, andwT Hw ≤ 0 if and only
if wT (−D)w ≤ 0, for anyw ∈ Rm−1.

Thus, checking that thiss is notan ESS can be done inNP. Thus, to determine
the existence of an ESS involves existentially guessing a support setM , findings
with support setM such that(s, s) is a NE (using linear programming), and then
checking thats is an ESS incoNP, by checking (inNP) thats is not an ESS. Thus
ESS is in Σ

p

2 . ⊓⊔
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(We remark that it follows from the proof of Theorem 6 that#ESS is in the count-
ing class#NP, a class defined in [Val79].)

5 Concluding remarks

We have shown that theESS problem is bothNP-hard andcoNP-hard under
many-one reductions, and thus not inNP nor in coNP unlessNP = coNP, and
that it is contained inΣp

2 , the second level of the polynomial-time hierarchy. On
the other hand, we have shownREG-ESS is NP-complete.

Our results leave open whether the generalESS problem isΣp

2 -complete or
belongs to some “intermediate” class aboveNP andcoNP but belowΣ

p

2 . Natural
decision problems in such a position are relatively rare, lending theESS problem
an intriguing complexity-theoretic status.

In a recent note, Nisan [Nis06] has slightly strengthened our hardness theorem
for general ESSs by showing that theESS problem is hard for the complexity class
coDP.1 coDP consists of those languages which are the union of anNP language
and acoNP language (see [PY82,Pap94] for background on this class).coDP
clearly contains bothNP andcoNP, and is contained inΣp

2 . Nisan’s hardness
proof can be viewed as a strengthening of Theorem 2, our coNP-hardness result
for general ESSs. Like our proof of Theorem 2, his proof uses the Motzkin-Straus
characterization of clique size in an essential way. A hard problem forcoDP is to
decide for a given graphG and givenk, whether the maximum clique size ofG is
not exactlyk (i.e., a ”yes” instance is a graphG whose maximum clique size is not
k). Nisan reduces this problem to the generalESS problem. Nisan also observes
as a consequence of his proof that deciding whether a given mixed strategy is
an ESS iscoNP-complete. But this latter fact already follows from our results.
Namely, the proof of Theorem 2 gives a reduction from coClique to ESS such that
there is a clique of size≥ k in the original graph iff the specific pure strategya in
the resulting game is not an ESS. Thus, it follows that checking whethera is an
ESS in such games iscoNP-hard. Moreover, acoNP upper bound for checking
whether a given mixed strategy is an ESS follows from the proof of Theorem
6, ourΣp

2 upper bound for general ESSs. In that proof we observe that, once a
given extended support set is guessed, a symmetric NE(s, s) with that extended
support can be computed in P-time if it exists (and it must exist and be unique if
s is an ESS), and we showed that one can then also check whethers is an ESS in
coNP. Now, if we are givens to begin with, we can clearly first check in P-time
whether(s, s) is an NE, and then check whether it is an ESS incoNP. Note also
that thecoDP-hardness result does not make redundant ourNP-hardness result
for ESSs, because ourNP-hardness result also shows that deciding the existence
of regular ESSs is already NP-hard. As we show in Theorem 4, unlike general
ESSs, checking the existence of regular ESSs can be done inNP (and thus is
not coNP-hard norcoDP-hard, under standard complexity assumptions). It also

1 The results of our present paper were made available in 2004 as an ECCC tech report
[EL04], and Nisan’s note was made available in 2006 as an ECCCtech report [Nis06].
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follows from the proof of Theorem 4 that checking whether a given strategy is a
regular ESS can be done inP-time.

It remains an intriguing open problem to determine what complexity class cap-
tures the precise computational complexity of the generalESS problem.
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